
Received 23 April 2024, accepted 5 June 2024, date of publication 17 June 2024, date of current version 24 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3415632

Ontology-Based Classification and Detection of
the Smart Home Automation Rules Conflicts
ADEEB MANSOOR ANSARI , MOHAMMED NAZIR, AND KHURRAM MUSTAFA
Department of Computer Science, Jamia Millia Islamia, New Delhi, India

Corresponding author: Adeeb Mansoor Ansari (adeebmansooransari.am@gmail.com)

ABSTRACT Smart homes are the most adaptable and utilized application of the IoT. Smart homes enable
end users to define and control the automation remotely by defining automation rules. The automation rules
interaction results in the defined tasks and activities but also delivers unwanted interactions, which show
adverse effects. Their interactions may consist of chained and covert rules interaction, which are hard to
trace and identify. Attackers’ malicious apps installed in smart homes may leverage rules’ adverse effects to
compromise smart home security and harm users, such as opening the window at night or when no one is
home. To address such issues, we developed an ontology of smart home automation rules to identify such
interactions. Prior works failed to provide the complete classification and could not identify all possible rule
conflicts. In this work, we proposed the classification of automation rule interactions into five categories
and recognized the potential rule conflicts. In addition, the ontology can examine rules interactions against
the defined safety policies, providing an extra layer of security. The ontology will aid the designers in better
understanding and developing a robust security mechanism at the design phase to resist rules interaction
conflicts and their adverse effects. We examine this work on the thirty-five rules formed in the light of prior
work test cases and validation. The results show that the proposed work is promising and can efficiently
identify all the rule interaction conflicts in the smart home.

INDEX TERMS Smart home, ontology, automation rules, rule conflict, conflict classification, security.

I. INTRODUCTION
The adaptation of the Internet of Things is increasing day by
day, connecting everything and existing everywhere, forming
a vast network connected with the Internet [1], [2]. One
of the prominent applications of the Internet of Things
is the smart home, which enables its user’s convenience
and management of the smart home with a click [3], [4],
[5]. Smart homes have sensors and actuators that alter the
environment and actuators’ states according to the user’s
defined automation to deliver comfort and convenience [2],
[6]. The user-defined automation rules access and assign the
value to the various variables and actuator states to achieve
automation. When there are multiple automation rules for
performing various activities; these rules may access and
assign the same variables and actuator states and share the
same space in the smart home [7], [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Leandros Maglaras .

Rules sharing the same variables, states, and space interact
with each other directly or indirectly [8], [9]. These inter-
actions may cause conflicts, resulting in nondeterministic
outcomes after rule execution [4], [5], [7], [10]. For example
rule R1 states open the window when the temp is greater
than 27◦ C, and R2 dictates close the window when the
TV is on to enable a dark room. If R1 and R2 occur at
the same time and location, then the window state outcome
will be nondeterministic, i.e., the window can be opened
or closed. Numerous automation rules for the same smart
space make the rule’s interactions more complex [9]. Further,
in multi-resident smart homes, this complexity escalates with
the multiple users’ authority to define rules [2]. Such rules
conflict may damage the devices, leverage them to perform
other attacks, and lead the smart home to compromised states.
This poses a significant threat to the users economically and
in terms of their lives. Therefore, detecting the rules conflicts
is essential to secure smart homes and their users [11].

Detection of rules conflicts has recently been a hot topic in
smart home security. Various prior works proposed conflict

85072

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-4335-9094
https://orcid.org/0000-0001-5360-9782

A. M. Ansari et al.: Ontology-Based Classification and Detection

detection mechanisms based on detection methodology.
These existing works can be classified in model checking
approach [16], [18], [19], [20] and classification-based for-
mal approach [12], [13], [14], [15], [21] detection. In model
checking-based detection, by extracting the information from
the defined rules and controlling apps, the model of the
smart home is formed. Then, the model is checked for
conflicting interactions and against the safety policies to
validate the overall smart home security [16]. On the other
hand, the classification-based formal approach detection
identifies the possible interaction of rules and detects
potential conflicts according to the classification categories.

In modeling-based detections, collecting the information
from the automation apps and correctly modeling the
interaction is challenging due to the closed-source apps and
frameworks. In formal detection mechanisms, classification
serves as the backbone of conflict detection, but existing
conflict classification needs to be completed, i.e., it only
covers some possible rule conflicts. Pertinent literature like,
Ibrhim et al., [8] proposed the classification of rule conflicts,
which covers all the existing rule conflicts and safety policy
violations. They also considered the multiuser authority
conditions in defining the conflicts and violations. Although
they classify the conflicts extensively, they still leave out
the same environment impact conflict. Moreover, instances
of the one conflict type are categorized as distinct conflicts,
which can be classified collectively as one conflict class.
For example execution conflict and indirect conflict are
instances of cross-execution conflict class. Both conflicts
occur when opposite actions are performed on the same
actuator, either directly or indirectly [5]. This result in
complexity in understanding the rule conflicts and thus effect
the identification of all possible conflicts.

While the proposed ontology covers all the rule conflicts
that may occur in the smart home. Based on it, rule conflicts
and safety policy violations are detected. Rule inconsistencies
that occurred during the rules set up by the users, which are
termed as errors, not as conflicts, are out of the scope of
this work. Further, detection algorithms in existing works do
not cover all rule interactions, i.e., the interaction of a rule
with its chained rules (if they exist). Among the simultaneous
executing rules, chained rules of one rule with the other
rule and its chained rules. These interactions are complex to
trace due to their covert nature but are essential to consider.
These uncovered rule interactions may leave out possible rule
conflicts. Therefore, defining the rule conflicts, developing
a complete classification, and evaluating all the complex
possible rule interactions are essential to develop an efficient
conflict detection mechanism [8].
To develop a secure and trustworthy smart environment

such as a smart home, the problem of automation rules con-
flicts detection and its resolution must be realized throughout
its development lifecycle from design to implementation.
Therefore, to better understand these conflicts at each
development lifecycle phase, we developed an ontology that

provides designers and implementers a semantic model of the
relation between automation components, rule interactions,
and conflicts. Ontologies are effective in representing the
complex structure of automation rules, devices, their rela-
tionships and the roles of different components of the smart
home [41], [42], [43]).

Ontological models help to develop a formal framework to
represent the automation rules semantics of the smart home
with clarity and precision, which facilitates accurate detection
and classification of the conflicts [41], [42]. Such conflict
detection can analyze the rule interactions by reducing the
false positives and thus improving the overall accuracy of the
conflict detection. Ontology-based models enable automated
conflict detection, which alleviates the need for manual
inspection of rule conflicts, effort, and time of smart home
users, thus ensuring prompt resolution and minimal disrup-
tions to the smart home environments [42]. Furthermore,
the scalability and adaptability of ontology-based models
can accommodate complex and different configurations of
smart home environments, which ensures the reliability and
efficiency of such conflict detection mechanisms [41], [43].

Secondly, ontology provides a shareable and extendable
knowledge base for each development lifecycle phase that
supports advancements and improvements at each level
to develop an effective and efficient tool, platform, and
application to classify and detect automation rules in a
smart environment. In this paper, we proposed the ontology
based smart home rule conflicts classification and detection
mechanism to address the research gaps and limitations
discussed above effectively. We proposed a rule conflict
classification that covers all the possible rule conflicts and
developed the ontology illustrating how to detect the rule
conflicts efficiently. Following are the contributions of this
research work.

1. Proposed the classification of rule conflicts that covers
all the possible interaction conflicts.We defined the classes of
conflicts based on the rules interaction adverse effect nor the
occurrence situation of the conflict. Cross-execution conflict
occurs when two rules command contradictory actions on the
same actuator at the exact location. Either the rules command
the contradictory actions directly or indirectly through the
chaining of the rules. If the conditions resulting in adverse
effects are the same and then they belong to the same conflict
class.

2. Developed the ontology for the detection of smart home
rule conflicts. The proposed detection method illustrates how
to consider all the complex and covert rule interactions to
detect all possible conflicts efficiently and effectively.

3. The proposed ontology and conflicts classification also
detect the safety policy violations/policy constraints defined
to guard the system. Per our understanding, this is the
first formal representation that detects conflicts and policy
constraint violations.

4. Developed an ontological mechanism that is expandable
and shareable. This may be utilized at each development

VOLUME 12, 2024 85073

A. M. Ansari et al.: Ontology-Based Classification and Detection

phase of smart homes and further enhanced at each stage for
the next development phase. Ontology is a formalmethod that
gives the proper understanding for developing a robust and
efficient mechanism.

The rest of the paper is organized as follows: Section II
is related work, section III discusses the classification of
the conflicts, section IV gives the background of smart
home and ontology, section V explains the proposed ontol-
ogy, section VI discusses the results and evaluation and
lastly—the conclusion.

II. RELATED WORKS
In recent years, we have understood that conflicting automa-
tion rules are one of the highlighted problems in the smart
home security domain. Identification of automation rule
conflicts involves understanding the relation of automation
components, classification of automation rules, and analysis
of the effect/ impact of automation rules on smart space
through environment and actuator states. In past years,
promising works have been proposed to detect, classify, and
resolve automation rule conflicts. Munir and Stankovic [38]
proposed Depsys to detect and resolve conflicts based on
emphasis, effect, and actuators and sensors dependencies
but does not consider rule redundancy as the conflict.
Whereas some work proposed the modeling of the smart
home automation system by extracting rules and parameters
from the app and validating against the functional and safety
policies (including what should or should not occur by
triggering a particular event) to check anomalies that lead the
system to the unsafe state. Such as in SIFT [18] automation
rules are translated into logical rules and checked by symbolic
execution and model checking. In addition, safety policies
are also checked for safety violations by the rules. While in
Soteria [19], static analysis is performed to extract rules to
form intermediate representation (IR) and then into a state
model to check them against the safety policies to detect
the anomalies in the defined automation [19]. Whereas in
IoTGuard [20] instruments each app to extract its behavior
and form a dynamic model that represents the combined
runtime execution behavior of the apps before its execution.
Then each app is checked against the defined safety policies
and the report is sent to the app to block or pass the execution
according to the security service response. On the other hand,
IoTSAN [16] models the IoT system by taking the app’s
behavior, system configuration, and safety policies as input.
When a new app is installed, IoTSAN validates the safety
policies and reports the user for malicious apps, bad apps,
and misconfigurations.

Other works, a formal framework of rule conflict detection
and classification suggested by Sun et al. [12], not only
detects conflicts at the execution phase but also verifies
rules at the creation phase and develops a knowledge
base to expedite conflict detection that improves efficiency.
Sun et al. [13] performed the detection by storing rules
featuring information in the database. Then, conflicts are
detected through the proposed algorithms according to the

defined rules’ relation and conflict classification for each
pair of rules. In addition, Chi et al. [21] coined the term
CAI threats for cross-app interaction threats. Moreover, these
CAI threats are due to the rules interaction with apps. Each
app’s rules are extracted and stored, whenever a new app is
installed. Conflict detection is performed with the already
installed apps, and results are shown to the users to decide.
Lin et al. [14] proposed TAS (Trigger, Action, Status) classes
to identify the potential redundancy wholly or partially. They
checked new rule redundancy with existing rules before
storing them in the database, which were discarded or
merged accordingly, and reported to the user. TAS does
not detect or classify the redundancy resulting from the
chaining of the rules. In comparison, Wang et al., [15]
describe the rule conflicts as inter-rule vulnerabilities and
proposed iRuler to detect the threats of rule interaction. iRuler
extracts the rules and forms the model comprising the IoT
deployment system and information flow. Then, the model is
checked using satisfiability modulo theories to detect inter-
rule vulnerabilities. Shah et al. [5] focussed on the detection
of incomplete rules (rules whose all values actions are not
defined), for example, ‘‘Rule 1: if the temperature is greater
than 70 ◦F, turn on the air conditioner (incomplete). Rule 2:
if the temperature is greater than 70 ◦F, turn on the air-
conditioner, and when the temperature reaches 60 ◦F, turn
off the air-conditioner (complete)’’. In rule 1, termination
of the rule is not defined. For conflict detection, they
transform the rule in DNF (disjunctive normal form) and
identify the overlappingDNF terms for each actuator. Further,
incompleteness is resolved by defining termination action,
i.e., the body of a rule is based on ‘‘if’’ (trigger) ‘‘then’’
(action). In addition, ‘‘else’’ is also included to assign an
action for the unassigned values and to detect incomplete
rules they use polygon problem [5]. For conflict resolution,
the priority of the user is considered.

Further, some prior work proposed ontology-based clas-
sification and detection. Sang et al. proposed SPIDER [4],
an ontology that classifies and detects the automation rules
interaction adverse effects. However, SPIDER’s proposed
rules classification cannot detect all possible interaction
effects. Camacho et al. [7] systematically defined the
problem of conflict from scratch. The ontology they proposed
focussed on selecting the combination of services in terms
of comfort and energy efficiency. The knowledge base they
proposed is fundamental and generic,and is not consid-
ered efficient automation conflict classification. Henceforth,
it does not detects possible conflict between automation
rules. Whereas, Rocher et al. [24] formed the ontology for
DevOps development, where functionalities are unknown.
They described only direct and indirect conflicts and did
not elaborate on them in different or simplified categories.
Their proposed ontology describes invoking the ACM
(Actuator Conflict Management) module whenever a conflict
is encountered. To resolve conflicts, they extracted the
semantics of conflicting rules and fixed them according to the
best way to fulfill both rules’ objectives.While Chaki et al. [2]

85074 VOLUME 12, 2024

A. M. Ansari et al.: Ontology-Based Classification and Detection

used a hybrid approach utilizing ontological knowledge and
a formal conflict model that defines rules conflict formally.
They focussed on the service requirement sequence of all
users to check the conflict, i.e., one requirement not clashing
with another at the same time and in the exact location.
They identified the overlapping services in a time interval
at a location. Then, these overlapping services for each
resident are checked for conflict by the ontology and formal
model. On the other hand, Huang et al. [9] proposed a
knowledge graph to detect conflicts and convert them into
context-based graphs using contextual information about
smart homes. They connect the relation of automation rules
with the environment entities utilizing NLP techniques. They
form the generalized knowledge base and convert it into
contextual knowledge using the user-defined ECA (Event,
Condition, Action) rules. Then, conflicts are detected by the
proposed algorithm based on the relations inferences from the
knowledge base.

The existing literature ranges from applicability to com-
pleteness, i.e., model checking-based work shows appli-
cability, while classification-based frameworks show the
efficiency and effectiveness of addressing the issue. Still,
the existing methods and solutions persist in addressing
some research gaps and challenges. In the current literature,
the proposed classification of rule conflict needs to be
completed, i.e., it only covers some possible conflicts
that serve as the backbone for detection. Further, in the
detection process, prior work considered the simultaneous or
overlapping executing rules for conflict detection. Only a few
works considered chained rule pairs for the detection of the
conflicts. But one complex relation remains unnoticed for the
detection: the relation of the simultaneously executing rules
chained rules (if any) with the other rules and their resulting
chaining. For example, if a, g, and p are simultaneously
executing rules, each rule independently initiates the chaining
a → b → c → d , g → h → i and p → q →

r , then the relation of rules b, c, d with the g, h, i, p,
q and r. Such relations are complex because simultaneous
and chaining rules relations are transitive. Existing conflict
detection schemes and methods lack consideration of such
a relation. These research gaps motivate us to address such
challenges and develop a robust, efficient and complete rule
conflict detection mechanism.

III. CLASSIFICATION OF SMART HOME AUTOMATION
RULES CONFLICTS
Detection of rule interaction adverse effects and conflicts
requires appropriate understanding of how these rules interact
and how can they be detected. Recent research showcases that
the classification of rule interaction serves as the backbone
to detect rule conflicts due to their implicit or explicit
interaction. Many prior research proposed the classification
of automation rules to detect them. Sun et al. [12] classified
the automation rules based on device and environment impact
after the rule’s execution. They classified the conflicts into
six categories based on an equivalent set and partial set

of triggering conditions/events that cover rule redundancy,
cross-execution conflict, and read-write and write-write
conflict. As per our understanding, read-write conflict may
refer to partial chaining (only through the environment
parameters). However, they did not definewrite-write conflict
as what condition or situation of rules interference it depicts.
Chi et al. [21] (CAI) classify the rules interaction in
action, triggers, and condition interference threats in seven
categories that conclusively cover chaining, rules looping,
cross execution, and cross environment impact interactions.
Their proposed classification lacks rule redundancy and same
environment impact.

Lin et al. [14] proposed TAS (Trigger, Action, Status)
classes to identify the potential rule redundancies that are
either partially or entirely redundant. TAS defines the rule
redundancy in trigger types (triggered time, environment,
status) and status types (sensor nodes, target status). However,
TAS does not detect or classify the redundancy resulting from
the chaining of the rules. While Wang et al. [15] describes
the rule conflicts as inter-rule vulnerabilities and classify
rule conflicts into six categories: condition bypass, condition
block, action reverts, action conflict, action loop, and action
duplicate. Where condition bypass depicts triggering without
occurring the event, such conflicts are not due to the
interaction of rules but by the user carelessness, i.e., defining
one security-sensitive rule for an action occurring and
defining other rules for the same action without considering
security. Condition block shows suppressing the rule to
execute via disabling the event. Such rule vulnerability is
evident as each rule has some triggering conditions that
must be true to trigger the rule. It is one of the adverse
possibilities of chained rules for example rule R1 triggers
rule R2 and rule R1 dictates to open the window, the
triggering condition of the rule R3, but rule R2 states close
the window. This changes the event state responsible for
triggering rule R3 before its execution and leads to the
condition block. Action revert illustrates that the action effect
of one rule is revered by another rule action immediately.
Action conflicts describe reaching a nondeterministic state
after rule interaction. Action loop describes an action that
triggers an event that triggers it again, and action duplicate
reflects the repetition of the same action by different rules.

Sun et al. [13] defined eleven rules relations and on
this relation basis, the conflicts were categorized into five
classes. Shadow conflicts refer to redundancy, Execution
Conflict (cross execution), Environment Mutual Conflict
(Cross environment impact), Indirect Dependence Conflict
(IDC), and direct dependence conflict (DDC). Where IDC
and DDC are the rules looping, prior is looping due to
the chaining of rules, and later is direct. Although [15]
defined six categories and [13] proposed five categories of
rule conflicts, both conclusively refer to the same classes:
redundancy, rule looping, and cross-execution conflicts on
actuator and environment. Shah et al. [5] proposed a
generic and primary classification of rule conflict. Rule
redundancy and cross-execution conflicts as independent and

VOLUME 12, 2024 85075

A. M. Ansari et al.: Ontology-Based Classification and Detection

execution conflicts in the cross-execution conflict category is
considered. Huang et al. [9] proposed a classification of direct
and indirect conflicts in 4 categories: function-function,
cumulative environmental impact, transitive environment
impact, and opposite environment impact conflicts that cover
cross-execution conflict. They considered only chaining
through the environment (partial chaining). As well as
same and cross environment impact conflicts. However, rule
redundancy is not considered in classifying the rule conflicts
and chaining through the action trigger relation of actuators.

Chaki et al. [2] classify the rules conflict in terms of
functional and non-functional attributes of the rules and
Service impact conflicts in Direct and Indirect service impact.
In addition, QoS attributes of services such as resource
capacity (no. of requests executed by the actuator at a time),
Qualitative (preference of the same service is different for
different users at a time), and Quantitative (preference of
a service is different for different users at the same time
in terms of a numeric value like luminosity value) non-
functional attributes are also considered for the conflicts.
These non-functional attributes are the comfort preferences
of the users for the same service at the same time. When
different preferences occur, non-functional conflictsmay lead
to rule redundancy with distinct values. Functional conflicts
cover cross-execution, direct service impact covers pure
chaining (one rule depends on another for its execution),
and indirect service impact reflects cross-environment impact
conflict.

The definitions of the rule conflicts according to the
proposed classification and detection is given below. Where,
T: Triggers, C: Action commands, S: State of the actuator,
and I: Impact on the environment after execution of the rules.
Here T=

∧n
t=i t (where t1, t2, . . . , tn are triggering events),

C=
∧n

c=i c (where c1, c2, c3, . . . , cn are the action commands
of the rules) and Rules R = {T ,C, S, I } is represented
by the set of triggering events, action commands, the state
change of the actuator, and the impact on the environment
after execution of rules.

A. RULE REDUNDANCY CONFLICT
When different rules execute the same action on the same
actuator simultaneously, the actuator repeats the action
repeatedly. This may harm the device and discomfort the
user. Repetition of the same action is not power efficient and
economical.
Definition 1: R1 = {T1,C1, S1, I1} and R2 =

{T2,C2, S2, I2} are simultaneously executing rules. R1 →

C1 and R2 → C2 (Rule Ri commands Ci and Ci changes the
state of the actuator to Si);C1 andC2 are the action commands
on the same actuator.

If C1== C2 or C2 ⊆ C1, then R1 and R2 interaction results
in rule redundancy conflict.

B. SIMULTANEOUS EXECUTING RULES
Triggering such rules may be due to the inclusion of triggers
of one rule in another or the same set of triggers. They may be

executed due to the same time event/environment parameter
value range, or one rule triggering time event(or environment
parameter) value range be in between or intersecting in
another rule triggering range partially or wholly. Chaining
rules are simultaneous to each other, and if R1 is simultaneous
with R2, then the chained rules of R1 are simultaneous with
R2 and its chained rules.
Definition 2: R1 = {T1,C1, S1, I1} and R2 =

{T2,C2, S2, I2} are rules (Rule Ti triggers Ri and Ci changes
the state of the actuator to Si). Where, either T1 and T2 are
overlapping events or states of the actuator. If T1 == T2 OR
T1 ⊆ T2. Then, R1 and R2 are simultaneous executing rules.

C. CROSS-EXECUTION CONFLICT
When different rules request contrast action on the same
actuator simultaneously. In other words, simultaneous rules
execute contrast actions on the same actuator or device.
This leads to the non-deterministic state of the actuator after
execution of the conflicting rules, i.e., R1 commands ON to
the actuator, and R2 commands OFF. Then, it is difficult to
know the final state of the actuator; is it ON or OFF?
Definition 3: R1 = {T1,C1, S1, I1} and R2 =

{T2,C2, S2, I2} are simultaneously executing rules. R1 →

C1 and R2 → C2 (Rule Ri commands Ci and Ci changes
the state of the actuator to Si); C1 and C2 are executing on the
same actuator. If C1 = ¬C2 or C2 = ¬C1, then R1 and R2
interaction results Cross execution conflict.

D. RULES LOOP
When the R1 action is the triggering event for the R2 rule,
and the R2 rule action is the triggering event for the R1 rule,
for example R1 triggers when the Air purifier is closed
and commands window open. R2 triggers when the window
is open and commands Air purifier close. R1 triggers R2,
and R2 triggers R1 in a cycle. Rules Loop can be Direct
and Indirect between the two rules. Direct loop rules occur
when two rules trigger one another directly, as the described
example. Indirect loop rules occur when loop rules trigger
one another through a chain of rules like R1 triggers R2, R2
triggers R3,, Rn-1 triggers Rn, and Rn triggers R1; in
this, R1 and Rn are indirect loop rules as they are connected
through a chain of rules.
Definition 4: R1 = {T1,C1, S1, I1} and R2 =

{T2,C2, S2, I2} are rules. T1 → R1 → C1 and T2 →

R2 → C2 (Ti triggers rule Ri that commands action Ci).
If ((C1 == T2) AND (C2 == T1)) OR ((T2 ⊆ C1) AND
(T1 ⊆ C2)), then the rules T1 and T2 are triggering each other
in a loop resulting in direct looping rule conflict.
Definition 5: R1 = {T1,C1, S1, I1}, R2 = {T2,C2, S2,

I2}, . . . ,Rn = {Tn,Cn, Sn, In} are chaining rules. Like T1 →

R1 → C1 and Tn → Rn → Cn (Ti triggers rule Ri that
commands action Ci). R1 → R2 → R3, . . . ,Rn − 1, → Rn
(R1 triggers R2, R2 triggers R3, and Rn−1 triggers Rn forming
a chain of rules). If Cn == T1 OR T1 ⊆ Cn. Then, the R1 and
Rn interaction is an indirect looping conflict.

85076 VOLUME 12, 2024

A. M. Ansari et al.: Ontology-Based Classification and Detection

E. CHAINING RULES
Chaining occurs when the action of one rule is a trigger event
for another rule; it can be between two rules, or this relation
results in connecting n number of rules. These events may be
the states of the actuator or environmental parameters value
after executing the rule. We termed partial chaining when the
chaining relation is based on either the states of the actuators
or the environmental parameters’ value. The chaining of rules
relation is one of the factors responsible for the interference
of the automation rules and results in the complex interaction
between the rules. Pure chaining is defined as when one rule
depends on another rule to get executed first, like R1, which
is only triggered when R2 performs its action.
Definition 6: R1 = {T1,C1, S1, I1} and R2 =

{T2,C2, S2, I2} are simultaneously executing rules. T1 →

R1 → C1 and T2 → R2 → C3 (Ti triggers rule Ri that
commands action Ci). If C1 == T2 OR T2 ⊆ C1, then R1
triggers R2, i.e., R2 is a chained rule of R1.

F. CROSS-ENVIRONMENT IMPACT CONFLICT
When different rules command action that affects the same
environment parameters in a contrasting manner or the
action implications are in contrast to each other, in the
same space and time duration. For example, R1 commands
open the heater, and R2 commands open the air conditioner
simultaneously in the same room or environment, then the
heater increases the temperature of the space, and the air
conditioner decreases the temperature of the same space. This
conflict results in discomfort to the users and more power
consumption as the target of both rules will not be achieved
and satisfied. This is like the cross-execution conflict where
environment parameters are the responsible factor instead of
actuator states.
Definition 7: R1 = {T1,C1, S1, I1} and R2 =

{T2,C2, S2, I2} are simultaneously executing rules. R1 → I1
and R2 → I2 (Ii Impact is the resulting environment state
after executing the rule Ri). If I1 = ¬I2 (where I1 and I2are
opposite impacts), then the rules R1 and R2 will result in
cross-environmental impact conflict.

Same environment impact conflict occurs when different
rules and actions impose the same effect on the same
environmental parameter in a smart space. For example,
R1 commands open the window, and R2 commands open
the air conditioner. Here, both rules aim to lower the
temperature, while execution of one among them can achieve
the target alone, which will result in a redundant effect on the
environment. This conflict is like the rule redundancy where
the environment parameter is responsible. Such conflicts
result in more power consumption and economic burdens on
users.
Definition 8: R1 = {T1,C1, S1, I1} and R2 =

{T2,C2, S2, I2} are simultaneously executing rules. R1 → I1
and R2 → I2 (Ii Impact is the resulting environmental state
after executing the rule Ri). If I1 = I2, then the rules R1 and
R2 will result in the same environment impact conflict.

G. CHAINING RESULTED IN RELATION CONFLICTS
DETECTION
For detecting the conflicts, considering chaining as the
conflict is insufficient for properly detecting the conflicts.
In addition, the identification of chained rules and their
interference relation with one another are need to be
identified. Chaining involves covert triggering, a rule chain
may involve two or as many rules as defined by the user.
One rule may initiate multiple rule chains; therefore, conflicts
detection must also be checked between all the chained
rules. In chaining, When one rule triggers another rule then
their execution becomes parallel. For example, If R1 triggers
R2, then whenever R1 executes, it will also execute R2.
Therefore, chained rules execute simultaneously, whether or
not their execution times or events overlap. This makes the
rule interaction more complex and complicated, which needs
to be considered for conflict detection. For example, R1
triggers R2, R2 triggers R3, R3 triggers R4. If R1 commands
open the window, R3 commands close the window, and R1
and R3 execution time/event do not overlap. Cross-execution
conflict between R1 and R3 will not be detected, if chained
rules interrelation is not considered.

H. CHAINED RELATION WITH SIMULTANEOUS
EXECUTION
If rule A and rule P are simultaneous executing rules. Assume
rule A initiates a chain of rules like A → B → C →

D → E → F and similarly, P initiates P → Q → R →

S → T → U then A and P will be simultaneous with
all its chained rules. But what will be the relation of the
rule A chained rules (B, C, D, E, F) with P and similarly
P chained rules with A. Rule A and rule P execute each
other simultaneously. All the chained rules of A will be
simultaneously executing rules with P, Q, R, S, and T. P will
be with B, C, D, E, and F. Because simultaneous executing
rules relation and chaining of rules are transitive in nature,
in addition, these are initiated due to the same triggering event
directly or indirectly. These add-ons add more complexity
to already complex rule interactions. Therefore, in detection,
such relations also need to be examined.

I. SAFETY POLICIES
The safety policy is the user’s expectation of the security
state that should be enforced physically [20]. Safety policies
help to identify those rules that, directly or indirectly, through
interaction with other rules, lead to the unsafe states of the
smart home. Therefore, introducing safety policies in conflict
detection provides an extra guard in the conflict detection
mechanism.

In the above-discussed literature, existing classifica-
tion mainly adopted rule redundancy, cross-execution, and
cross-environment impact conflict. Only a few include
chaining, indirect looping, and the same environment impact
conflicts, which are equally important to define and,
hence, for detection. Most defined categories in existing

VOLUME 12, 2024 85077

A. M. Ansari et al.: Ontology-Based Classification and Detection

TABLE 1. Existing classification categories related to our defined
categories.

classification are subclasses of one or possible cases of
their effect. Chaki et al. [2] define four different categories,
but these can be detected with the detection of chained
rules, and these categories are all possible effects of
chaining. Meanwhile, independent conflict and execution
conflict [5]; are part of the cross-execution conflict, see
Table 1.
Previous work considered different types of classes of rule

conflicts but still failed to cover all possible rule adverse
interactions, which requires a thorough and complete classi-
fication. In the proposed work, we encompass all the existing
conflicts and include the same environment impact similar to
cumulative-environment-impact conflict [9]. In prior work,
only [9] considered such conflict, see Table 2. The same
environment impact conflict does not affect the automation or
discomfort the users but consumesmore power. Such conflict,
in some cases, may lead to cross-environment impact. For
example, Rule R1 states to open a window, and rule R2
dictates to open the air conditioner, simultaneously aiming
to lower the temperature in a room. But if the weather is
hot outside, then the temperature of room may increase due
to the rule R2 and will reflect cross environment impact.
Therefore, detecting Same environment impact conflict is
essential for economic power consumption and ecofriendly
automation.

On the other hand, the existing detection approaches
are only concentrated on finding the discussed conflicts.
Still, in support of this, we also require safety poli-
cies that check whether the smart home reaches an
unsafe/compromised state, and if yes, then Why so? Not
only conflicting rules but some non-conflicting benign
rules may lead the system to a dangerous state. Therefore,

in our proposed ontology, we incorporated safety poli-
cies and identified the rules that violate the safety poli-
cies directly or indirectly (chained rules) to enhance
security.

TABLE 2. Comparison of classification and detection proposed by
existing work.

IV. BACKGROUND
Understanding the smart home and ontology is essential for
understanding the proposed ontology mechanism. In this
section, we define smart homes and ontology precisely.

A. SMART HOME
Smart homes are the application of the Internet of Things.
A smart home enables users to form a smart space that
operates on their defined rules and controls it locally and
remotely [3]. It comprises of numerous actuators and sensors
that change the smart space accordingly [2], [6]. Savvy users
may start the AC before reaching home, switch on the coffee
maker and start the television to record a program on its
arrival or at a particular time. The smart home users install dif-
ferent types of devices and apps. Apps are either mobile apps
or dedicated firmware consoles, that provide the interface to
the users to define the automation rules. These automation
rules connect different devices to accomplish a particular
task or achieve a certain comfort level of environmental
entities like temperature and humidity [22]. This results
in the automated smart environment called a smart home
to perform defined activities and tasks. Automating smart
homes and their services to users, which vary from utility
to security, encourages mass adoption. This has increased
demand in recent years and promotes advancement in this
domain.

85078 VOLUME 12, 2024

A. M. Ansari et al.: Ontology-Based Classification and Detection

B. ONTOLOGY
Ontology helps to understand the nature of things according
to their relationships with others [23], representing the
domain [24]. Formal knowledge representation of any system
aids in realizing the system before its implementation to diag-
nose the operational workflow, outcomes, and challenges.
This supports developers to avoid flaws and shortcomings in
the system [23]. Ontology-based knowledge representation
supports explicit conceptualization of the domain, i.e.,
it defines attributes, entities, and their relationship in a
structured manner [25]. Ontology languages like OWL
promote ease of expressiveness to represent complex hierar-
chies, properties, complex relationships, and definitions [26],
[27]. Further, ontology is platform-independent and scalable.
Promotes reusability, provides the capability of inferencing
and reasoning to deduce logical interpretations based on
a defined system [28], [29]. Ontology is formed by RDF
(Resource description framework), RDFS (RDF Schema)
[30] and OWL family of languages [31] that delivers logical
knowledge representation [30]. We adopt an ontological way
for our proposed work due to the following reasons:

1. Explicit structure defining: The smart home automation-
related components and their relations are expressed logically
and effectively.

2. Expressivity: Representation of logical relationships of
different entities helps to express the automation rules and
their interaction conflicts.

3. Reasoning and inferencing: The capability of reasoning
helps to identify the direct and indirect interactions of rules
and their resulting conflicts.

Based on these points, an ontology is proposed in this paper
for the classification and detection of the rule conflicts due to
the direct and indirect rule interactions.

V. PROPOSED SMART HOME ONTOLOGY
In this paper, we formed an ontology for detecting the
conflicts of the smart home automation rules by representing
its automation-related components and formalizing their rela-
tionship. We developed our knowledge base in protege [39],
[40] and formed SWRL [17] rules to detect the rule conflicts.
The proposed ontology may aid the designers in developing
smart home frameworksmore efficiently to tackle automation
rule conflicts at the design phase [4].

A. ONTOLOGY CLASSES
In the smart home, there are various physical and logical
components like actuators, sensors, controlling apps, hubs,
and cloud for database and computation. In the proposed
ontology, we focussed on the components responsible for the
automation rules execution, primarily the automation rules
and their execution-responsible factors i.e., how and where
they interact. Classes of ontology are the conceptual abstract
representation of the entities and components. The classes
of our ontology represent apps, devices and sensors, permis-
sions, general properties, and safety policies. Among them,

FIGURE 1. Class hierarchy of ontology.

general properties have subclasses like AirFlow_Factors,
Heating_Factors and HomeStatus, a combination of the
environment entities and the overall status of the smart home
(like HomeStatus), as shown in Figure 1.

General properties represent the state of the smart home
and the apparent logical interpretation of the device’s
behavior; for example, Light_Intensity_Factors represent the
behavior of devices that affect light intensity. Instances like
curtains open in the day and lights ON affect the environment
similarly. This is obvious to understand, but in terms of the
system, such situations need to be translated into a logic that
can be interpreted by the system. Therefore, a general proper-
ties class is formed in our ontology for such conditions. Smart
home system overall states are not considered in similar prior
work. Developing an efficient knowledge base that accom-
modates parameters that resemble a realistic environment is
essential.

Rules are defined through a particular app designated to
control smart devices, i.e., automation rules are the sub-class
of the Apps class. A rule consists of two major parts: trigger
(when it needs to execute) and action (what it needs to do).
Triggers and action are the subclasses of the rule’s classes.
Meanwhile, the permission granted to the apps at installation

VOLUME 12, 2024 85079

A. M. Ansari et al.: Ontology-Based Classification and Detection

TABLE 3. Object properties and relation of the components.

time represents the class permission. Permission consists of
the device’s functions invoked according to the rules and
during its execution. The rule’s components, triggers, and
actions are invoked functions or capabilities of the devices
& sensors that are granted permission to the app and rules.
Therefore, the permission class consists of subclasses of
each device, and they contain their functions or permissions
as instances, as shown in Figure 1. The SafetyPolicies
class has individuals representing safety policies that are
checked to identify interactions that lead the smart home
to an unsafe state. The devices_&_sensors class represents
the devices and sensors installed in the smart home. These
are the main components of the smart home related to
automation that are considered in our ontology to identify rule
conflicts.

B. RELATIONSHIPS AMONG COMPONENTS
Different classes are formed to develop the smart home
environment realistically, and their relationship is defined
accordingly. For automation, first, the apps are installed in the
smart home, and during installation, users grant permission
to access the app. These permissions are the capabilities
of the actuators and sensors, which the authorized app can
access. App_granted_permission object property defines
the granted permissions by the app. Once the apps are
installed, users represent and declare the automation rules
in each app for smart home automation. Object property
has shows the number of the automation rules defined in a
particular app. To represent the capabilities of the devices and
sensors, the object property hasState declared. For each capa-
bility of the devices and sensors, corresponding permission is
asked by the app, which binds the granted capabilities with
the apps to execute the automation. The device_permission
object property defines such permissions.

Two object properties represent the automation rule,
triggeredBy and rule_commands, before declaring the
triggered events and connecting the action commands later.
Rules execution changes the states of the actuators and the
environmental parameters. Rule execution resulting events
may trigger other automation rules; triggers object property
represent this relation. triggers and triggeredBy are inverse
relations; one connects permissions (granted capabilities) and
triggering parameters to the rules. Second connects rules to
the triggering events.

To identify the relation between the interaction of the
automation rules, different object properties are defined to
represent the relation in Table 3. To detect the interaction
among the rules, simultaneous executing rules are required
to be identified first. As defined above, simultaneous
executing rules are due to the same triggering events and
overlapping of the triggering parameter duration, such as
time and humidity. These simultaneously executing rules are
represented by the SimulatneousExecution object property,
which covers all the pairs of rules triggering simultane-
ously. Further, for defining the environmental parameters,
range data properties like lowerTime and upperTime
for the time, LowerHumidityRange & UpperHumid-
ityRange for the humidity, HighRange & LowRange
for light intensity, and LowTempRange & UpperTem-
pRange for temperature are defined. These proper-
ties help to find the overlapping parameter ranges of
the rules for identifying the simultaneously executing
rules.

In addition, object properties like IndirectLoopRules,
LoopRules, and RuleRedundancy are defined to represent
and collect the rules interaction conflicts. Similarly, for
collecting rules that violate safety policies, SafetyPoli-
cyViolated object property is defined. Object and data
properties defined in Table 3. Which represent the log-
ical connections between the different classes and their
instances to enable the developed ontology to retrieve
and reason the information from the created knowledge
base.

C. SMART HOME RULES
Automation rules are defined by the users, responsible for
managing and controlling the smart homes according to user
comfort [2], [7]. These rules comprise two main components:
triggers and actions [32]. Triggers denote the triggering
event when the action must be taken. This triggering event
may be a time value, state of the actuator, or environment
parameter value range. Meanwhile, the actions define the
commands, like where and which command will be executed
in a smart environment. Commands and triggering events
are the permissions granted to the apps to control actuators
and sensors. Rules declared in an app can only bind with
the permissions granted to the app. The rule is initiated
when its triggering event occurs and terminates when the
action is executed. This results in a state change of the smart

85080 VOLUME 12, 2024

A. M. Ansari et al.: Ontology-Based Classification and Detection

home environment [33], [34]. A rule may have multiple
triggering events and commands to execute [35]. Once
defined, the rules are stored in a database with an identity
referenced to the user who created them in a multi-resident
smart home, while rules are stored in a user smart
home.

When a rule is created, users define the access of
the devices and environmental parameters or states by
allowing related permission to the App by default to all
its rules [36]. In isolation, when automation rules are
executed in the smart home, they change the state of the
environment parameters and actuators as defined in the action
command. However, the smart home contains numerous
rules connected over the same set of sensors and actuators.
So, two or more rules may request to change the state
of the same actuator(s) or may be triggered by sensing
or occurrence of the same event. In this regard, rules are
interconnected and may interact with one another. Such
interrelation only occurs when the rules are simultaneously
executed.

The simultaneous executions of rules can have interaction
relations due to their action commands’ impact on each
other. Either directly through the actuator state or indirectly
via environmental parameters (write-write relation). Another
possibility of the rule’s interaction is due to the write-read
relation, this relation results in rule chaining. Rule chaining
makes the rule interaction more complex as chained rules are
simultaneously executing rules, as discussed above. These
interactions may adversely affect the environment, actuators
function, overall automation and economy. These adverse
effect interactions called rule conflicts may be conclusively
classified into five categories, as shown in Table 1. Rule
conflicts can be defined as write-write and write-read
conflicts. Write-write conflicts occur when rules have the
same or opposite effect on the actuator state or environmental
parameters, leading to four possible interactions. Meanwhile,
write-read conflicts arise when one rule changes the state
of an actuator or the environmental parameter after its
execution, and such a change is a triggering event for
another rule that reads it. These results trigger another
rule. Further, such an execution-initiation link will create
a chain of rules that may involve two or multiple rules.
A rules chain involving distinct rules will form a linear
chain. A circular chain is formed if the starting and ending
rules are the same. In addition, a chain may have linear and
circular patterns. Although detecting such rule conflicts is
complex to trace in any interaction, it is essential for the
efficiency of the smart home, security, users’ comfort, and
economy.

In the proposed work, we selected rules from existing
works and synthesized more complex rules to verify the
detection mechanism of our ontology. A set of rules is
formed for each rule conflict to ensure that our ontology
detects all types of conflicts defined in classification. Some
complex rules (multiple triggering and multiple actions) are

TABLE 4. Automation rules formed for evaluation.

also formed to further ensure the validity of the proposed
work, see Table 6.

1) AUTOMATION RULES DEFINED IN OWL
Smart home automation rules, as described above, are
composed of triggers and action commands. We represented
these automation rules in rudimentary form in our ontology.
We defined these rules’ triggers and action commands
by object properties triggerredBy and rule_commands.
triggerredBy object property defines the triggering condition
of the automation rule. While rule_commands property

VOLUME 12, 2024 85081

A. M. Ansari et al.: Ontology-Based Classification and Detection

assigns a set of action commands for the automation rule
to be executed. These properties can represent one to many
relations, thus describing the multiple triggering conditions
and action commands of each automation rule resembling the
realistic definition of such rules.

Triggering conditions for each automation rule are pre-
conditions that must be satisfied to execute the rules. Such
triggering conditions may be the status of the actuator, tem-
perature, humidity, light intensity range, and particular time
or duration. We defined data properties for declaring the trig-
gering parameters of the automation rules. These data prop-
erties are LowerHumidityRange,HighHumidityRange for
expressing the humidity range; HighRange, LowRange
for light intensity, UpperTempRange, LowTempRange
for temperature and lowerTime, upperTime for the time
duration. We defined the ranges for the parameters because
even a particular value for the triggering parameters can be
declared by specifying the same lower and upper bound of
the parameter (lowerTime = 09:00:00 && upperTime =
09:00:00), but vice versa is not possible. The status of the
actuator is declared by the triggeredBy object property as the
triggering parameter for the automation rule, for example rule
R1 triggeredBy Window_Close actuator state. The actions
of the automation rules are the state of the actuators or
the environment parameters to be achieved after executing
the automation rules. Even the environment parameters
preferences are achieved by commanding the actuator’s state
change. In our ontology, actions of the automation rules
are declared by the rule_commands object property, for
example rule R1 rule_commandsWindow_Close state of the
actuator.

Following are the challenges that we faced in defining
automation rules in a realistic manner for the ontology:

a: TIME DURATION COMPRISING THE CONSECUTIVE DAYS’
TIME IN TRIGGERING PARAMETER:
Automation rules triggered based on time duration may
consist of any period of a day or successive days. Suppose
rule R3 states close the doors during the night duration, i.e.,
10:00 pm to 06:00 am; this type of rule definition is evident
and natural in smart home automation. However, defining
such rules in the ontology is challenging as time duration
cannot be expressed directly. Time format supports 24-hour
duration like 00:00:00 to 23:59:59; in this format, duration for
consecutive days cannot be declared. Further, the triggered
time duration of the rules must be compared to identify
simultaneously executed rules; this becomes difficult for
defined R3 types of rules. Therefore, to tackle such a hurdle
in defining the rules, we split the duration of consecutive
days and defined the rules accordingly. For defining R3 in
our ontology, we define R3 and R3ext, such as rule R3
states close doors during 22:00:00 to 23:59:59 and rule
R3ext dictates close doors during 00:00:00 to 06:00:00.
Then we connect R3 and R3ext by chaining_app object
property (R1 chaining_app R2 defines R1 triggers R2); as
prior duration triggers next duration. This helps to define

consecutive days’ time duration in rules, effectively identifies
the simultaneously executed rules with R3.

b: MULTIPLE TRIGGERING CONDITIONS
The automation rules are of two types according to the
triggering conditions it defines, i.e., complex and simple.
If an automation rule consists of one triggering condition,
then it is a simple rule, and if it contains more than one
triggering condition, then it is a complex automation rule.
Suppose automaton rules, rule R1 states when the temp>
27◦C and home status is home, then open the window.
Rule R2 dictates when the temp> 26◦C, then open the air-
conditioner, R1 is complex, and R2 is a simple automation
rule. Defining the complex automation rule in ontology is
difficult by using the object property directly for defining
the triggering condition, in our case by triggeredBy object
property. In ontology, the reasoner compares the instances
associated with the properties defined according to their
relation. Execution of the rule R1 is only considered when
both triggering conditions are satisfied. Still, suppose both the
triggering conditions are defined directly in the automation
rule. In that case, the reasoner will consider the automation
rule R1 as initiated or triggered on the satisfaction of any
triggering condition. According to our conflict definition,
R1 and R2 were found to be simultaneously executing and
cross-environment impact conflicting rules. This will detect
the wrong relation and conflict between the R1 and R2 rules.

Therefore, in our ontology, we divided the complex
automation rules into simple ones and connected them while
defining the rules to avoid wrong detections. Rule R1 is
defined and divided into R1 and R1ext. Rule R1 dictates
when the home status is home, then open the window. Rule
R1ext states when temp> 27◦C, open the window. If both the
rules are simultaneously executing and conflicting with the
R2, then only the conflict of R1 and R2 is considered. This
helps to avoid inconsistent and wrong results in the proposed
ontology.

c: DEFINING THE LOGICAL RELATION BETWEEN THE
INSTANCES IN THE SYSTEM
In a smart home, many realistic apparent ties are hard to
describe and represent in the ontology, for example if the
water valve is closed, the fire sprinkler will not shower water.
This interaction is straightforward example which cannot
be directly represented in the ontology and needs to be
described and defined. We formed a General_Properties
class to define these apparent interactions and relations.
We described such relations as the rules in the form of triggers
and actions. The property for the above mentioned example is
P1, that states when the water valve is closed, the sprinkler is
closed, i.e., triggeredBy watervalve_close actuator state and
rule_commands sprinkler_close state of the sprinkler. Fur-
ther, considering them during the detection of rule conflicts
will ensure that all the rule interactions are covered, which
supports the efficiency and effectiveness of the detection
mechanism.

85082 VOLUME 12, 2024

A. M. Ansari et al.: Ontology-Based Classification and Detection

D. INTERACTION OF RULES
To detect the interactions of the automation rules of the
smart home, first, we need to identify the rules that are
simultaneously executing. Only rules that are simultaneously
executed interact with each other directly or indirectly.
In our ontology, to detect the simultaneously executing rules,
we need to identify the simultaneously triggered rules. Along
with it, chained rules of triggered rules also need to be
recognized as they are simultaneous with the triggered ones.
We checked the triggering parameters of each rule, such as
humidity, temperature, time duration, light intensity, and state
of the actuator.We compared each rule-triggering value range
of the environmental parameter with another rule pairwise; to
check whether the rule’s defined ranges intersect. If one rule-
defined value range intersects with another rule, then they
will execute simultaneously in the intersecting value range.
Meanwhile, the rules with the same triggering actuator state
simultaneously execute rules.

Further, chaining rules of each simultaneously executing
rule pair are identified and labeled simultaneous executing
rules with the pair. Based on the above discussion, we defined
SWRL rules in Table 4 to determine the rules that are
simultaneously executing. Once rules that are simultaneously
executing are identified, rule interaction conflicts are detected
among the simultaneously executing rules.

E. DETECTION OF AUTOMATION RULES CONFLICTS
Themethod of rule conflict detection is illustrated in Figure 2.
First, the simultaneously executing rules are identified
based on overlapping parameter durations, triggering states,
and chained rules. Once the simultaneous executing rules
are identified, the conflicts are detected according to the
definitions of the conflicts mentioned by the SWRL rules
in Table 4. Among every simultaneously executing rule set,
each rule is checked pairwise for the conflicts. In this way,
the chained rules of simultaneously running rules are also
considered pairwise with each other, ensuring that no rule
interaction is avoided. For the detection of safety violations,
safety violations are defined as the automation rules, and
then each simultaneously executing rule is checked with
these rules. In this manner, conflicts and safety violations are
detected according to the satisfaction of the conditions of the
SWRL detection rules.

VI. EVALUATION AND DISCUSSION
As discussed earlier in this paper, the classification of rule
conflicts serves as the backbone for detecting conflicts.
The adopted and proposed classification of prior studies
only cover some of the conflicts. Based on their limi-
tations shown in Table 2, we proposed the smart home
rule conflict classification that is efficient and complete.
Detection mechanism is proposed and evaluated against the

TABLE 5. SWRL rules for detecting rule conflicts in the proposed ontology.

VOLUME 12, 2024 85083

A. M. Ansari et al.: Ontology-Based Classification and Detection

TABLE 5. (Continued.) SWRL rules for detecting rule conflicts in the
proposed ontology.

FIGURE 2. Rule conflicts detection process.

TABLE 6. Safety policies defined in smart home.

automation rules.To assess the performance of the proposed
methodology, we compared it with the existing methods
based on the effectiveness and efficiency of identifying the
automation rule conflict. Evaluation criteria and results are
discussed in the following section. Further, limitations and
future work is also highlighted in this section.

A. EVALUATION TEST CASE
To evaluate the proposed mechanism, we formed thirty-
five conflicting rules covering all classes of conflicts as
the test case. These rules are formed based on the rules
defined in [13], [15] and the description of test suite Apps of
IoTGuard [20] and Soteria [19]. Further, the safety policies
are defined based on IoTGuard, tailored according to the
configuration of the defined smart home in the proposed
ontology. Rules and safety policies are listed in Table 6 and 7.

B. TEST CASE ANALYSIS
The dataset of rules for the evaluation is developed based on
the existing works evaluation test cases and their description

of conflicting rules. The dataset comprised, pairs of rules
to represent all five classes of conflict. Although our test
case dataset is complete to cover all conflict classes, the
number of rules is small. While the comparative literature
like Soteria [19] evaluated 17 apps comprised 20 violations,
IoTGuard [20] evaluated first on 20 apps and second on
65 apps. While, Sun et al., [13] shown their performance
result by evaluating six rules as the case study, and Sang et al.,
[4] selected 32 user policies for the performance analysis.
Considering these existing work evaluation dataset, our
dataset test cases are sufficient and significant for the
evaluation.

C. EFFECTIVENESS
The proposed conflict detection mechanism successfully
identifies various types of rule interactions. The number of
conflicts detected and identified by the proposed mechanism
is shown in Table 5. Interactions like I1 ⇒ [(R1, R2),
(R1, R27)] (Rule redundancy conflicts), I2 ⇒ [(R28, R34)]
(Indirect looping), I3 ⇒ [(R29, R28)] (Direct looping),
I4 ⇒ [(R15, R18), (R14, R15)] (Same environment impact),
and I5 ⇒ [(R18, R29), (R12, R7)] (Chaining conflicts
interactions) demonstrate the effectiveness of the proposed
mechanism. These interactions are undetectable and uniden-
tified by the existing conflict detection mechanisms due
to their incomplete classification and detection coverage,
as shown in Table 2. Interactions like I1 are not detected by
[2], [9], and [21], and I2 & I3 by [2], [5], [9], [12], [14],
and [22] while existing work [4], [15], [21] only detects
either I2 or I3. Previous detection mechanisms [2], [4],
[5], [12], [13], [14], [15], [21], [22] lack detection of I4-
type interactions, and [4], [5], [13], [14], [15], [22] cannot
detect I5-type interactions. On the other hand, by considering
a comprehensive classification of conflicts, the proposed
mechanism significantly enhances the ability to identify
complex rule interactions in the smart home environments,
filling a critical gap in the existing literature.

D. EFFICIENCY
The efficiency of the proposed conflict detection mechanism
is demonstrated through its performance evaluation on the
thirty-five conflicting rules, shown in Table 6. The mecha-
nism efficiently detects and identifies conflicts, as evidenced
by the number of conflicts detected and identified in Table 5.
Our proposed detection mechanism is focused on identifying
all implicit interactions to detect all possible conflicts.
By focusing on identifying all implicit interactions, including
those resulting from the chaining of rules, and simultaneously
executing rules relation with each other’s chained rules,
the proposed mechanism effectively traces complex interac-
tions undetectable by existing mechanisms. Interactions like
I6⇒(R28, R34) (Indirect looping conflict) and I7⇒(29,27)
(Cross execution conflict) are examples of chained rules
interactions with each other and chained rules interactions
with another simultaneous executing rule, respectively.
In interaction I6, rule R28 triggers the R34 by the changing

85084 VOLUME 12, 2024

A. M. Ansari et al.: Ontology-Based Classification and Detection

TABLE 7. Results of rule conflict detection by proposed method.

of rules R28→R29→ R35→R33→R34→R28, which again
triggers R28. In interaction I7, R29 is triggered by R18, which
executes simultaneously with R27, resulting in an interaction
between rule R29 and R27. Detections of I6 and I7 interac-
tions highlight the proposed approach’s superior efficiency
compared to the existing mechanisms. Additionally, manual
tracing of possible conflicting interactions among the rules
further validates the correctness and efficiency of the
proposed mechanism. Overall, the proposed mechanism
not only offers enhanced effectiveness in identifying a
wide range of rule interactions but also demonstrates effi-
ciency in detecting conflicts within smart home automation
systems.

FIGURE 3. Classification of the rule conflicts.

E. CLASSIFICATION OF RULES CONFLICT
In prior work, the classification mainly categorized the
cross-execution effect, rule redundancy, and rule looping.
Along with these conflicts, few cover cross-environmental
impact; only one [9] considered the same environment impact
conflict. On the other hand, existing work considered rules
chaining as one of the conflicts. But from our point of
view, chaining of the rules is not a rule conflict; instead,
it may be the reason for the conflicts. Chaining of rules
develops covert interactions of the automation rules, which
are hard to identify, and conflicts due to them become
undetectable.

In existing research, classification categories are inter-
connected and do not belong or fall into one conflict class.
Most existing classifications are the different instances of rule
conflicts; execution and indirect conflicts are the instances

of cross-execution conflict class [5]. Ideally, classification
categories must be mutually exclusive classes to convey a
non-ambiguous understanding of the area. In our proposed
work, we described the rule conflicts in distinct and mutually
exclusive categories, i.e., one conflict class for similar
conflicts, encompassing all possible instances of the rule
conflict. We defined the conflicts to cover all its rule
interactions. In this paper, we categorized the rule conflicts
into five categories. Rule redundancy, cross execution,
looping rules (direct & indirect rules), cross-environment
impact, and same-environment impact conflicts (see
Figure 3).
Besides, our conflicts classification categories cover all

instances of rule interaction, including complex interactions
due to the chaining of rules, which have yet to be considered
in prior work. Our classification is unambiguous and
complete to support the detection of the rule interaction
conflicts effectively and efficiently.

F. RESULTS
The proposed classification and detection mechanism proved
to be effective and efficient compared to the existing rule con-
flict classification and detection mechanisms. The proposed
classification, besides covering all the possible instances of
conflict class, also considers the same environment impact
conflicts, which was not considered in the related works [2],
[4], [5], [12], [13], [14], [15], [21], [22] except [9]. The
same environment impact conflict and is equally important
as other conflicts. Like rule redundancy conflicts, these
conflicts may damage the smart devices and prevent the smart
home automaton from achieving the user’s defined comfort
preferences, thus leading to more power consumption and
economic loss to the user. Further, the proposed work
considered all the implicit interactions efficiently, including
the long and complex chaining resulting rules interaction,
which are hard to trace and appeared covertly in the
defined smart home automation. Besides identifying the rule
interactions, it also detects safety policy violations, providing
an additional security layer to detect all the conflicting rules.
Therefore, it can identify all the possible rule interaction
conflicts and shows better results than the existing detection
mechanisms.

G. PROPOSED ONTOLOGY FOR MULTI-RESIDENT RULE
CONFLICT DETECTION
The proposed ontology efficiently and effectively classifies
and detects rule interaction conflicts. The ontology was
formed and validated on the single-user smart home envi-
ronment, which is the limitation of our work. However,
our proposed work can be utilized and tailored for the
multi-resident smart home environment. Rules of automation
in the smart home are declared with the automation app,
and one app may define multiple rules with different
parameter values. Similarly, in a multi-resident smart home
environment, the various users define rules via the same
app; in both cases, a complex set of rules is formed. Our

VOLUME 12, 2024 85085

A. M. Ansari et al.: Ontology-Based Classification and Detection

ontology considered each defined rule in the smart home
while detecting the conflicts. In this regard, our ontology will
detect the rule conflicts in multi-resident smart homes with
the same efficiency and effectiveness because rule conflict
detection involves a comparison of each rule, either defined
by one user or multiple users in the same way. In contrast,
single-user and multiuser smart home environments differ
when resolving the rule conflicts.

H. LIMITATIONS
Our proposed work effectively and efficiently identifies the
rule conflicts, however it does have certain limitations which
are as follows.

1) CONTINUOUS STATE CHANGE
One of the limitations of the proposed ontology is that it only
depicts an instance of the system, i.e., a static representation
of the system [2]. Ontology cannot represent the system’s
dynamic nature or continuous parameter value change [7],
[37]. In the smart home, the automation continuously engages
the different parameters of the smart home to enable defined
automation. The ontology shows the defined parameter value
of the interaction of automation rules and their relation with
the other rules and the smart home system. It does not monitor
the continuous state change of the smart home automation.
However, such limitations do not affect the efficiency of
the detection mechanism of the proposed work. Because
detection involves defined automation rules involving their
parametric static values. Monitoring continuous state change
helps us understand the system’s flow and track malicious
activity or behavior; it is beyond the scope of our work.
Secondly, our proposed ontology gives an understanding of
the interaction of rules and ways to detect the rules conflicts.
This helps to develop a conflict detection mechanism
effectively and resist such rule interactions and their adverse
effect at the design phase of a smart home system or
framework.

2) RESOLUTION OF CONFLICTS
In the prior work, the resolution of the rule conflicts
is proposed [2], [5], [7], [21], [38]. Most existing work
suggested a priority-based conflict resolution method due to
its natural way of resolving the conflict. In the smart home,
the users are of different age groups and responsibilities;
usually, the decision-making power of each user is different.
So, as the priority of the user-defined rules in the smart
home. But priority-based conflict resolution may constantly
suppress a user’s automation in a multi-resident environment
whenever the conflict arises. Therefore, we require better
mechanisms to resolve rule conflicts. However, we do not
propose a conflict resolution scheme in this work.

I. FUTURE DIRECTION
In this paper, we developed a detection mechanism for
automation rule conflicts. As discussed above, ontology has

limitations like representing the continuous state change and
complications in defining the complex rules and realistic
properties. In this light, we will extend our work to develop
the automated detection mechanism based on the proposed
ontology to aid smart home users. Identifying existing
rules related to the newly defined rule based on their
triggering parameters and actions and alerting the users may
help to reduce the number of conflicting rules and safety
violations. Adopting such approaches in automated detection
tools/methods may enhance the safety and security of the
smart home.

VII. CONCLUSION
The conflict between smart home automation rules is an open
problem that may leverage attackers to sabotage overall secu-
rity and harm users. To address such a problem, we proposed
an ontology based model to detect smart home rule conflicts.
The proposed ontology overcomes the limitations of the
existing detection mechanisms by categorizing the conflicts
into five distinct classes. In addition, the ontology can detect
safety violations to enhance the security of the smart home
further. The proposed rule conflicts classification covers
all the conflicts and their instances, ensuring completeness
and unambiguity to support a robust and efficient detection
mechanism. The proposed detection mechanism is evaluated
against the thirty-five rules formed based on the existing
literature evaluation test cases. The results of our detection
method show that the proposed work is effective and efficient
in detecting the rule conflicts. Further, an ontological solution
will aid the designers in realizing the problem of rule conflicts
in the development life cycle due to its scalable, adaptable and
shareable nature. In the future, we will enhance the ontology
and develop a automated conflict detection tool.

REFERENCES
[1] L. D. Xu, W. He, and S. Li, ‘‘Internet of Things in industries: A survey,’’

IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.
[2] D. Chaki, A. Bouguettaya, and S. Mistry, ‘‘A conflict detection framework

for IoT services in multi-resident smart homes,’’ in Proc. IEEE Int. Conf.
Web Services (ICWS), Oct. 2020, pp. 224–231.

[3] Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long,
‘‘Cognitive Internet of Things: A new paradigm beyond connection,’’
IEEE Internet Things J., vol. 1, no. 2, pp. 129–143, Apr. 2014, doi:
10.1109/JIOT.2014.2311513.

[4] H. Hu, J. Sang, C. Ye, R. Li, L. Fu, D. Yang, H. Xiang, and C. Fu,
‘‘Semantic web-based policy interaction detection method with rules in
smart home for detecting interactions among user policies,’’ IET Commun.,
vol. 5, no. 17, pp. 2451–2460, Nov. 2011, doi: 10.1049/iet-com.2010.
0615.

[5] T. Shah, S. Venkatesan, T. Ngo, and K. Neelamegam, ‘‘Conflict
detection in rule based IoT systems,’’ in Proc. IEEE 10th Annu.
Inf. Technol., Electron. Mobile Commun. Conf. (IEMCON), Oct. 2019,
pp. 276–284.

[6] B. Huang, A. Bouguettaya, and A. G. Neiat, ‘‘Discovering spatio-temporal
relationships among IoT services,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jul. 2018, pp. 347–350.

[7] R. Camacho, P. Carreira, I. Lynce, and S. Resendes, ‘‘An ontology-based
approach to conflict resolution in home and building automation systems,’’
Expert Syst. Appl., vol. 41, no. 14, pp. 6161–6173, Oct. 2014.

[8] H. Ibrhim, H. Hassan, and E. Nabil, ‘‘A conflicts’ classification for IoT-
based services: A comparative survey,’’ PeerJ Comput. Sci., vol. 7, p. e480,
Jan. 2021.

85086 VOLUME 12, 2024

http://dx.doi.org/10.1109/JIOT.2014.2311513
http://dx.doi.org/10.1049/iet-com.2010.0615
http://dx.doi.org/10.1049/iet-com.2010.0615

A. M. Ansari et al.: Ontology-Based Classification and Detection

[9] B. Huang, H. Dong, and A. Bouguettaya, ‘‘Conflict detection in IoT-based
smart homes,’’ in Proc. IEEE Int. Conf. Web Services (ICWS), Sep. 2021,
pp. 303–313.

[10] A. Ranganathan and R. H. Campbell, ‘‘An infrastructure for context-
awareness based on first order logic,’’ Pers. Ubiquitous Comput., vol. 7,
no. 6, pp. 353–364, Dec. 2003.

[11] Y. Xu, W. Niu, H. Tang, G. Li, Z. Zhao, and S. Ci, ‘‘A policy-based web
service redundancy detection in wireless sensor networks,’’ J. Netw. Syst.
Manage., vol. 21, no. 3, pp. 384–407, Sep. 2013, doi: 10.1007/s10922-012-
9237-1.

[12] Y. Sun, T.-Y. Wu, X. Li, and M. Guizani, ‘‘A rule verification
system for smart buildings,’’ IEEE Trans. Emerg. Topics Comput.,
vol. 5, no. 3, pp. 367–379, Jul. 2017, doi: 10.1109/TETC.2016.
2531288.

[13] Y. Sun, X. Wang, H. Luo, and X. Li, ‘‘Conflict detection scheme
based on formal rule model for smart building systems,’’ IEEE
Trans. Hum.-Mach. Syst., vol. 45, no. 2, pp. 215–227, Apr. 2015, doi:
10.1109/THMS.2014.2364613.

[14] Z. Lin, T.-Y. Wu, Y. Sun, J. Xu, and M. S. Obaidat, ‘‘A TAS-model-based
algorithm for rule redundancy detection and scene scheduling in smart
home systems,’’ IEEE Syst. J., vol. 12, no. 3, pp. 3018–3029, Sep. 2018,
doi: 10.1109/JSYST.2017.2771349.

[15] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
‘‘Charting the attack surface of trigger-action IoT platforms,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 1439–1453,
doi: 10.1145/3319535.3345662.

[16] D. T. Nguyen, C. Song, Z. Qian, S. V. Krishnamurthy, E. J. M. Colbert,
and P. McDaniel, ‘‘IotSan: Fortifying the safety of IoT systems,’’ in Proc.
14th Int. Conf. Emerg. Netw. Exp. Technol., Dec. 2018, pp. 191–203, doi:
10.1145/3281411.3281440.

[17] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean. SWRL: A Semantic Web Rule Language Combin-
ing OWL and RuleML. Accessed: Jan. 1, 2024. [Online]. Available:
https://www.w3.org/submissions/SWRL/

[18] C.-J.-M. Liang, B. F. Karlsson, N. D. Lane, F. Zhao, J. Zhang, Z. Pan,
Z. Li, and Y. Yu, ‘‘SIFT: Building an Internet of Safe Things,’’ in Proc.
14th Int. Conf. Inf. Process. Sensor Netw., Apr. 2015, pp. 298–309, doi:
10.1145/2737095.2737115.

[19] Z. Berkay Celik, P. McDaniel, and G. Tan, ‘‘SOTERIA: Automated
IoT safety and security analysis,’’ in Proc. USENIX Annu. Tech.
Conf., 2018, pp. 147–158. [Online]. Available: http://www.usenix.org/
conference/atc18/presentation/celik

[20] Z. B. Celik, G. Tan, and P. McDaniel, ‘‘IoTGuard: Dynamic enforcement
of security and safety policy in commodity IoT,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp. Reston, VA, USA: Internet Society, Mar. 2019, doi:
10.14722/ndss.2019.23326.

[21] H. Chi, Q. Zeng, X. Du, and J. Yu, ‘‘Cross-app interference
threats in smart homes: Categorization, detection and handling,’’
in Proc. 50th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.
(DSN), Jun. 2020, pp. 411–423, doi: 10.1109/DSN48063.2020.
00056.

[22] M. Shehata, A. Eberlein, and A. Fapojuwo, ‘‘Using semi-formal
methods for detecting interactions among smart homes policies,’’ Sci.
Comput. Program., vol. 67, nos. 2–3, pp. 125–161, Jul. 2007, doi:
10.1016/j.scico.2006.11.002.

[23] P. Clark. (1996). Requirements for a Knowledge Representation Sys-
tem. [Online]. Available: https://allenai.org/content/team/peterc/working-
notes/010.pdf

[24] G. Rocher, J.-Y. Tigli, and S. Lavirotte, ‘‘Semantic inferences towards
smart IoT-based systems actuation conflicts management,’’ in Proc. IFIP
Int. Internet Things Conf., 2022, pp. 255–273.

[25] T. R. Gruber, ‘‘A translation approach to portable ontology specifica-
tions,’’ Knowl. Acquisition, vol. 5, no. 2, pp. 199–220, Jun. 1993, doi:
10.1006/knac.1993.1008.

[26] R. Studer, V. R. Benjamins, and D. Fensel, ‘‘Knowledge engineering: Prin-
ciples and methods,’’ Data Knowl. Eng., vol. 25, nos. 1–2, pp. 161–197,
Mar. 1998, doi: 10.1016/s0169-023x(97)00056-6.

[27] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage. W3C. Accessed: Jan. 1, 2024. [Online]. Available: https://www.
w3.org/TR/owl-features/

[28] N. Guarino, ‘‘Understanding, building and using ontologies,’’ Int. J. Hum.-
Comput. Stud., vol. 46, nos. 2–3, pp. 293–310, Feb. 1997.

[29] C. Islam, M. A. Babar, and S. Nepal, ‘‘An ontology-driven approach to
automating the process of integrating security software systems,’’ in Proc.
IEEE/ACM Int. Conf. Softw. Syst. Processes (ICSSP), Nepal, May 2019,
pp. 54–63.

[30] B. McBride, ‘‘The resource description framework (RDF) and its
vocabulary description language RDFS,’’ in Handbook on Ontologies.
Cham, Switzerland: Springer, 2004, pp. 51–65.

[31] F. Van Harmelen and D. L. McGuinness, ‘‘OWL web ontology language
overview,’’World Wide Web Consort. Recomm., vol. 69, p. 70, Jan. 2004.

[32] T. Perumal, M. N. Sulaiman, and C. Y. Leong, ‘‘ECA-based interoper-
ability framework for intelligent building,’’ Autom. Construct., vol. 31,
pp. 274–280, May 2013.

[33] Y. Yu and J. Liu, ‘‘TAPInspector: Safety and liveness verification
of concurrent trigger-action IoT systems,’’ IEEE Trans. Inf. Forensics
Securituy, vol. 17, pp. 3773–3788, 2022.

[34] C.-J.-M. Liang, L. Bu, Z. Li, J. Zhang, S. Han, B. F. Karlsson, D. Zhang,
and F. Zhao, ‘‘Systematically debugging IoT control system correctness for
building automation,’’ in Proc. 3rd ACM Int. Conf. Syst. Energy-Efficient
Built Environ., Nov. 2016, pp. 133–142.

[35] V. Zhao, L. Zhang, B. Wang, M. L. Littman, S. Lu, and B. Ur,
‘‘Understanding trigger-action programs through novel visualizations of
program differences,’’ in Proc. CHI Conf. Hum. Factors Comput. Syst.,
May 2021, pp. 1–17.

[36] E. Fernandes, J. Jung, and A. Prakash, ‘‘Security analysis of emerging
smart home applications,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2016, pp. 636–654, doi: 10.1109/SP.2016.44.

[37] T. Bittner, ‘‘Formal ontology of space, time, and physical entities in
classical mechanics,’’ Appl. Ontology, vol. 13, no. 2, pp. 135–179,
May 2018.

[38] S. Munir and J. A. Stankovic, ‘‘DepSys: Dependency aware integration
of cyber-physical systems for smart homes,’’ in Proc. ACM/IEEE
Int. Conf. Cyber-Phys. Syst. (ICCPS), Apr. 2014, pp. 127–138, doi:
10.1109/ICCPS.2014.6843717.

[39] R. Sivakumar and P. V. Arivoli, ‘‘Ontology visualization PROT tools—
A review,’’ Int. J. Adv. Inf. Technol., vol. 1, no. 4, pp. 1–11, Aug. 2011.
[Online]. Available: https://api.semanticscholar.org/CorpusID:5379305

[40] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy,
H. Eriksson, N. F. Noy, and S. W. Tu, ‘‘The evolution of Protégé: An
environment for knowledge-based systems development,’’ Int. J. Hum.-
Comput. Stud., vol. 58, no. 1, pp. 89–123, Jan. 2003, doi: 10.1016/s1071-
5819(02)00127-1.

[41] R. Arp, B. Smith, and A. D. Spear, Building Ontologies With Basic
Formal Ontology. Cambridge, MA, USA: MIT Press, 2015. [Online].
Available: https://mitpress.mit.edu/9780262527811/building-ontologies-
with-basic-formal-ontology/

[42] F. Azzedin, M. Eltoweissy, and S. A. Khwaja, ‘‘Overview
of service oriented architecture for resource management in
P2P systems,’’ in Handbook of Research on P2P and Grid
Systems for Service-Oriented Computing. Hershey, PA, USA:
IGI Global, 2010, pp. 175–196, doi: 10.4018/978-1-61520-686-5.
ch008.

[43] K. Baclawski and T. Schneider, ‘‘The open ontology repository initiative:
Requirements and research challenges,’’ in Proc. Workshop Collab-
orative Construct., Manag. Linking Structured Knowl. ISWC, 2009,
p. 18.

ADEEB MANSOOR ANSARI received the B.Sc.
degree in computer applications and the Master
of Computer Applications degree from Aligarh
Muslim University. He has been a Researcher with
Jamia Millia Islamia, since 2018, his significant
contributions span the broader spectrum of Com-
puter Science, with a particular focus on fortifying
security in smart homes. He is currently pursuing
the Ph.D. degree with Jamia Millia Islamia. This
reflects his dedication to holistic advancements in

technology and knowledge. His research, though centered on this pivotal
area, showcases versatility by extending into domains, such as the IoT, CPS,
and information technology.

VOLUME 12, 2024 85087

http://dx.doi.org/10.1007/s10922-012-9237-1
http://dx.doi.org/10.1007/s10922-012-9237-1
http://dx.doi.org/10.1109/TETC.2016.2531288
http://dx.doi.org/10.1109/TETC.2016.2531288
http://dx.doi.org/10.1109/THMS.2014.2364613
http://dx.doi.org/10.1109/JSYST.2017.2771349
http://dx.doi.org/10.1145/3319535.3345662
http://dx.doi.org/10.1145/3281411.3281440
http://dx.doi.org/10.1145/2737095.2737115
http://dx.doi.org/10.14722/ndss.2019.23326
http://dx.doi.org/10.1109/DSN48063.2020.00056
http://dx.doi.org/10.1109/DSN48063.2020.00056
http://dx.doi.org/10.1016/j.scico.2006.11.002
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1016/s0169-023x(97)00056-6
http://dx.doi.org/10.1109/SP.2016.44
http://dx.doi.org/10.1109/ICCPS.2014.6843717
http://dx.doi.org/10.1016/s1071-5819(02)00127-1
http://dx.doi.org/10.1016/s1071-5819(02)00127-1
http://dx.doi.org/10.4018/978-1-61520-686-5.ch008
http://dx.doi.org/10.4018/978-1-61520-686-5.ch008

A. M. Ansari et al.: Ontology-Based Classification and Detection

MOHAMMED NAZIR received the master’s
degree in computer applications from AMU, Ali-
garh, and the Ph.D. degree from JMI, New Delhi.
He is currently a Professor with the Department
of Computer Science, Faculty of Science, Jamia
Millia Islamia (A Central University), New Delhi,
India. He has more than 21 years of teaching
experience at PG level. He has supervised three
Ph.D. theses in the area of software security.
He has participated in several national and inter-

national level conferences/workshops. He delivered talks in some of
the international/national level conferences/workshops. He has more than
40 research publications in journals and conference proceedings of national
and international repute. His research interests include software security
and software quality assurance. He is a Life Member of Indian Society for
Technical Education (ISTE).

KHURRAM MUSTAFA is an IIT Delhi Alumnus,
who is currently a senior-most Professor with the
Department of Computer Science, Jamia Millia
Islamia (A Central University), New Delhi, India.
Despite having completed his Ph.D. on a topic
related to eLearning, he continues to supervise
students and write/speak on information security,
e-learning, and research methods. During his five-
year hiatus, he worked as a Professor/Associate
Professor at universities in Saudi Arabia, Yemen,

and Jordan. He was also the Principal Investigator of a three-year
government-funded information security project and delivered more than
60 invited talks, including several keynote addresses. In addition to authoring
Scientific Research Primer (Ane Books, 2021) and coauthoring two other
books, Software Quality: Concepts and Practices and Software Testing:
Concepts and Practices (both published by Narosa, India, and Alpha
Science, U.K.), he has mentored more than a dozen Ph.D. candidates. The
latter’s Chinese edition has also been released. Aside from these, he has
coauthored more than a dozen book chapters and more than 100 research
articles published in international journals/proceedings. He is also a member
of several professional scientific societies, including ISTE, ICST, CSI,
EAI, ACM-CSTA, eLearning Guild, and InfoPier, and several academic
committees and editorial review boards.

85088 VOLUME 12, 2024

