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ABSTRACT With the advance of deep learning techniques, social robots can have more powerful perception
and interaction capabilities. However, the problem of finding a socially aware standing location for the
robot to join a conversation group is not well addressed. Thus, we propose a generative-based and image-
based approach to generate a social-aware group formation to obtain the possible locations for the robot.
Furthermore, to overcome the problem of formulating human comforts, we try to leverage human behaviors
with the concerns of human comforts when joining the conversation group. We utilize a self-supervised
technique to generate this kind of human experience from the real-world dataset. Through extensive
experiments, we show that the proposed method outperforms the social force method by 62% with respect
to data from human experiences. In addition, our approach also provides controllable parameters to generate
the location with the required features using the GAN noise vector.

INDEX TERMS Adversarial learning, conversation group, edge artificial intelligence, generativeAI, Internet
of Things, robot standing position, social robot.

I. INTRODUCTION
Nowadays, integrating social robots into human interac-
tion undergoes a transformative evolution, propelled by
advancements in AI, sensors, and control technologies.
In executing various interaction tasks, robots must possess
sophisticated capabilities. These may include speech recog-
nition [1], natural language processing [2], object detection
[3], face recognition [4], facial emotion recognition [5],
place localization [6], object interaction [7] and lastly, social
interaction [8], [9]. From an application-oriented viewpoint,
social robots have a significant impact on areas such as
healthcare [10], education [11], customer service [12], and
social assistance [13]. However, deploying these promising
technologies in real-world settings raises important concerns.
A key concern is the potential discomfort that may arise
from the behavior of the robots. For example, when a social
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robot joins a conversation, it can cause unease and changes
in the communication behaviors of the group members [14],
[15]. This phenomenon may be caused by unfamiliarity
with technology, artificial interaction, and perceived threat
to privacy and control, which can negatively impact the
dynamics and effectiveness of the group, potentially resulting
in trust issues for humans. Therefore, it is essential to take into
account human feelings when designing these technologies.

Several studies [16], [17], [18], [19], [20] have explored
the problem of social-aware navigation and group joining for
robots using group formations (F-formations). For example,
reference [18] estimates optimal robot placement in an
O-space of F-formations for a social group interaction.
However, the assumption of structured formation may
not always hold in conversational groups. This presents
significant challenges when dealing with unstructured groups
that have unpredictable dynamics. In contrast, reference [21]
disregards formations, determining the social placement of
an online avatar within a group based on social force fields.
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FIGURE 1. A scenario of a social robot joining a group conversation.

This approach uses repulsion forces to maintain a minimum
distance between individuals but relies on predefined rules
and heuristics, which may not accurately represent real-
world conditions. Moreover, the study [22] focuses on
learning-based path planning with social awareness for a
robot joining a group. It employs LSTM (Long Short-
Term Memory) and GAN (Generative Adversarial Network)
to generate the robot’s movement trajectories, considering
potential collisions and the field of view of individuals within
the group. However, the robot halts once it is reasonably close
to the group, leaving a precise and fine-grained stop location
for the robot’s final standing position unexplored.

This work addresses the standing location problem for
a social robot that intends to join a conversational group.
To ensure the robot’s social integration, we have to consider
the comfort of other group participants and identify a socially
acceptable standing location. Fig. 1 shows the application
scenario where a social robot is trying to join a free-standing
conversational group with four participants. The problem is
how we place this social robot inside the interaction range
of the group with a human-centric manner. Assume that the
robot can collect visual information from the surveillance
camera in this environment or directly from an embedded
camera. According to the position or orientations of each
participant, the robot will predict a suitable standing location
and navigate the robot from its current position to the
computed one, i.e., from L1 to L2 in Fig. 1. The designated
location L2 is considered socially acceptable for the robot,
taking into account each individual’s personal comfort zone
(indicated by the gray circles). In contrast, locations marked
by red pins may be deemed unsuitable due to their proximity
to group members. Note that comfort zones vary among
individuals and are difficult to formulate. To address the
complexity inherent in unstructured groups, we explore the
possibility of learning acceptable standing locations based on
observed human behaviors and experiences.

Generative AI has shown its effectiveness in understanding
and executing human instructions in fields such as text
generation [23] and image generation [24]. In this study,
we propose a generative-based approach, PosGAN, which
utilizes GAN [25] to devise a socially aware standing
location. The GAN architecture is adopted because it

FIGURE 2. (a) The photo of a conversation group in a real scene and
(b) Plot locations of all participants in this group and P7 is removed for
the reference of the desired location L2.

generates high-quality synthetic outputs that preserve the
key attributes of socially aware human behaviors. In addi-
tion, our method, which embraces an end-to-end principle,
inputs the captured images directly into our model. This
eliminates the need for intermediary data transformations
such as conversion into coordinates or facing orientations.
To model socially aware human behaviors, we rely on open
group conversation datasets [26], [27] derived from real-
world scenarios. We employ a self-supervised technique to
construct the training set, which involves sequential removal
of individuals from a group.

The contributions of this work are as follows. First,
we address the challenge of finding a socially acceptable
position for a robot to join a group conversation. Second,
we propose an end-to-end approach for determining the
robot’s standing location in a group using the image gener-
ation technique. Third, we exploit a self-supervised method
to generate our dataset for training. Finally, it provides a
simplified solution to reduce engineering efforts and the
requirement of prior knowledge, rather than relying on
complex prediction steps.

The remainder of this paper is organized as follows.
Related work is covered in Section II. Section III formulates
the problem and presents our work to generate a socially
acceptable location. Section IV presents evaluation results.
We have a discussion of our method in Section V. Finally,
Section VI concludes this paper.

II. RELATED WORK
In this section, we examine various studies on social robots,
group formation, robot trajectory planning, and generative
AI. A brief summary of the reviewed work is presented in
Table 1.

A. SOCIAL ROBOTS
Deploying social robots offers several advantages, such as
their use in stores to increase sales, with a success rate of
two out of three stores reported in case studies by [28].
In addition, social robots can guide museum tours [29], which
guide visitors through the museum along a predefined path,
and track the visitor group [30]. To ensure effective robot
navigation during such tasks, Simultaneous Localization and
Mapping (SLAM) serves as a key technique. SLAM allows
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TABLE 1. Summary of related work.
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robots to create and update maps of their environment in real-
time. For instance, [33] employs an efficient SLAM-based
localization and navigation system for service robots in
dynamic indoor environments. Furthermore, [34] utilizes
a semantic visual SLAM approach for intelligent mobile
robots in dynamic environments. However, the problem of
evaluating the comfort of group participants when a social
robot joins the conversation is not well addressed.

Previous studies [31], [49] have reported that neither
caregivers nor care recipients have explicitly expressed
interest in the care robot, and ethical and legal concerns
about the use of care robots remain unresolved [32].
Additionally, spatial dynamics within discussion groups
are critical. Reference [50] highlights the importance of
peripersonal space, a protective buffer around the human
body, where intrusion can cause discomfort. Trust is another
key concern. As noted by reference [51], robot assistants
need to ensure safety, comfort, and trustworthiness to avoid
frustrating Human-Robot Interaction (HRI) experiences or
severe consequences [52]. Thus, social acceptance is an
important issue when creating the functionality of the social
robot. In this work, we investigate the problem where the
social robot can seamlessly participate in group conversations
while also considering the comfort of human participants.

B. F-FORMATIONS
Several studies have employed F-formation techniques in the
integration of social robots into human environments. Ref-
erence [16] utilizes F-formations using spatial coordinates
extracted from human bodies to determine the ideal angle
for robots to approach a group. Reference [17] introduces
a framework that combines pose prediction with socially
aware robot navigation, building upon the F-formation
algorithm’s graph-cuts and human motion data. Reference
[19] further applies deep learning to model robot approach
behavior, carefully maintaining the F-formation through
strategic repositioning and reorienting. Reference [20] uses
spatial formations to propose the best placement for a
mobile robotic telepresence system or a virtual agent in a
simulated environment to a social group interaction. Further,
reference [35] emphasized the establishment of correct
spatial relationships with individuals, making keen use of
F-formations. While, reference [36] introduced a model for a
mobile museum guide robot that can adhere to F-formations
and execute ‘‘pause and restart’’ strategies efficiently. Lastly,
reference [37] proposed a socializing model that allows a
robot to maneuver to its most socially optimum position
within F-formations during group interactions with humans.

Although F-formation techniques have shown promise in
enabling social robots to join structured group conversations,
they have limited effectiveness in less organized conversation
groups. To address this concern, reference [38] developed
a topology map-based approach to robot navigation during
human-robot interaction tasks while considering the comfort
zone of people. However, this method still relies on a

rule-based approach to position the robot when approaching
a group and may produce less-than-ideal outcomes owing
to limitations such as unstructured conversational groups
or dynamic environmental conditions. Therefore, future
research should focus on developing more advanced tech-
niques that allow social robots to join group conversations
while considering the comfort of human participants, without
limiting only to the F-formations. This work aims to
contribute to addressing this research gap.

C. TRAJECTORY PLANNING
In the field of social robotics, various studies have con-
centrated on trajectory planning and robot navigation in
dynamic human environments. Reference [39] developed
a Rapidly-exploring Random Tree (RRT) based trajectory
planning algorithm. For navigation, reference [40] proposed
an approach to ensure safe and legible navigation in
multi-agent encounters through implicit cooperation between
humans and robots. Comparing different navigation tech-
niques in terms of mobile robot trajectories, Reference
[53] carried out an analysis using various ROS-based
SLAM systems. Reference [54] presented a real-time SLAM
technique that estimates robots’ trajectories and creates
3D maps using a 3D shape matching method. With a
focus on the social aspect of navigation, reference [41]
worked on a socially acceptable global route planner and
evaluated its legibility. In contrast, reference [42] introduced
a system in mobile robots that mimics human-like collision
avoidance using a pedestrian model from human science.
Highlighting the prediction of future actions, reference [43]
used a sequence-to-sequence model to anticipate potential
actions of agents and stimulate diverse predictions. A similar
study, reference [22], developed a trajectory prediction
model for social robots that navigate in groups engaged in
open discussions. However, these studies do not thoroughly
address where a robot should stop and stand when reaching
its target group. This is a crucial issue that our work attempts
to solve by suggesting a socially aware stopping location that
can aid existing trajectory planning methods.

D. GENERATIVE AI
Generative AI is a form of artificial intelligence that utilizes
vast datasets and deep learning models to produce new
content such as images, text, or audio through automatic
creativity and imagination. It is frequently combined with
self-supervised techniques to provide abundant learning
input. For example, in aerial technology, reference [44]
uses an improved Conditional Generative Adversarial Net-
work (IC-GAN) to translate aerial infrared recordings
into RGB images. In image captioning, reference [45]
introduces the Reverse Generative Adversarial Network
(ReverseGAN) with a graph convolutional neural network.
Furthermore, reference [55] enhances pathological image
super-resolution with the help of MASR-GAN. In healthcare,
reference [56] forecasts the demand for healthcare service
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using an attention-free model and self-supervised Generative
Summary Pretraining (GSP), exceeding existing baselines.
Addressing missing data in medical images, reference [46]
presents a self-supervised collaborative learning framework
that demonstrates superiority in generalization and specialty.
For Visual Relationship Detection (VRD) representation
learning, reference [48] develops a self-supervised approach,
Masked Bounding Box Reconstruction (MBBR), for learn-
ing relationship-aware object representations and obtains
improved results in predicate detection within sentences.
In the field of graph anomaly detection, reference [57]
presents a self-supervised approach named SL-GAD that
significantly improves performance over existing methods.
In medical imaging, reference [47] introduces a unified
self-supervised learning framework, DiRA, to collaboratively
generate fine-grained semantic representations. Inspired by
the success of these generative AI strategies in vari-
ous fields, our study uses a generative adversarial net-
work with self-supervised techniques to tackle challenges
in providing a socially aware location within a group
conversation.

III. PROBLEM FORMULATION AND SYSTEM DESIGN
In this work, we address the challenge of recommending
an appropriate standing position for a robot to join a
free-standing conversation group, taking into account the
comfort levels of the participants with the newcomer’s
movements. Estimating comfort levels as a function is
significant complexity due to the challenges associated
with quantifying the human mind. Alleviating this issue,
we operate by inferring social awareness from empirical
human behavior data using learning techniques. We first
utilize the technique of self-supervised learning to obtain
data on human behavior. We then introduce PosGAN an
image generation method, which is based on conditional
generative adversarial network [58], to learn how to draw the
full social-aware formation when inputting the current group
structure. After that, we find one unoccupied position in the
plotted formation to be the robot’s position. Fig. 3 shows the
architecture and procedure of our system.

A. PROBLEM DEFINITION
This paper addresses the standing location problem consid-
ering acceptances of other human members when a robot
is a member of a free-standing conversation group. Thus,
we have to care for the comforts of other human members
for determining the location. These comforts may come from
the distancing and facing direction. Assume that there are
n human members, H = {h1, . . . , hn}, of a free-standing
conversation group. We denote the status of a member i by Si.
Status information may contain the location, facing direction,
or posture of the member where only location is mandatory.
A social robot r is going to participate into the group.We then
define a function C(Shi , Sr ) to represent the comfort level of
a human participant i with respect to the robot. The result of
C(·) may be related to social distancing or physical contact.

Here, we ignore the comfort of a human member toward
others. We formulate this standing location problem as an
optimization problem. Given the statues of all the human
members who already form a conversation group, we try to
compute

S∗
r = argmax

Sr

n∑
i

C(Shi , Sr ). (1)

The location of S∗
r is the final standing location for the robot

to join the group.
For measuring comfort levels, it is complicated to define

the function C(·) by a mathematical formulation. Therefore,
we try to utilize the location determined by humans as
the reference and exploit the concept of self-supervised
learning [59] for learning. If our predictions align closely
with the locations or group formations as determined by
humans, we assume that we can achieve higher comfort
levels. However, deviations from these human-determined
positions or structures will result in reduced comfort levels,
corresponding to the degree of displacement. Fig. 2(a)
illustrates an example of a conversation group where each
participant’s position can be determined based on their head
location. These positions are then represented by solid circles
in Fig. 2(b). The self-supervised technique leverages the
dataset itself to acquire insights. For example, by removing
the circle P7 and designating L2 as the ground truth for
learning, we can deduce that L2 is one of the socially
acceptable locations for joining this group.

B. DATA PREPARATION
The input to our model is an image frame j of a conversation
group, which may be cropped from the image captured by the
surveillance camera. In the initial stage, our Head Detection
Module (HDM) plays a crucial role. HDM identifies the
position of each participant based on their head position in
the frame, utilizing a deep neural network that incorporates
R-CNN under the ResNet-50 architecture. In particular, this
R-CNN model is trained using the SCUT-HEAD dataset.
HDMmarks these positions with symbols (e.g., solid circles)
on an image yj. To generate training data, we remove the
symbol of participant k from yj to be another image xkj where
k is the participant index. Thus, (xkj , yj) is the pair for training.
To augment the training pairs, we do the above procedure for
each participant.

C. STANDING LOCATION GENERATION (POSGAN)
Our generator and discriminator architectures are based
on [58]. For one pair (xkj , yj), we then input a random noise
vector z and xkj into the generator where z will be regenerated
each time and xkj is used as conditional information to control
the generated image. During the training period, the generator
produces an image mjkg that may add some new symbols to
the image and form a socially acceptable structure. Then the
discriminator uses the images mjkg and yj to learn if they are
generated one and real one, respectively. The loss functions
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FIGURE 3. PosGAN architecture: socially aware standing location generation in a human group.

FIGURE 4. Example of determining the predicted position by filtering.

L of our GAN model are as follows.

objective min
G

max
D

LcGAN (G,D) + λLL1(G)

LcGAN (G,D) =
1
w

w∑
j

logD(xj, yj)

+
1
w

w∑
j

log (1 − D(xj,G(xj, z)))

LL1(G) =
1
w

w∑
j

∥yj − G(xj, z)∥1. (2)

G and D represent the generator and the discriminator,
respectively.w represents the number of training samples, and
λ is a hyperparameter to control the clearness of the generated
image.

For inference, when we input an image with marked
symbols to the trained generator, it will add some symbols to
the image according to the social norm behaved by humans.
To decide the stop-standing location of the robot for joining
the conversation group, we remove the symbols that are in
the same locations between the input image and the generated
image in the filtering module. Fig. 4 shows the concept that
the remaining symbol is the position that we recommend to
the social robot. But, sometimes, the remaining symbols are

more than one. To select one location, we perform heuristic
filtering on the generated image. One possible heuristic
filtering is to randomly choose one symbol as the output
location. Finally, we have to extract the location in the
coordinates (x,y) by examining the area with black pixels and
finding the center of the symbol as the location. Then, wemay
map the location from the image coordinate to the coordinate
in the environment to navigate the robot.

D. IMAGE SYMBOLS
Previously, we address that the image symbol for representing
the positions of participants is a solid circle. But, our
approach may support replacing the symbol of solid circles
with the symbol of different shapes. The advantage of using
different symbols is that the new symbol may be used to
represent more information. For instance, we may utilize
a solid triangle to represent the locations and also the
facing direction of the person. If we change to use other
symbols, we simply use that symbol in the data preparation
step, in Section III-B, and we do not have to make any
modifications to the following steps.

If we exploit the solid triangle as the symbol, we use the
isosceles triangle with an obtuse vertex angle, where the
vertex angle is used to point toward the facing direction.
For extracting the location from the generated image with
the solid triangle, we first find the symbol by examining the
region of black pixels and use the center of the longest edge
(the edge opposite to the vertex angle) of the triangle as the
location for the robot.

IV. EXPERIMENT RESULTS
A. DATASETS
We use the SALSA dataset [26] which provides detailed
annotations of group formation and participants’ movements

85686 VOLUME 12, 2024



S. E. R. Poluan, Y.-A. Chen: Generating Social-Aware Locations for a Robot in a Human Group

FIGURE 5. Computation of ED2C where the solid green circles represent a
generated location. The ED2C is calculated by finding the Euclidean
distances from the generated location to its nearest two neighbors.

in two social events, a cocktail party and a poster session.
These events involve various dynamic social interactions,
such as group formations, conversations, and movements,
which offer diverse scenarios for our study. We mainly use
the position information of each individual in a conversation
group. For preparing the dataset, we use the poster session
of SALSA as the training set and the cocktail party of
SALSA as the testing set. In our data cleaning process,
we excluded one-person groups and eliminated overlapping
points on plots to disregard extreme cases. Using self-
supervised techniques, we eliminated one participant at
a time from each frame of a group. For further data
augmentation, we also relocated the group to various
positions in the space, maintaining the structure of the group.
This approach resulted in the generation of 21, 419 training
samples and 18, 925 testing samples for our experiments.
The sample numbers of group size {2, 3, 4, 5, 6, 7, 8}
for training are {4297, 4839, 6098, 2143, 2933, 1025, 84}
and those of group size {2, 3, 4, 5, 6, 7} for testing are
{6407, 6334, 3389, 2124, 621, 50}.

B. COMPARISON METHODS
1) BASELINE
We adopt a random approach as the baseline method to
compare with ours. This method simply randomly generates
a location in (x,y) coordinates within the image dimension.
In our expectation, this method may work the worst since it
does not consider any information about group formation or
robot information.

2) INCEPTION
We use Inception v3, a deep convolutional neural net-
work [60], for the comparison. Since this model cannot
generate the position on the image, we use the locations in
(x, y) coordinates of each groupmember as input. Let the final
output also be a location in (x, y) coordinates. The model was
trained for 200 iterations, and we selected the best training
model with the smallest MSE.

3) SOCIAL FORCE
The social force model [21] is used to determine the
position to visualize an avatar in an online game conversation

TABLE 2. Evaluation on the mean ED2C of generated locations.

considering social distancing. They use a social force field
to adapt to the formation of a conversation group and use a
repulsion force to maintain the minimum distance between
individuals. To implement this model for our scenario,
we compute the average distance between each current
member and the group center as the social force and compute
the minimum distance between each current member as
the repulsion force. Then we repeatedly generate a random
location to be the possible location until the distance between
the location and the center is around the social force and
the distance between the other members is more than the
repulsion force.

C. PERFORMANCE COMPARISON
1) PREDICTION ERRORS
In our method, we remove one participant from a conversa-
tion group to serve as the ground truth for a socially-aware
location, enabling a direct measurement of the prediction
errors relative to this ground truth. The average prediction
errors for the baseline, social force, Inception, and PosGAN
(our proposed method) on the test set are 769.99, 271.12,
540.42, and 175.62 centimeters, respectively. These results
suggest that ourmethod provides themost accurate prediction
in relation to the ground truth. However, these numerical
comparisons of prediction errors may not comprehensively
represent the degree of social acceptance toward the predicted
results because there could be multiple locations suitable for
joining a conversation group that deviates from the ground
truth. Therefore, we advocate for an evaluation strategy that
considers the social context.

2) DISTRIBUTIONS OF ED2C
To further compare performance, we employ a metric, ED2C
(Euclidean Distance to two Closest neighbors), to assess the
social acceptance of the determined location within a con-
versational group. ED2C measures the combined Euclidean
distances to the two nearest members of the conversation
group, as visualized in Figure 5. The reason of selecting two
nearest neighbors is that placing the robot at the generated
location could directly affect the neighboring participants on
its left and right. As such, ED2C can effectively represent
proximity patterns within the social interactions.

To compare the performance across the entire dataset,
we calculate the ED2C for all test cases and normalize
the distribution of ED2C values. The normalized ED2C
distribution is expected to closely align with the distribution
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FIGURE 6. ED2C distribution of our and compared models.

associated with the ground truth position. Fig. 6 and Table 2
show the results of the comparison. In Fig. 6, we display
the histogram representing the distances to the two closest
neighbors from the excluded participant throughout the test
set for each method evaluated. The peak of a curve indicates
the distance that occurs most frequently within the test set.
We think the distribution should resemble that of the ground
truth to suggest that the predicted locations mimic actual
human behavior, thereby ensuring higher comfort levels for
other participants. The figure shows that the distribution
curve of our method is close and similar to that of the ground
truth. It validates that our approach follows the social norms
performed by humans. For social force, the curve is close to
the ground truth one, but it will give closer distancing, which
violates the human norms. For baseline and inception, their
histogram curves are far from the ground truth one.

In Table 2, we present the average ED2C for each method,
defined as the mean distances to the two nearest neighbors
in the test set, and the displacement error, which is the
absolute difference relative to the ground truth. We expect
that ED2C will approximate the ground truth, indicating that
the locations are on average determined in a manner similar
to human decisions. As we can see, our method has the
lowest displacement error and exceeds the performance of
social force (the method ranked second) by approximately
(48.42−18.38)/48.42 = 62%. Although the results of social
force can be close to the ground truth, it provides the locations
which are closer to participants in average, and this may lower
the comfort levels of others. For the baseline and inception
methods, they fail to predict locations that mimic human-like
decision-making.

3) VARYING SYMBOL SHAPE
We conducted an experiment to compare the performance of
using a solid circle and a solid triangle as symbols. In the
previous experiment, we found that the symbol size and
position of the group in the image may affect the generation
performance. Thus, we do a translation for the position of the
group such that the center of the group is aligned to the center
of the image, and we also do a scaling to enlarge the relative

FIGURE 7. ED2C distribution of our and compared models when varying
symbol shapes.

distances among groupmembers. Since these transformations
are linear, we can transform the result back to the original
setting. Fig. 7 shows the results of varying the symbol shape.
As we can see, PosGAN with circle symbols is slightly better
than PosGAN with triangle symbols. The reason may be that
the circle is a symmetric shape and that it is easier for the
model to pinpoint the location. But, our proposedmethods are
better than others by showing our ED2C distributions, which
are closer to that of the ground truth. Although the triangle
shape may not outperform the circle one, it may be used to
provide more information about the robot.

4) FACING DIRECTION
Exploiting the triangular symbol introduces the ability to
estimate the facing direction of the robot while considering
social acceptance. To evaluate the accuracy of the estimation
of the facing directions, we utilize the root mean square error
(RMSE) to measure the difference between the predicted and
actual facing directions. In this experiment, we only compare
with InceptionV3 since other approaches cannot be modified
to predict orientation. The observed RMSEs for our triangle-
symbol-based method and InceptionV3 are 0.111 and
0.421 respectively, indicating that our approach yields better
accuracy. Through this, we validate the utility of different
symbols in furnishing additional information. It is critical to
note that the computations for position and orientation occur
simultaneously and positioning inaccuracies could lead to
orientation prediction errors. This simultaneous computation
may be a contributing factor towhy our approach outperforms
InceptionV3.

D. EXAMPLES OF PREDICTION RESULTS
1) GROUP STRUCTURE IMAGES
In addition to metric-based method comparison, we show the
visualization the predicted results for better understanding
in Fig. 8. In the figure, each row displays the comparison
with respect to one sample. The first column provides the
inputs to thesemethods by depicting the original conversation
group from which one participant has been subtracted. The
second column displays the original group structure of the
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FIGURE 8. Visualized comparisons of random group samples ranging from 2 to 7 in size. (Green hollow circles represent predicted locations, while red
hollow circles indicate actual positions).

sampled data, and a red hollow circle indicates the excluded
participant in the input. Columns three to six depict the
predicted locations derived from the baseline, social force,
inception, and PosGAN methods. The green hollow circles
denote the predicted positions. Note that ourmethod produces
group formations (column six) that closely resemble the
actual scenarios depicted in column two. While our method’s
results do not exactly match the ground truth locations,

we still follow social distancing norms and take into account
the overall group configuration. In contrast, the social force
method provides a reasonable structure, but occasionally
results in tighter spacing and fails to adequately address
distancing. Leveraging insights from the group structures
of real-world social interactions, our method is capable
of suggesting positions that conform to accepted social
norms.
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FIGURE 9. Clustering of mean distances based on varying the values in
static noise vectors (Green cross indicates the center of a cluster group).

FIGURE 10. Clustering of mean distances and standard deviations based
on varying the values in static noise vectors (Green cross indicates the
center of a cluster group).

FIGURE 11. Comparison of mean distances based on random noise
vectors from the five ranges.

2) REAL-WORLD SCENES
Fig. 12 shows that we make the standing location deter-
mination for each group of a captured image, utilizing a
three-row structure where each row represents one sample
of a standing group discussion. Our HDM can identify the
position of each group member based on their head position,
using a deep neural network incorporating R-CNN under the
ResNet-50 architecture. We use the SCUT-HEAD dataset,
consisting of 4,405 images and 111,251 head labels, to train
our model for obtaining a more generalized prediction.
We use all the methods to infer the standing locations.
We plot the robot at the proposed standing locations in each
group, and we may validate the results in the real-world
scenes.

V. DISCUSSION
A. EFFECTS OF NOISE VECTOR
Several research [61], [62], [63] control the generated images
of GAN by exploiting the values in the random noise vector.

Here, we explore the effects of random noise vectors z on the
generated group formations. After we have a trained model,
we input a group image with different random vectors to
investigate the influences. In our model, the tensor shape of
the random vector is (100, 1). So, the possible settings for
the vector are huge. Therefore, to simplify the experiment,
we assume that each dimension of the random vector has no
correlation.

• Static Noise Vector: In the first experiment, we assign
the same value to each dimension within the noise
vector. For instance, if we set the value to 0.1, the
tensor zwill be [0.1, 0.1, 0.1, . . . , 0.1]T and z ∈ R100x1.
We generate 100 different noise vector settings by
varying the value from 0.01 to 1.0 with increment
0.01. For each noise vector, we evaluate the model
using the test set with the vector. We compute the
distance between the generated location and the location
of the closest member for each test sample. Then,
we determine the mean and standard deviation of all
these distances.
To understand the influences on the generated locations,
we first group all the mean distances of the test set
relative to the noise vectors into two categories using
k-means clustering with k = 2. The clustering result is
presented by Fig. 9. Although the centroids of these two
clusters are close, wemay still have some findingswhere
a group of noise vectors may generate locations closer
to the member, and the other group of noise vectors
may generate farther locations. Second, we cluster two
groups by means and standard deviations. Fig. 10 shows
that two groups have similar average distances, but one
group has a higher deviation. Thus, wemay use the noise
vector in the group with a higher deviation to obtain
more diverse locations.

• Random Noise Vector: In this experiment, we maintain
the same settings as above. However, in this case, the
noise vector for each dimension is assigned a random
value from one of five distinct ranges: [0, 0.2), [0.2, 0.4),
[0.4, 0.6), [0.6, 0.8), and [0.8, 1]. Fig. 11 shows the
results. From the results, we note that there are only
slight differences in the distances between the generated
locations and the location of the closest group member.
We may achieve a closer distance by using values within
the first and third ranges.

Here, we explore two potential methods for managing
distancing, providing users with the flexibility to adjust the
distancing according to their application’s specific require-
ments. For instance, in congested environments, system
administrators can generate closer distancing using a random
noise vector with a range of either [0, 0.2) or [0.4, 0.6).
Conversely, for less congested settings, an opposite setupmay
be employed. Moreover, to maintain consistency in results
across generations, system managers may opt for a static
noise vector with a value in a group exhibiting minimal
variation.
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FIGURE 12. Examples of prediction results on images of the real scene.

B. SYSTEM DEPLOYMENT
Our system offers applications for various social settings
such as retail, public spaces, and collaborative workspaces,
where social robots need to fit into human interactions while
maintaining social distance. For example, social robots could
provide non-intrusive information and assistance in places
such as airports ormuseums, enhancing user experience. Sim-
ilarly, in education, our approach could improve interactions
between robots and students in group learning, creating a
comfortable, effective learning atmosphere.

When considering deploying this system, there are certain
prerequisites to ensure the effective functioning of social
robots in dynamic environments. We propose three main
requirements. Firstly, a camera must be installed, either
fixed within the environment or embedded in the robot,
to recognize the positions of each user. Secondly, the system
requires adequate computational power to handle recognition
and prediction tasks. Our current inference model possesses
256, 638, 979 parameters and demands 12.5 GFLOPs (giga
floating point operations). In theory, this model is compatible
with Nvidia Jetson Nano, which offers 472 GFLOPS (giga
floating point operations per second) [64], Nvidia Jetson
TX2 NX capable of 1.33 TFLOPS (tera floating point
operations per second) [64], or more powerful edge devices.
Lastly, the robot must incorporate an actuating system,
a navigation method, and a communication interface to
facilitate interaction with users and navigation within the real
environment.

Addressing privacy concerns, primarily related to collect-
ing and processing personal data, is crucial. In our current
design, the robot can process and make decisions on the
edge device locally to avoid disclosing user information
to the cloud. This approach prioritizes user privacy and
security. While we ensure that sensitive user information,
such as facial data, is not utilized, we focus instead on the
user’s head position for predictions. However, the use of

cameras poses potential privacy risks if unauthorized parties
access them for unrelated purposes. Adherence to existing
privacy laws is essential during the deployment of the system.
Measures such as data anonymization, explicit user consent,
and transparency in data usage policies should be integral
parts of the system’s deployment. These are significant
considerations for deployment, despite falling outside of our
current system design.

To explore the societal impacts of deploying this system,
we refer to several related systems. The initial concern
is that an unsatisfactory location predicted by our model
could lead to discomfort among individuals. Furthermore,
the introduction of a social robot might also result in
discomfort. These issues may include user stress [65],
increased dissatisfaction [66], [67], reduced authenticity of
the experience [68], and diminished trust [69]. To minimize
societal impacts and improve acceptance, the robot could
incorporate a mechanism to identify undesirable human
actions to prevent further proximity. For example, the robot
might stop its movement if a group member executes a stop
gesture or indicates a desire to leave.

Furthermore, as an ethical point, our system, which is
based on learning technology, could unintentionally reflect
biases in human behavior. For example, social distancing
norms might differ between male-male and female-male
pairs. Currently, our focus is on the system’s design, leaving
exploring and mitigating potential biases as an area for future
research.

VI. CONCLUSION
We have proposed PosGAN, which uses generative AI to
suggest a socially acceptable standing location for a robot
to join a conversation group. We investigated the possibility
of using the image generation technique to leverage the
recognition power of deep learning in visual information.
By considering human behaviors in the group conversation,
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we trained and tested our model using the dataset collected in
real-world settings. The experiment results showed that our
method outperforms other approaches by the metric of the
distancing to the members in the conversation. Our approach
may generate a location with moderate distancing that is
not too close or too far from the members, as a human did.
Therefore, our model will allow the social robot to determine
a socially acceptable location, which is not well addressed
in current research. In future work, the research will focus
on incorporating SLAM algorithms with PosGAN to enhance
the robot’s spatial awareness in human groups.
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