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ABSTRACT The precise and automated detection of epileptic seizures has become a focal point of research
due to its potential to alleviate the severe consequences experienced by patients. Recent advancements in
deep learning-based detection techniques utilizing electroencephalogram (EEG) signals have yielded state-
of-the-art performance. However, these methods typically require a large number of training samples to
effectively train the deep neural networks. Consequently, their performance can be compromised in scenarios
where only a limited number of samples are available. This paper presents two novel approaches that aim
to improve seizure detection accuracy in situations with a scarcity of data by harnessing the power of
empirical mode decomposition (EMD) applied to EEG signals. Specifically, in both methods, the EMD of
EEG signals and the power spectral density (PSD) of the resulting EMD components are employed as inputs
for subsequent neural networks. Multiple convolutional neural networks (CNN5s) are purposefully designed
to perform seizure detection using these inputs. Experimental results demonstrate that our proposed methods
achieve superior detection accuracy compared to traditional deep learning-based detection methods that do
not incorporate EMD in few-shot scenarios. In particular, when the number of training samples is reduced
to 10%, our method shows an improvement of 23%, 19%, and 26% in accuracy, sensitivity, and specificity,
respectively, compared to the original EEG input across different networks.

INDEX TERMS Seizure, electroencephalogram (EEG), empirical mode decomposition (EMD), deep
learning, convolutional neural networks (CNNs).

I. INTRODUCTION Repeated seizures directly lead to neurological dysfunction

A. BACKGROUND

Epilepsy is a chronic nervous system disease [1], [2]. It is
a transient brain dysfunction caused by the sudden super-
synchronous abnormality of brain nerve cells. According to
World Health Organization (WHO) [3], as of 2019, nearly
50 million people in the world suffered from epilepsy,
accounting for about 1%-2% of the world’s population.
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or degradation of thinking, perception and behavior, which
not only causes irreversible brain damage to the cognitive
function of the patient, but also makes the patient prone to
physiological and psychological disorders. Therefore, early
diagnosis helps to prevent seizures and brain damage, and
plays a key role in improving the quality of life of epilepsy
patients.

At present, electroencephalogram (EEG) sensors [4], [5]
are used to record the electrophysiological activities of
brain neurons from the scalp. EEG signals are recorded
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by placing several electrodes (scalp surface) or probes
(intracranial) on the subject’s head according to certain
criteria. The EEG signals of epilepsy often show abnormal
waves such as sharp wave, spike wave and spike slow
complex wave. In clinical practice, neurosurgeons extract the
shape, frequency, amplitude and other characteristics of EEG
signals according to the status of epileptic activity, so as
to infer whether the EEG has the characteristic waveform
of epilepsy. However, it is obviously a time-consuming and
tedious work for medical experts to diagnose whether there is
epilepsy by visual examination based on clinical experience,
and there will be a high misdiagnosis rate [6]. Therefore, it is
necessary to study the automatic detection method of epilepsy
based on EEG to improve the accuracy and efficiency of
epilepsy detection, enabling accurate and timely detection of
seizures in patients and improving treatment outcomes and
patients’ quality of life.

With the vigorous development of digital signal pro-
cessing, machine learning and other technologies, people
have made remarkable research achievements in the field
of automatic detection of epilepsy. The proposed methods
can be roughly divided into two categories: feature-based
methods and deep learning-based methods. The feature-based
methods are mainly based on artificial feature extraction
and machine learning classifier. The extracted features
usually consist of features form time-domain EEG [7],
[8], [9], features from frequency transform of EEG [10]
and features from time-frequency analysis of EEG [11],
[12], [13], [14], [15]. In contrast, the deep learning-based
methods are data-driven methods. They use deep neural
networks such as long short-term memory networks (LSTMs)
[16], [17] and convolutional neural networks (CNNs) [18],
[19], [20] to automatically learn features from the input
data. The learned features will support the detection of
epilepsy. Due to the powerful feature automatic learning
ability of deep learning, deep learning-based methods have
achieved better detection performance than feature-based
methods.

However, the method based on deep learning often needs a
large number of training samples to support the learning and
training of the network model. When the sample size is small,
its performance will be affected to some extent. For epileptic
EEG samples, building a large number of tagged samples
means that a large number of EEG signals of epileptic
patients need to be collected, which is often impractical.
A more practical situation is that epilepsy detection needs
to be implemented based on a small number of labeled
samples, which is called a few-shot learning scenario.
Meanwhile, epilepsy detection in few-shot scenarios helps
to provide a deeper understanding of disease characteristics
and individual differences, providing an accurate basis for
personalized treatment plans. In the few-shot scenario, if the
raw data is still used directly for training, the model is
likely to fall into the local optimum and the phenomenon
of over-fitting will occur, and the accuracy rate in the test
stage will be greatly reduced. In few-shot scenarios, the
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performance of epilepsy detection may be improved if the
EEG signals can be preprocessed in advance to extract richer
and more detailed information, so that the subsequent neural
networks can be more direct and easier to learn. In our
prior work [21], we used multiple time-frequency inputs to
feed into the CNN to improve the detection performance of
seizure. However, only discrete Fourier transform (DFT) and
wavelet transform are explored in this method. In this paper,
we explore another time-frequency tool, empirical mode
decomposition (EMD), to decompose the EEG signals to
obtain the components containing more detailed information,
and then implement deep learning on the decomposed
components, so as to complete the epilepsy detection in few-
shot scenarios.

B. CONTRIBUTION
The contributions of the paper can be summarized as follows.

1) We propose two learning-based methods for epilepsy
detection, termed EMD-EEG and EMD-PSD, both of
which are empowered by EMD to enhance detection
performance in few-shot scenarios. The EMD-EEG
is initiated by decomposing EEG signals via EMD,
and then the decomposed components are spliced. The
spliced matrix is used as the input of the CNNs. Build-
ing upon EMD-EEG, the EMD-PSD further processes
each EMD-derived component through DFT, followed
by computation of the Power Spectral Density (PSD)
for each component. The PSD sequences obtained are
spliced and then fed into the CNNs for learning and
detection. Compared to traditional deep learning meth-
ods that directly employ EEG signals, the EMD-EEG
and EMD-PSD methods are capable of extracting
more abundant feature information and significantly
enhancing the accuracy of epilepsy detection.

2) We evaluate the performance of our proposed algo-
rithms on a publicly available epilepsy detection
dataset. Experimental results indicate that, in com-
parison to traditional deep learning-based detection
methods, our approaches achieved higher detection
accuracy in scenarios with limited sample sizes.
Especially, when the number of training samples was
reduced to 10%, our methods exhibited improvements
of 23%, 19%, and 26% in accuracy, sensitivity, and
specificity, respectively.

Il. RELATED WORK

Existing deep learning-based epilepsy detection algorithms
usually use LSTMs and CNNs. Specifically, in terms of
epilepsy detection based on CNNs, Acharya et al. [18]
proposed an end-to-end automatic seizure detection algo-
rithm based on deep CNN in 2018. They built a CNN
with a one-dimensional convolution kernel and tested it
on the single-channel Bonn EEG data set, realizing an
accuracy of 88% for the three types of EEG data of
epileptic period, interictal period, and normal. Since then,
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a variety of epilepsy detection methods based on different
CNN architectures have been proposed, such as the deep
network model using the fully convolution network without
pooling layer as the automatic extraction module of epileptic
EEG features [22], the pyramidal one-dimensional CNN
model with fewer parameters [23], and the multi-channel
epilepsy detection neural network using 3D convolution
kernel [24]. In addition, relatively mature CNN architectures
in the field of computer vision have also been used in
the detection of epileptic EEG signals. Through time-
frequency transformation, feature extraction, multi-channel
integration and other methods, one-dimensional EEG signals
are converted into two-dimensional images which are fed
into the CNN architecture with two-dimensional convolution
kernels for detection. For instance, Nogay and Adeli [19]
employed short-time Fourier transform (STFT) to convert
EEG signals into two-dimensional images and input them
into the pre-trained AlexNet for epilepsy detection.

In the aspect of epilepsy detection based on LSTM,
Hussein et al. [25] constructed an LSTM framework suitable
for processing original EEG signals to classify multiple
types of epileptic EEG data. Geng et al. [16] first obtained
the time-frequency spectrum of the original EEG signal by
time-frequency transform, and then established a bidirec-
tional LSTM model for time-frequency feature detection.
Abbasi et al. [26] used EEG signals to generate various
non-stationary arbitrary signals, including Auto-Regressive
Moving Average (ARMA) features and Hurst Exponent, and
used them to design a double-layer effective LSTM classifier
to detect epilepsy in the EEG signal.

In terms of the methods based on hybrid CNN and LSTM,
in recent years, there have also been some researches [27],
[28], [29] exploring that the CNN module is used as an
automatic feature extraction module to extract EEG features,
and then the LSTM is used to learn the long-term correlation
of EEG features at different times, and good detection
performance has been achieved. Anita and Kowshalya [17]
used the Fourier-Bessel Series Expansion-Based Empirical
Wavelet Transform (FBSE-EWT) method and the relief-F
feature ranking method to extract important signal features
from EEG signals and designed LSTM and multi-scale hole-
based deep convolutional neural network (MSA-DCNN)
to detect epileptic seizures. Qiu et al. [30] designed the
differential attention ResNet-LSTM network (DARLNet)
using ResNet and LSTM. It utilizes a channel attention
module to capture temporal and spatial dependencies to
focus on relevant epileptic seizure information, showing
superior performance compared to other state-of-the-art
methods. In general, the deep learning-based methods
have achieved better epilepsy detection performance than
traditional feature-based methods.

In a few-shot scenario, if the original data is directly used
for training, the model is likely to fall into a local optimum,
causing overfitting, and the accuracy in the test phase will be
greatly reduced. Therefore, some studies use preprocessing of
EEG signals to extract richer and more detailed information,
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thereby making subsequent neural networks more direct
and easier to learn, thereby improving the performance of
epilepsy detection. For example, Tiirk and Ozerdem [20] used
continuous wavelet transform to obtain the time-frequency
image of EEG signals, and designed a CNN with appropriate
structure to classify them. Ozdemir et al. [31] proposed a new
epilepsy detection method based on high-resolution Fourier
synchronous compression transform and CNN, and obtained
advanced detection performance on multiple epilepsy EEG
databases. Amiri et al. [32] introduced synchronized squeez-
ing transform (adaptive FSST) and sparse common spatial
pattern (sCSP) efficient models based on adaptive STFT
to identify epileptic seizures in EEG signals. In our prior
work [21], we used multiple time-frequency inputs to feed
into the CNN to improve the detection performance of
seizure. However, the above works are all based on DFT
or wavelet transform for epilepsy detection. Decomposing
EEG signals through EMD enables the extraction of more
informative feature components. Murariu et al. [33] adopted
the spectral power density of intrinsic mode function (IMF)
obtained by EMD of EEG signals and then used K nearest
neighbor (KNN) and naive Bayes (NB) classifiers for
epilepsy detection. This method has significant performance
improvements compared with previous research. Note that
even though EMD has been applied in feature-based seizure
detection, its application in deep learning-based seizure
detection has not been thoroughly explored yet.

lll. METHOD

A. PROBLEM FORMULATION

Seizure detection is to determine whether there is seizure
based on the collected EEG signals. There are two possible
results: normal (without seizure) or abnormal (with seizure).
Therefore, the problem can also be expressed as a binary
classification problem:

v = argmax Prly = k | r(n)}, (1)
k=0,1

where r(n) is the EEG signal, n is the length of the sequence,
y is the result. y = 1 represents there is seizure and y =
0 represents there is no seizure. For the problem of seizure
detection in the few-shot scenario, it is required to use a
small number of EEG signals to establish a high-performance
binary classification model. In this paper, we adopt deep
learning with EMD to solve this problem.

B. OVERALL FRAMEWORK

As discussed earlier, in this paper, we propose two methods
of epilepsy detection based on EMD deep learning in few-
shot scenarios: EMD-EEG and EMD-PSD. The EMD-EEG
method first decomposes the EEG signals by EMD, and
then splices the decomposed components into a matrix,
which is used as the input of the CNN. The output of
the CNN is the vector of two elements corresponding to
the probabilities that the input signal is with seizure or
not. We take the category with higher confidence as the
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FIGURE 1. Overall framework of the proposed methods. (a) EMD-EEG; (b) EMD-PSD.

detection result. Compared with EMD-EEG method, EMD-
PSD method adds DFT steps. After EMD decomposition,
DFT is calculated for each component and the PSD of
each component is obtained by calculating the amplitude.
Then the PSD sequences are spliced into a matrix which is
used as the input of CNN. Similarly, in the network output,
we take the category with higher confidence as the detection
result. The overall frameworks of the methods are shown
in Fig. 1. Regardless of the method, the parameters of the
CNN network used need to be optimized on the training set
consisting of a small amount of EGG signals. It is worth
emphasizing that compared with the original EEG signal,
the components obtained after EMD decomposition contain
richer and more detailed time-frequency information, which
is crucial to prevent overfitting problems in few-shot learning,
and providing the model with more information so that it can
better adapt to different data distributions.

C. INPUT OF NETWORKS

In the proposed EMD-EEG, the decomposed EMD compo-
nents are used as the input of the subsequent neural networks
for learning, while in the proposed EMD-PSD, PSDs of the
decomposed EMD components are used as the input. We’ll
discuss the detail of this processing in the following.

1) EMD OF EEG SIGNALS

EMD [34] is a method for adaptive decomposition of time
series. This method is based on the time scale characteristics
of the received signal itself to decompose the signal without
presetting any basis function. EMD has the following three
advantages. (1) Adaptive time-frequency analysis. EMD
establishes the physical meaning of instantaneous frequency.
Multiple components are obtained through the decomposition
of the signal and the Hilbert spectrum of the original signal
is obtained by Hilbert transformation of these components.
This method defines a set of basis functions with adaptive
decomposition characteristics according to the characteristics
of the original signal so that the method has good adaptive
analysis advantages in practical applications. (2) Local
characterization of the original signal. The method of
deriving the instantaneous frequency of multiple components
reflects the ability of EMD method to describe the local
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characteristics of the original signal accurately. (3) Principal
component analysis. EMD method can separate and extract
the frequency components in the original signal from high to
low to meet signal analysis needs.

EMD decomposes the fluctuations and trends of different
scales in the signal step by step to generate a series of
data sequences with different characteristic scales, and each
sequence is called an IMF. The decomposition can be
expressed as

K
r(n) = > IMF;(n) + Res(n).

i=1

@

where r(n) is the sensed EEG signal, IMF; (n) is the i-th
IMF of decomposition, and Res(n) is the residual component.
By this, any EEG signal can be regarded as the sum of K
different IMFs and a residual component.

In the process of decomposition, IMF must meet the
following two properties. (1) The number of extreme points
of the received signal is equal to or greater or smaller than
the number of zero crossings by one. (2) The average value
of the upper envelope formed by the local maximum and
the lower envelope formed by the local minimum is zero.
The IMFs obtained after EMD decomposition are adaptive,
reflecting the characteristics of multi-scale filtering. Different
IMF components are arranged from high to low frequency
after decomposition. Based on the iterative method, the EMD
first finds out all the extreme points of the signal in the
decomposition process, and uses cubic spline interpolation to
obtain the upper and lower envelope curves, and the mean
value of the local envelope of the signal is defined as the
slow oscillation component. The fast-oscillating component
is selected by subtracting the slow oscillating component.
A set of IMFs with local symmetry in time domain and
definite physical significance in instantaneous frequency are
obtained adaptively. The specific decomposition method of
EMD is as follows [34].

Stepl: Calculate all local extremum points of the sensed
EEG signal r(n).

Step2: Find the upper envelope ry(n) formed by all
maximum points and lower envelope rz(n) formed by all
minimum values.
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FIGURE 2. EMD of EEG signals. (a) EMD of EEG without seizure, (b) EMD of EEG with seizure, (c) PSD of EMD without seizure, and (d) PSD of EMD

with seizure.

Step3: Calculate the mean value of the envelope, rj(n) =
3 ru(m) + re ().

Step4: Let [1(n) = r(n) — ri(n), if I1(n) satisfies the
properties 1) and 2), the first IMF component is obtained,
i.e., IMF{(n) = I1(n). If I;(n) does not satisfy the properties,
return to the first step for iteration until the first IMF
component is obtained.

Step5: ra(n) = ri(n) — IMF 1(n), let r(n) = r>(n), repeat
step 1 until r¢(n) is a monotone signal.

After decomposition, K IMFs and a residual component
can be obtained. Two stopping criteria have been proposed for
EMD decomposition. The first is the relative tolerance which
is defined as

2
|IMF(n)previous — IMF(n)current ”

[IIMF (1) current | 2

When the current relative tolerance is less than sift relative
tolerance, the iteration can be terminated. Because relative
tolerance does not calculate the number of local extrema and
zero crossings, it is possible that the decomposed IMFs do
not satisfy two conditions for the strict decomposition of an
intrinsic mode function. In those cases, reducing the value of
the sift relative tolerance can solve these problems.

The second metric is energy ratio which is the ratio of the
energy of the signal at the beginning of sifting and the average
envelope energy. Energy ratio is defined as

llr(m))? )
[ Res(m)[|? ]
When current energy ratio is greater than the predefined
maximum energy ratio, decomposition can stop.

RelTol £ |

3

EneRat £ 101og,, ( 4)

2) SPECIFIC INPUT FORMATS

As mentioned earlier, the decomposed EMD components and
PSDs of the decomposed EMD components are used as the
input in the proposed EMD-EEG method and the proposed
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EMD-PSD method, respectively. To illustrate this, we apply
EMD to the single-channel EEG samples and the resulting
components are shown in Fig 2. It can be observed from
Fig. 2(a) and Fig. 2(b)) that there are 8 decomposed IMFs.
Obvious difference in the first three IMFs can be observed for
EEGs with and without seizure. We also plot example PSDs
of the decomposed components in Fig. 2(c) and Fig. 2(d).
The logarithm is taken for the sake of illustration. Similarly,
difference in the first three PSDs of IMFs can be observed for
samples with and without seizure.

a: INPUT OF EMD-EEG

In the proposed EMD-EEG, in order to deal with EMD of
EEG with CNN, we splice the IMFs and the residual compo-
nent after EMD compuatation into a matrix MgmMp—EEG as

IMF;(0)  IMF;(1) IMF;(N — 1)
IMF,(0)  IMFy(1) IMFy(N — 1)

: : : (&)
IMFg(0) IMFg(1) IMFg(N — 1)
Res(0) Res(1) Res(N — 1)

This matrix Mgmp-ggG is used as the input of the EMD-
EEG method. Note that in EMD decomposition, the number
of IMFs obtained may be different for different EEG signals.
In order to keep the size of Mgmp-geg fixed for different
signals, we set a maximum number of IMFs Kpy,x. If the
number of IMFs is smaller than K., the corresponding
components are padded with zeros. Thus, the size of
MEgMD-EEG remains unchanged as (Kpmax + 1) X N.

b: INPUT OF EMD-PSD
In the proposed EMD-PSD, the PSDs of the IMFs and the
residual component are computed as
2
N-1

IMF[(n)e_jznkn/N
n=0

PIMF;(k) = zlv (6)
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N—1 2
PRes(k) = — Res(n)e /2 k/N| (7
n=0
wherek =0,1,...,N — 1.

All of the PSDs of the IMFs and the residual component
are spliced into a matrix Mgmp—psp as

PIMF(0) PIMF;(1) PIMF{(N — 1)
PIMF,(0) PIMF,(1) PIMF,(N — 1)

: s : - ®
PIMFg(0) PIMFg(1) PIMFg (N — 1)
PRes(0) PRes(1) PRes(N — 1)

The matrix Mgmp-psp is used as the input of the EMD-PSD
method. Similarly, if the number of IMFs is smaller than
Kmax, the corresponding components are padded with zeros.
Thus, the size of matrix Mgmp-psp is the same as that of
matrix Mgmp-ggG- Therefore, we can adopt the same network
structure to deal with these two kinds of input in the proposed
two methods. Note that for convenience of computation,
we place the first dimension of Mgymp-geG and MEmp-psD in
the channel dimension of the input of CNN.

D. ADOPTED NETWORKS
In the classification tasks based on deep learning, CNN [35]
has proven to be a mainstream and effective network. For
epilepsy detection, various types of CNN networks [22],
[23], [24] have been used and have achieved excellent
performance. A CNN generally includes convolution layer,
activation layer, pooling layer and fully connected layer.
The purpose of convolution layer is to extract features from
the input. The convolution layer is composed of several
convolution kernels, and the weights and bias of each
convolution kernel are optimized in the training process. The
activation layer is used to make a nonlinear mapping of the
output of the convolution layer. The pooling layer is used to
reduce the dimension of the feature maps learned with the
convolution layer by taking the maximum or average value,
thus reducing over-fitting and improving the fault-tolerance
of the model. As for the fully connected layer, each neuron in
it is fully connected with all the neurons in the previous layer.
To verify the performance of the proposed method at
different depth network models, in this paper, we construct
3 CNNs, which are denoted as EsNet, CNNID-4Res
and CNNI1D-5Res. Their specific structures are shown in
Fig. 3(a), Fig. 3(b) and Fig. 3(c). EsNet is a shallow network
model we built, it is mainly composed of 2 two-dimensional
convolution layers, 2 maximum pooling layers and 3 fully
connected layers. In the field of classification based on
deep learning model, to a certain extent, the more layers of
neural network, the more information can be obtained, and
the richer features are, the more conducive to classification.
But in practice, with the deepening of the network, the
optimization effect will decline. He et al. [36] solved this
problem by using the method of skipping or bypassing the
connection, so that the deep learning model can obtain better
classification performance in deeper situations. Similarly,

86588

we design a residual stack structure to deepen the network
in order to achieve better classification performance. The
structure of residual stack is shown in Fig. 3(d). Based on
the designed residual stack, we construct a neural network
model CNN1D-4Res using 4 residual stacks and a network
CNNI1D-5Res using 5 residual stacks, as shown in Fig. 3(b)
and Fig. 3(c) respectively.

E. TRAINING ALGORITHM

The parameters of the CNNs need to be trained with a
training dataset. Cross entropy is used as the loss function
for optimization. It can be represented as

B

2
1
é:—gzz yijlogyi;+ 1—ylj)10g(1—y,])]
i=1

j=1
©)

where B is the mini batch size, y(; ;) is the correct probability
that the i-th sample belonging to class of j, and y;; is the
predicted probability that the i-th sample belonging to the
class of j. At the beginning of training, the hyperparameters
of the neural network are randomly initialized. Then, in the
training process, these parameters are iteratively updated
through the optimization algorithm to make the loss function
continuously reduce. We use time adaptive momentum
optimization algorithm (Adam) [37] for the optimization.

The update process of Adam algorithm is as follows.
Firstly, we define A1 and A, as the parameter attenuation
coefficient, A1, A € [0, 1). The update formulas for the
biased moment estimate m;, and n; are

my <= Ay -mp—1+ (1 — A1) - g, (10)
ne <o -moy +(1—12)- g2, (11)

where g; is the gradient of the time step of Loss. The
bias-corrected moment estimates of m, and n, are

my

m; <— m, (12)
e — (13)
BTN

Therefore, the parameter u; update expression of neural
network can be expressed as

A

(VA +e)

where o is learning rate, ¢ is a very small value. For instance,
-8
o =107°.

Wi < i1 — 0O (14)

IV. RESULTS AND DISCUSSION

A. DATASET

In the following experiments, we use the EEG dataset
published by Andrzejak et al. [38]. This dataset comprises
EEG recordings obtained from a cohort consisting of
5 epilepsy patients and 5 healthy individuals, delineated into
five distinct subsets denoted as F, S, N, Z, and O. Each subset
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FIGURE 3. Specific structures of constructed networks. (a) EsNet, (b) CNN1D-4Res, (c) CNN1D-5R, (d) Residual Stack.

TABLE 1. Simulation parameters.

Parameters Value
Batch Size 32

Optimizer Adam

Learning Rate 0.001
Dropout Rate 0.1
Epochs 50

encompasses 100 EEG signals acquired utilizing a standard
10-20 electrode placement system. The length of each EEG
signal is fixed at 4097. Notably, subsets Z and O constitute
EEG data collected from healthy subjects, distinguishing
between participants with their eyes either open (Z) or closed
(O). Conversely, subsets N, F, and S pertain to patients
diagnosed with epilepsy. Subsets N and F represent EEG
recordings obtained from the hippocampus and the focal area
during epileptic seizures, respectively, while subset S entails
recordings specifically from the focal area during epileptic
seizures. Due to our focus on epileptic seizure detection
in a few-shot scenario, it is used to detect ictal cases to
overcome the lack of detection accuracy caused by the lack of
training samples. Therefore, samples of subset Z and subset
S are selected for experiments, where subset Z represents
the presence of epileptic seizures and subset S represents
the absence of epileptic seizures. There are 100 EEG signal
samples for each category. In the EMD decomposition, we set
the maximum number of IMFs as 10, which means for
each sample, the size of the Mpmp-EeG and MEMD-psp are
11x4097.

B. EXPERIMENTAL SETTING

All of the experiments are conducted in a computer con-
figured with NVIDIA GeForce RTX 2080 and Keras 2.3.1.
The maximum number of epochs is set 50. As we focus on
few-shot scenarios, the mini-batch size is set with a small
number, say 2 in all of the experiments. The initial learning
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rate is set 0.001 for Adam optimization. Piecewise learning
rate strategy is used. Specifically, after every 10 epochs,
we change the learning rate to half of the previous value. The
dropout rate is 0.1. The specific simulation parameter settings
are shown in Table 1.

C. PERFORMANCE METRICS

We use accuracy, sensitivity, and specificity for performance
metrics of seizure detection.

1) ACCURACY
Accuracy is the ratio of the number of samples that correctly
detect epileptic seizures to the total number of samples,
and is used to measure the overall performance of epileptic
seizure detection. The expression for calculating accuracy is
as follows:

TN + TP
TN + TP + FN + FP’
where TP is the true negative indicates correct identification
of seizures, TN is true positive indicates correct identification
of normal activity, FP is false positive indicates that missed
epileptic seizure, i.e. seizure identified as episode of normal
activity, and FN is false negative indicates incorrectly
identification of seizures, i.e. episode of normal activity
identified as seizure. A high accuracy indicates a strong
overall predictive capability of the model.

Accuracy = (15)

2) SENSITIVITY

Sensitivity represents the percentage of a specific detection

out of the total number of accurate and incorrect detections

of disease, that is, among all actual epilepsy patients:
TP

TP+ FN’

Sensitivity focuses on the model’s ability to capture real

epilepsy patients. High sensitivity means the model can

effectively detect patients with epilepsy, reducing the risk of

missed diagnosis.

Sensitivity = (16)
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3) SPECIFICITY
Specificity represents the ratio of accurate detections of
negative values to the total number of true negatives
and misclassified positive detections, i.e. the proportion
of samples that the model successfully predicted as non-
epileptic:
TN

TN + FP’

Specificity focuses on the model’s ability to avoid incorrectly
predicting non-epileptic patients as epileptic patients. High
specificity indicates that the model performs well at exclud-
ing non-epileptic patients, reducing the risk of false positives.

Specificity = a7

D. EXPERIMENTAL RESULTS

In order to verify the superiority of our proposed
epilepsy detection methods, we compare our proposed
EMD-empowered methods with those methods without
EMD. Specifically, we take EEG, EMD-EEG, PSD and
EMD-PSD as the input of the network model to identify
normal EEG signals and epileptic EEG signals. In order
to ensure the universality of our epilepsy detection method
based on EMD enhancement, we use three neural network
models with different depths for simulation. In addition,
in view of the small number of signal samples in the
EEG dataset used, in order to reduce the impact of data
segmentation on the evaluation results, we use different
K-fold cross-validation method for simulation verification,
including 5-fold cross-validation (the training set contains
20 normal samples and 20 epileptic samples, and the
remaining 80 normal EEG signals and 80 epileptic EEG
signals constitute the test set), 10-fold cross-validation (the
training set contains 10 normal samples and 10 epileptic
samples) and 20-fold cross-validation (the training set
contains 5 normal samples and 5 epileptic samples). For a
more comprehensive comparison, we use three indicators
to measure the performance of epilepsy detection methods,
namely accuracy, sensitivity and specificity. For K-fold cross-
validation, we take the average and variance of the three
metrics for each fold to measure the effectiveness and stability
of the method.

1) ILLUSTRATION OF THE TRAINING PROCESS

We check the losses and accuracy of the four algorithms on
the training set and test set in the training stage to verify the
convergence of the model. The dataset is constructed using
5-fold cross validation. Training loss and training accuracy
are shown in Fig. 4(a) and 4(b) respectively. Both training
loss and testing loss of EMD-EEG and EMD-PSD decreases
with increasing epochs. When the number of epoch is greater
than 11, the loss is stably close to 0. The training accuracy and
testing accuracy of EMD-EEG and EMD-PSD both increases
with the increase of the epochs. When the epoch is greater
than 11, both training accuracy and testing accuracy tends
to stabilize. Overall, the EMD-EEG model and EMD-PSD
model are not overfitting and have good performance.
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2) CHOICE OF IMF NUMBER

For our proposed EMD enhancement method, the IMF
number after EMD decomposition has a great impact on the
performance of epilepsy detection. In this regard, we change
the number of IMF components of EMD decomposition by
EMD-PSD method, and test the performance of the model
under different IMF components. We adopt 5-fold cross-
validation, and the results are shown in Table 2. Under
the three network models with different depths, the three
indicators of the network increase first and then decrease
with the increase of the number of IMF components. The
performance of the network model is the best when the
IMF number is 10. Therefore, for the following experiments,
we adopt the IMF component number of 10 for the EMD
enhancement method.

3) PERFORMANCE ON DIFFERENT FOLD CROSS
VALIDATION

We first consider 5-fold cross validation. Results are shown
in Table 3 and Fig. 5. For the shallow network model EsNet,
it can be seen that the three metrics when the input of the
model is the original EEG signal is the lowest. Accuracy,
sensitivity and specificity in this case are 0.9338, 0.9200 and
0.9475, respectively. The three metrics obtained by inputting
the data obtained after EMD decomposition of the original
EEG into the model are 0.9888, 0.9875 and 0.9900, which are
significantly improved by about 5%, 6% and 5%. When the
input data is PSD, the three metrics are 0.9863, 0.9925 and
0.9800, which are higher than the metrics when using the
original EEG signal data as input. Similarly, the three metrics
of EMD decomposition based on PSD are 0.2%, 0.5% and
0.0% higher than these metrics obtained by using PSD as
input. In addition, it can be seen from Table 3 and Fig Sthat the
variance of the EMD-EEG method is less than that of the EEG
input method, and the variance of the EMD-PSD method
is less than that of the PSD input method. These show the
effectiveness and stability of our epilepsy recognition method
based on EMD enhancement.

For the two deeper network models, CNN1D-4Res and
CNNI1D-5Res, as shown in Table 3, Fig. 5. We can draw the
same conclusion as in the case of the EsNet model. Compared
with the original EEG input and PSD input, the three metrics
of the EMD-enhancement methods are improved, while the
variance are reduced thus the stability be improved.

Next, in order to verify the performance of our methods
in the case of less training samples, we also carry out
simulations in the case of 10-fold cross-validation and
20-fold cross-validation. Table 4 and Fig. 6 show the
simulation results obtained by using the net-work models
EasyNet, CNN1D-4Res and CNNI1D-5Res with 10-fold
cross-validation. Table 5 and Fig. 7 are the corresponding
simulation results in the case of 20-fold cross-validation.
These simulation results prove that even in the case of few
training data, the three metrics can be improved by EMD
decomposition, and it is basically more stable.
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TABLE 2. The seizure detection performance of different IMF number with 5-fold cross-validation.

Number of IMF Network Accuracy Sensitivity Specificity
Mean Variance Mean Variance Mean Variance
EsNet 0.9650 0.0267 0.9625 0.0293 0.9675 0.0338
8 CNNI1D-4Res 0.9688 0.0319 0.9775 0.0271 0.9600 0.0479
CNN1D-5Res 0.9825 0.0162 0.9925 0.0168 0.9725 0.0240
EsNet 0.9887 0.0149 0.9875 0.0217 0.9900 0.0105
10 CNNI1D-4Res 0.9900 0.0105 0.9925 0.0068 0.9875 0.0153
CNN1D-5Res 0.9975 0.0056 1.0000 0.0000 0.9950 0.0112
EsNet 0.9837 0.0196 0.9900 0.0105 0.9775 0.0298
12 CNNI1D-4Res 0.9688 0.0147 0.9825 0.0274 0.9550 0.0274
CNNI1D-5Res 0.9863 0.0179 1.0000 0.0000 0.9725 0.0358
TABLE 3. The seizure detection performance with 5-fold cross-validation.
Method Network Accuracy Sensitivity Specificity
Mean Variance Mean Variance Mean Variance
EsNet 0.9338 0.0260 0.9200 0.0505 0.9475 0.0358
EEG CNNI1D-4Res 0.9525 0.0295 0.9450 0.0401 0.9600 0.0224
CNNI1D-5Res 0.9863 0.0209 0.9925 0.0068 0.9800 0.0381
EsNet 0.9888 0.0149 0.9875 0.0217 0.9900 0.0105
EMD-EEG CNNI1D-4Res 0.9900 0.0105 0.9925 0.0068 0.9875 0.0153
CNNI1D-5Res 0.9975 0.0056 1.0000 0.0000 0.9950 0.0112
EsNet 0.9863 0.0149 0.9925 0.0112 0.9800 0.0190
PSD CNNI1D-4Res 0.9913 0.0130 0.9975 0.0056 0.9850 0.0205
CNNI1D-5Res 0.9975 0.0034 1.0000 0.0000 0.9950 0.0068
EsNet 0.9888 0.0052 0.9975 0.0056 0.9800 0.0143
EMD-PSD CNNI1D-4Res 0.9925 0.0081 0.9975 0.0056 0.9875 0.0125
CNNI1D-5Res 0.9988 0.0028 1.0000 0.0000 0.9975 0.0056
TABLE 4. The seizure detection performance with 10-fold cross-validation.
Method Network Accuracy Sensitivity Specificity
Mean Variance Mean Variance Mean Variance
EsNet 0.8594 0.0834 0.8867 0.0995 0.8322 0.0978
EEG CNNI1D-4Res 0.8756 0.1190 0.8711 0.1593 0.8800 0.1192
CNNI1D-5Res 0.9461 0.0528 0.9511 0.0824 0.9411 0.0665
EsNet 0.9583 0.0295 0.9644 0.0412 0.9522 0.0571
EMD-EEG CNNI1D-4Res 0.9783 0.0140 0.9811 0.0235 0.9756 0.0250
CNNI1D-5Res 0.9789 0.0154 0.9867 0.0202 0.9711 0.0263
EsNet 0.9544 0.0304 0.9778 0.0335 0.9311 0.0462
PSD CNNI1D-4Res 0.9722 0.0363 0.9944 0.0079 0.9500 0.0679
CNNI1D-5Res 0.9789 0.0254 0.9933 0.0119 0.9644 0.0510
EsNet 0.9706 0.0291 0.9967 0.0075 0.9444 0.0590
EMD-PSD CNNI1D-4Res 0.9889 0.0131 0.9978 0.0047 0.9800 0.0261
CNNI1D-5Res 0.9917 0.0137 0.9944 0.0141 0.9889 0.0181

Finally, we summarize the average and variance of three
metrics for each fold in all cases, as shown in Fig. 8 and
Fig. 9 respectively. Fig. 8 illustrates that epilepsy detection
accuracy can be improved by EMD decomposition. Under the
same conditions, increasing the number of layers of neural
networks is beneficial to improve the detection accuracy to a
certain extent. In addition, we can see that the method based
on EMD decomposition can effectively reduce performance
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loss when the number of training samples is reduced. For
example, when using the EsNet model, as the number of
samples in the training dataset decreases from 40 to 10,
the three metrics with EEG input decreases from 0.9338,
0.9200, 0.9475 to 0.7061, 0.7258, 0.6863, respectively, with
a reduction of about 23%, 19%, 26%, while the performance
loss of EMD-EEG input is only about 9%, 9%, 12% from
0.9888, 0.9875, 0.9900 to 0.8824, 0.8968, 0.8672. Similarly,

86591



IEEE Access

Y. Pan et al.: Empirical Mode Decomposition for Deep Learning-Based Epileptic Seizure Detection

e EMID-EEG-train e EMD-PSD-train EMD-EEG-test EMD-PSD-test

Loss
o

.
‘A
A
S
1 3 57 9 1113151719 2123 2527 29 31 33 35 37 39 41 43 45 47 49
Epoch

(a) Loss

e EMD-EEG-train e EMD-PSD-train EMD-EEG-test EMD-PSD-test

1
¥

!

0.9

Accuracy
s 2 = =
n x> 4 =

'S

1.3 57 9 1113151719 21 23 2527 29 31 33 35 37 39 41 43 45 47 49
Epoch

(b) Accuracy

FIGURE 4. The loss and accuracy during training process. (a) Loss, (b) Accuracy.
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FIGURE 5. The three metrics of model EsNet with 5-fold cross-validation. (a) Accuracy, (b) Sensitivity, (c) Specificity.

TABLE 5. The seizure detection performance with 20-fold cross-validation.

Method Network Accuracy Sensitivity Specificity
Mean Variance Mean Variance Mean Variance
EsNet 0.7061 0.0859 0.7258 0.1713 0.6863 0.2200
EEG CNNI1D-4Res 0.7695 0.0934 0.7668 0.1725 0.7721 0.1426
CNNI1D-5Res 0.8645 0.1125 0.8589 0.1851 0.8700 0.0940
EsNet 0.8824 0.0843 0.8968 0.0974 0.8679 0.1543
EMD-EEG CNNI1D-4Res 0.8966 0.0718 0.9079 0.0994 0.8853 0.0938
CNNI1D-5Res 0.9089 0.0482 0.9200 0.0803 0.8979 0.0849
EsNet 0.9468 0.0221 0.9858 0.0185 0.9079 0.0454
PSD CNNI1D-4Res 0.9503 0.0316 0.9900 0.0143 0.9105 0.0602
CNNI1D-5Res 0.9532 0.0348 0.9895 0.0145 0.9168 0.0684
EsNet 0.9645 0.0241 0.9937 0.0158 0.9353 0.0450
EMD-PSD CNNI1D-4Res 0.9666 0.0327 0.9932 0.0150 0.9400 0.0592
CNNI1D-5Res 0.9782 0.0249 0.9847 0.0396 0.9716 0.0368
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FIGURE 6. The three metrics of model EsNet with 10-fold cross-validation. (a) Accuracy, (b) Sensitivity, (c) Specificity.

when using the CNN1D-5Res model, the performance loss
of EMD-PSD input is 2%, 1.5%, 2.5% (from 0.9988, 1.0000,
0.9975 to 0.9782, 0.9847, 0.9716), which is less than the
performance loss of PSD input by 4.4%, 1.1%, 7.9% (from
0.9975, 1.0000, 0.9975 to 0.9532, 0.9895, 0.9168). Fig. 9
shows the variance under different conditions. It can be
seen that in most cases, our proposed epileptic classification
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method based on EMD decomposition can enhance the
stability of detection.

4) COMPARISON WITH THE STATE-OF-THE-ART METHODS
We now compare the proposed methods with the state-of-the-

art epileptic seizure detection methods, including CWT-CNN
[20], HE-ARMA-LSTM [26] and Hybrid [21]. CWT-CNN
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TABLE 6. Comparison with the state-of-the-art methods.

Method Few-shot Adequate-sample
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
CWT-CNN [20] 0.8867 0.9500 0.9000 1.0000 1.0000 1.0000
HE-ARMA-LSTM [26] 0.8495 0.8811 0.8178 0.9778 0.9892 0.9570
Hybrid [21] 0.9622 0.9878 0.9367 0.9920 1.0000 0.9890
EMD-EGG 0.9789 0.9867 0.9711 0.9950 1.0000 0.9900
EMD-PSD 0.9917 0.9944 0.9889 1.0000 1.0000 1.0000

uses continuous wavelet transformation of EEG to obtain
two-dimensional frequency-time scalograms, and adopts
convolutional neural network to learn the properties of these
scalograms to seizure detection. HE-ARMA-LSTM uses
EEG to generate autoregressive moving average (ARMA)
features and Hurst exponent, and designs a two-layer LSTM
classifier to seizure detection in EEG signals. Hybrid uses
the mixed input format of EEG, including original EEG,
fourier transform of EEG, STFT of EEG and wavelet
transform of EEG, to construct a feature fusion convolutional
neural network for seizure detection. Both CWT-CNN
and HE-ARMA-LSTM were subjected to 10-fold cross-
validation experiments under a scenario of adequate-sample,
which deviates from the few-shot setting established in
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this paper. In order to provide a comprehensive and fair
comparison, we conduct additional experiments comparing
the performance of all algorithms under scenarios of both
adequate-sample and few-shot. In the adequate-sample
scenario, the entire dataset was divided into 10 equal parts,
with nine parts used as training data in each fold and the
remaining part used as test data. The comparison results are
shown in Table 6.

It can be seen that in adequate-sample scenario, all five
methods demonstrate good performance, with CWT-CNN
and EMD-PSD achieving 1.0000 for three metrics. In few-
shot scenario, the EMD decomposition method has signif-
icant improvement in all three metrics compared with the
existing methods, which are about 6.7%, 12.9%, and 1.8%
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compared with CWT-CNN, HE-ARMA-LSTM, and Hybrid,
respectively. Similarly, PSD-based EMD decomposition also
shows significant improvement compared to EMD decompo-
sition only, with the three metrics improving by 1.2%, 0.7%,
and 1.7%, respectively. These results further demonstrate
the effectiveness of the EMD enhancement based epilepsy
detection method.

V. CONCLUSION

In this paper, we focus on epileptic seizure detection
based on deep learning in few-shot scenarios. We have
proposed two methodologies, EMD-EEG and EMD-PSD,
which leverage EMD alongside deep learning for seizure
detection. We conduct extensive experiments and adopt
multiple performance metrics to evaluate the performance
of our proposed method. Experiments include performance
on different cross-validation and comparison with the state-
of-the-art methods. Performance metrics include accuracy,
sensitivity, and specificity. Results have shown that the
epilepsy detection performance of the EMD-EEG method
is better than that of EEG-based deep learning methods.
Similarly, the EMD-PSD method exhibits superior perfor-
mance compared to direct PSD-based approaches. Moreover,
the EMD-PSD method outperforms existing state-of-the-art
epilepsy detection methods. These results have validated the
advantages of our proposed methods in seizure detection in
few-shot scenarios.

In the future, considering the high computational complex-
ity and high demand of computational resources for deep
learning methods, a lightweight network will be exploited
to improve the efficiency of epilepsy detection in order to
solve the practical deployment problem. Meanwhile, we will
consider applying the proposed method to other medical
fields, such as the diagnosis of schizophrenia (SZ) [39],
autism spectrum disorder (ASD) [40] and attention deficit
hyperactivity disorder (ADHD) [41].
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