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ABSTRACT Building efficient and effective road traffic monitoring systems has become a major challenge
in different countries, mainly due to the rapid growth of the metropolis road network and the booming
of vehicles. Existing traffic monitoring methods are accurate but typically come with inherent limitations,
prompting the exploration of alternative techniques. Integrated sensing and communication (ISAC) offers
an effective approach to traffic monitoring by leveraging the synergy between sensing and communication
to enhance system efficiency and reduce costs. In this paper, we present a particular ISAC use case
tailored for radio-based traffic monitoring. Both traffic density and speed estimations take advantage of
communication functionality, involving the reuse of communication waveforms for the sensing purpose.
In particular, proactive millimeter-wave (mmWave) beam allocation aided by traffic density estimation is
studied to enhance communication coverage of vehicular users in the area of interest for bandwidth-intensive
applications. Specifically, we exploit orthogonal frequency division multiplexing (OFDM) communication
signals of opportunity reflected from targets (vehicles) to efficiently estimate the road traffic density and
speed in a road section. A hybrid scheme combining model-based and data-driven methods is considered
to build efficient estimators that require reduced-size training data and are less computationally complex.
Simulation and comparison results demonstrate that the proposed traffic estimation techniques can accurately
handle a wide range of numbers of vehicles, even with a small-sized dataset. Furthermore, the proactive
beam allocation analysis shows that the quality of service (QoS, in terms of outage probability) of the
communication system is effectively improved.

INDEX TERMS Intelligent transportation system (ITS), traffic estimation, integrated sensing and
communication (ISAC), communication signals of opportunity, Jensen-Shannon (JS) divergence, least-
squares estimation (LSE), proactive mmWave beam allocation.

I. INTRODUCTION
Road traffic monitoring plays an important role in traffic
management within the Intelligent Transportation System
(ITS) [1], [2]. Metrics related to road traffic monitoring
include traffic density (defined as number of vehicles per
mile) and traffic flow average speed. These metrics can
provide valuable insights for proactive traffic management,
optimizing road construction scheduling, and facilitating
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prompt emergency responses [3]. Moreover, they have posi-
tive impacts on the society and environment [4]. For instance,
real-time traffic density and flow speed information could
be employed to provide a real-time route planning service
to guide vehicles to avoid congested roads, thus reducing
driving time, toxic gas emissions, and air pollution [5].
Several traffic monitoring techniques have been designed

and developed over time. Traditional methods primarily rely
on a large number of detectors, such as cameras, ultrasonic
detectors, induction loop detectors, and radar sensors [6],
[7]. Such kinds of systems are accurate but exhibit some
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shortcomings. Sometimes their detection performance is
affected by the environment and bad weather conditions
(e.g., fog, rain, etc.). In addition, these detection/estimation
systems are typically complex and require fixed wired
infrastructure for installation, which limits coverage of
areas and leads to significant deployment time and costs,
especially as the metropolis road networks grow rapidly [8].
Therefore, from both application and research perspectives,
it is necessary to explore alternative techniques for traffic
monitoring, such as radio-based approaches.

Numerous studies have explored traffic monitoring
through vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), or vehicle-to-everything (V2X) communication meth-
ods [9], [10], [11]. These systems rely on connected vehicle
technology to periodically exchange cooperative awareness
messages to share information about traffic conditions.
However, these systems encounter various challenges, such
as short-range, large channel access delay, and huge capital
investment. Moreover, as the use of connected vehicles
becomes widespread, radio resource allocation becomes a
major challenge. Additionally, these systems are vulnerable
to security breaches due to the broadcast and unencrypted
nature of wireless communications [12]. Therefore, there is
a pressing need for cost-effective and scalable radio-based
traffic sensing methods.

Over the past few years, ISAC has been emerging as a
key enabler for future wireless systems to support many
new applications [13], [14], [15], [16]. ISAC refers to a
design paradigm and enabling technologies, in which sensing
and communication systems are integrated to efficiently
utilize congested resources [13] by sharing infrastructure
and spectrum. The integration of functions not only reduces
the overall cost but also leads to higher service quality
due to the synergy between communication and sensing.
Indeed, communication-assisted sensing and sensing-assisted
communication can be achieved synergically in a single
ISAC setup [16], [17], [18]. These features open up new
possibilities, including radio-based road traffic monitoring
for efficient and enhanced road traffic management within
the ITS. One aspect of ISAC is the reuse of communi-
cation waveforms for sensing purposes. For instance, non-
collaborative OFDM signals from illuminators of opportunity
(IoO) can provide an efficient and effective solution to
localize, detect, or track targets. The traffic sensing outcomes
not only contribute to the transportation system but also can
assist the communication system in allocating its resources
proactively and effectively.

Several research works have developed passive radar
sensing techniques by utilizing the signals transmitted from
different kinds of IoOs to detect and localize targets.
In [19], [20], different schemes were proposed for multi-
target localization and speed estimation using OFDM signals
from IoOs. In [21], the authors introduced a technique
for target counting using OFDM signals. In [22], OFDM
signals from a non-collaborative digital video broadcasting-
terrestrial (DVB-T) transmitter were used to detect moving

targets. Also, some researchers developed a road traffic
monitoring system to monitor density and speed using
GSM-based transmitters [23]. Although the aforementioned
systems somehow outperform the traditional traffic mon-
itoring systems in terms of cost and effectiveness, they
impose several challenges that need to be addressed. One
major concern is that these systems can only detect a few
targets [19], [20], [21], [22], [23], preventing them from
estimating the traffic density of massive vehicles on a road
section. Moreover, the idea of searching over the whole
range-Doppler space to estimate the ranges and velocities
of the targets requires both large signal bandwidth (for
range-resolution [24]) and high power, and also incurs high
computational complexity. On the other hand, pure data-
driven traffic estimation techniques (e.g., machine learning)
provide no insight into the physical mechanisms, are less
traceable [25], and often require very large datasets [26].

In this paper, we consider an ISAC scheme in the fifth-
generation (5G) infrastructure to perform traffic monitoring
using 6-GHz band signals of opportunity and incorporate
proactive mmWave beam allocation aided by traffic sensing
for vehicular users demanding high data rate services.
Assume the system is capable of multi-beam forming and
sweeping, possibly in a cloud-radio-access network (C-
RAN) [25], which enables centralized processing for joint
communication and sensing. With such a configuration, mul-
tiple base stations (BSs) can perform (either communication
or sensing) cooperatively. Having information about the
traffic flow speed efficiently aids in route planning, guiding
vehicles to the fastest routes [27], [28]. The traffic monitoring
(sensing) results can be used as the prior knowledge to
enhance communication functionality [29] in addition to its
assistant role in traffic management. Specifically, the vehicle
density information can guide proactive allocation of radio
resources.

Major contributions of this paper are summarized as
follows:

• We propose an efficient and cost-effective traffic density
estimation technique that combines model-based and
data-driven approaches. The technique relies on Jensen-
Shannon (JS)-divergence for classification and least-
squares estimation (LSE) for interpolation, requiring
less labeling and training efforts compared to typical
artificial intelligence (AI)-based techniques like neural
networks.

• A traffic flow average speed estimation method using
level crossing rate (LCR) is introduced to offer more
information about the traffic flow without requiring
additional measurement. This method is extended from
the original LCR-based technique that handles one or
very few number of targets.

• We present a traffic-density-aware proactive beam allo-
cation method for vehicular users demanding high data
rate services in the area of interest, while minimizing
the number of idle mmWave beams given an acceptable
service outage.

VOLUME 12, 2024 84953



W. A. Amiri et al.: Efficient Road Traffic Estimation for Proactive Beam Allocation in an ISAC Setup

TABLE 1. Major notations.

• Comprehensive assessment and comparison are made
based on simulations and analysis. In particular, two
AI-based techniques, namely artificial neural networks
(ANN) and K-means clustering, are considered as
benchmarks in assessing the proposed traffic density
estimation.

Generally speaking, our results suggest that the proposed
scheme can efficiently estimate traffic density without
requiring complex processing or extensive sets of measure-
ment data. When compared to existing radio-based traffic
estimation schemes, our method can handle a large number
of targets by reusing communication waveforms, without
the necessity of complex algorithms. It is worth noting that
classification based on supervised learning usually uses a
relatively large training dataset to teach/tune a classifier
(models) to yield the desired output, while our pre-designed
JS-divergence-based classifier is much more efficient. This
is because it does not have many parameters to tune, and
only needs to estimate a probability density function (PDF)
of the received signal, without requiring a significantly large
training data set.

Major notations used in the coming sections are given
in Table 1. The rest of this paper is organized as follows.
Section II presents related work. The system model is
presented in Section III. The proposed schemes are described

in Section IV. Quantitative assessment and comparison
results are discussed in Section V, followed by conclusions
in Section VI.

II. RELATED WORK
This section presents an overview of related research works
that consider traffic density and flow speed estimation.

A. TRAFFIC DENSITY ESTIMATION
Extensive research on traffic density estimation systems
has been conducted, and they can be categorized into four
groups: 1) ground-sensor-based, 2) aerial-sensor-based, 3)
connected-vehicle-based, and 4) data-driven approach.

1) GROUND-SENSOR-BASED SYSTEMS
Such systems commonly employ a large number of wireless
sensors to collect road network information accurately [1],
[30], [31], [32]. These sensors can be installed in various
ways, either on the road surface or on the side of the
road. Typical road surface sensors include inductive loops,
magnetic detectors, and other weigh-in-motion devices.
A notable example is the freeway performance measurement
system (PeMS), which is employed by the California depart-
ment of transportation (Caltrans). PeMS relies on real-time
measurement data [33] gathered from inductive loops. The
primary drawback of road surface sensors is the installation
cost including sensors and supporting infrastructure, as these
sensors are typically installed beneath the road surface.
Furthermore, the cost of such a system increases if more lanes
or new road sections need to be monitored. Other types of
sensors installed on the sides of the road include cameras,
microwave radars, and passive infrared sensors. While these
sensors find widespread use, it is important to point out that
their deployment and maintenance costs tend to be relatively
high, and their performance can be susceptible to adverse
weather conditions, as discussed in [32].

2) AERIAL-SENSOR-BASED SYSTEMS
These systems typically utilize unmanned aerial vehicles
(UAVs) for road trafficmonitoring [34]. Cameras mounted on
UAVs perform traffic detection, making these systems cost-
effective due to their mobility and large geographic coverage.
Consequently, they are well-suitable for fast data collection,
but require complex post-processing algorithms to analyze
images and video frames for traffic detection, as proposed in
[6] and [35].

3) CONNECTED-VEHICLE-BASED SYSTEMS
These systems are usually in the vehicular ad-hoc network
(VANET) framework, where vehicles and traffic infrastruc-
ture periodically exchange data through V2V, V2I, or V2X
communication links. For instance, in [8], the authors
proposed a reliable method for estimating traffic density
by combining vehicle spacing information collected from
a vehicular network and calculating the average spacing
between vehicles in a specific area. While this technique
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offers good estimation accuracy, its implementation requires
a substantial deployment of roadside units (RSUs), resulting
in high costs. Certainly, thewidespread adoption of connected
vehicle technology can result in resource congestion. Also,
these systems are vulnerable to security and privacy breaches
due to the use of broadcast messages for exchanging
information about traffic conditions.

4) DATA-DRIVEN APPROACH
In general, the implementation of the estimation methods
mentioned above often incurs substantial installation efforts
and high communication costs. Recent advances in wireless
technology have introduced data-driven sensing techniques
for traffic monitoring. Tulay and Koksal [36] proposed
a passive traffic sensing scheme using dedicated short-
range communications signals transmitted from an RSU,
where ‘‘passive’’ refers to making use of radio signals
designated for other purposes. The scheme employs radio
signal fingerprinting and machine learning for traffic density
estimation. Furthermore, in their subsequent work [37], they
introduced a traffic density estimation approach based on
channel state information derived from signals transmitted
by a transmitter on the RSU or a vehicle. This method also
relies onmachine learning and incorporates classification and
regression algorithms to estimate the number of vehicles.
However, the schemes presented in [36] and [37] can suffer
from outages due to environmental changes and require a
large dataset for accurate classification.

B. TRAFFIC FLOW SPEED ESTIMATION
Flow speed estimation can be divided into three categories:
1) future flow speed estimation (actually, prediction), 2) ded-
icated estimation, and 3) wireless-signal-based estimation.

1) FUTURE FLOW SPEED ESTIMATION
These systems predict traffic flow for either a short or
long period in the future. They rely on various time series
models, such as historic average models [38], Bayesian
network models [39], hidden Markov model [40], or the
auto-regressive integrated moving average (ARMA) [41].
They operate under strict assumptions and conditions for
prediction: there is clear awareness of the current traffic
and complete historical speed measurements. Implementing
such techniques can be challenging in the cases of limited
measurements.

2) DEDICATED FLOW SPEED ESTIMATION
These systems offer traffic flow speed estimation with less
required data compared to the prediction methods discussed
above. Some of these approaches, as demonstrated in [42],
leverage data collected from traffic sensors and employ
the K-nearest neighbor method to infer real-time traffic
speed. Other studies, such as [43], utilize videos collected
from UAVs with an ensemble classifier (Haar cascade &
convolutional neural network). Moreover, the scheme in [4],
utilizes crowdsourcing vehicles that provide their real-time
GPS records for speed estimation over a large region, and

they employ a graph convolutional generative autoencoder for
real-time speed estimation. Although these methods provide
accurate estimation, they either require complex and high-
cost system implementation [42], are negatively affected by
bad weather conditions [43], or rely on connected vehicle
technology [4].

3) WIRELESS-SIGNAL-BASED ESTIMATION
There are some works that explore the use of wireless signals
for estimating the speed of a single mobile (vehicular) user,
which could potentially be adapted for speed estimation
for multiple mobile users. In [44], the authors presented
an online algorithm for user equipment (UE) speed esti-
mation in long term evolution-advanced (LTE-A) networks,
using time-based spectrum spreading method (TSSM). The
proposed method utilizes uplink LTE sounding reference
signal (SRS) measurements conducted at the LTE base
station. Specifically, the TSSM is employed as a metric
for speed dependent time variations of the shadowing in
the SRS measurements. A reference curve or lookup table
(LUT, database) with respect to the shadowing decorrelation
distance is created in advance. The computed values of the
metric are then compared with the reference to determine
a speed estimate. While this approach demonstrates good
accuracy, it necessitates a huge database to attain the reported
level of precision.

III. SYSTEM MODEL
A. SYSTEM ARCHITECTURE
We consider a system setup illustrated in Fig. 1 with
two BSs and a number of vehicles on a multi-lane road
section between the two BSs. The system supports dual-
band communication at mmWave band (e.g., 28 GHz, for
bandwidth intensive services) and frequency division duplex
(FDD) mid-band 5G (e.g., 6 GHz band). At the same time,
the lower frequency band is used for traffic sensing in a
fashion of bistatic radar using the communication signals of
opportunity. The system performs dual-band communication
and traffic sensing simultaneously. In the sensing mode, one
BS (the left one in Fig. 1) serves as the IoO transmitting
OFDM signals with radio beamwidth angle 30◦ (equivalent
to a coverage of one mile of the road section), and another
BS equipped with a dedicated receiver captures the signals
reflected from vehicles. We assume the sensing receiver
is able to significantly reduce the impact of the direct-
path component (from the transmitter to the receiver) using
some techniques such as directional antenna, antenna array
with nulling, or cancellation algorithm. Of course, more
BSs can be employed, and the effectively illuminated area
depends on how the system is geographically deployed and
the beamwidths of the transmit and receive antennas. For
mmWave communication, the mmWave transceivers can be
mounted on one or both BSs. The traffic estimation results
can be used for resource allocation tasks, such as downlink
mmWave beam allocation (assuming one beam per vehicular
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FIGURE 1. System setup of the proposed schemes considering a multi-lane scenario with clutter objects.

user on the serviced road section). In addition, we assume
certain system features, such as mmWave beamforming and
beam sweeping, are available.

B. SIGNAL MODEL
Consider a transmitted OFDM signal consists of Ns OFDM
symbols and Nc subcarriers. Such a signal at sample time t
can be represented in baseband as follows:

x(t) =

Ns−1∑
m=0

Nc−1∑
κ=0

Xκ,m e−j2πκ1f (t−mTs) ·
√
g(t) , (1)

where t is a time index, Xκ,m is the communication data
symbol modulated on the κth subcarrier and mth OFDM
transmit symbol, where κ = 0, 1, . . . ,Nc − 1, and m =

0, 1, . . . ,Ns−1,1f is the subcarrier spacing between OFDM
symbols, Ts is the length of an OFDM symbol, g(t) is the
impulse response of the raised cosine shaping filter [24].
Then, the transmitted passband OFDM signal can be

expressed as:

x̃(t) = Re
{
x(t) ej2π fct

}
, (2)

where fc is the carrier frequency.
Assume the number of vehicles is Nv in the illuminated

road section, where all vehicles can be considered as targets.
Each target has a radar cross section (RCS) σv and an average
speed sv mph, v = 0, · · · ,Nv − 1. In addition, there are Nl
clutter objects that are not of interest, each of which has an
RCS of σl , l = 0, · · · ,Nl − 1. The transmitted signal is
reflected from both vehicles and clutter objects, leading to
the radio frequency (RF) passband received signal:

y(t) =

Nv−1∑
v=0

Ns−1∑
m=0

Nc−1∑
κ=0

ξv Xκ,m ej2π fc(t−τv)

· e−j2πκ1f (t−mTs−τv)

+

Nl−1∑
l=0

Ns−1∑
m=0

Nc−1∑
κ=0

ξl Xκ,m ej2π fc(t−τl )

· e−j2πκ1f (t−mTs−τl ) + n(t) , (3)

where ξv and ξl represent the whole-path attenuation factors
accounting for the propagation losses and RCSs (σv’s and
σl’s) of the targets and clutter objects, respectively; τv and
τl are the propagation delays corresponding to the targets
and clutter objects, respectively; and n(t) is the additive band
limited Gaussian noise. (3) will be used to form a sensing
channel in the simulation, where the propagation model for
each path takes into account the total path loss and RCS,
in the sameway as used in ray-tracing-based simulations [36],
[37]. Strictly speaking, ξv, ξl , τv and τl are time-varying
random variables depending on the RCS and location of a
vehicle. Because the received signal is a superposition of
many random components, (3) is comparable to a fading
channel model with many propagation paths, such as the
Jakes and Cox model [45]. Indeed, observed from our
simulation results, the received signal y(t) does exhibit some
fading behavior.

IV. PROPOSED SOLUTION AND ANALYSIS
In this section, we present our road traffic density and flow
speed estimation schemes followed by the proactive beam
allocation.

A. ROAD TRAFFIC DENSITY ESTIMATION
Different from traditional data-driven approaches, we do
not use the received data directly to infer traffic density.
Instead, aiming at the use of a smaller dataset and low
computation complexity, we consider a hybrid approach
involving both model-based and data-driven methods along
with JS-divergence [46] used as an intermediate variable,
where the JS-divergence is a distance measure between
two probability density distributions, hence providing a
way to compare the statistical characteristics. Two density
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FIGURE 2. Architecture of proposed weighted-centroid-based traffic
density estimator.

estimators, the weighted-centroid estimator and the optimal
estimator, are proposed in this paper. The weighted-centroid
density estimation is performed in four steps: 1) forming
probability density function (PDF) templates of training
classes based on the amplitude of the raw data received
previously, 2) calculating current PDF based on just-received
data (testing class) that corresponds to an unknown density
to be estimated, 3) computing JS-divergence between the
PDF templates of the training classes and current PDF
of the testing class, and 4) estimating density based on
weighted-centroid technique along with bias correction,
using JS-divergence values as the weights. Fig. 2 shows a
conceptual architecture of the proposed weighted-centroid-
based traffic density estimator withM (> 1) parallel branches
corresponding to the predefined M density levels. The
optimal estimator contains four steps as well. The first three
steps are similar to the weighted-centroid estimator, but
the fourth step is to perform LSE utilizing the obtained
JS-divergence values.

The proposed traffic density estimators do require labeled
datasets. It is possible to obtain them by conducting a
non-coordinated experiment without interrupting a normal
transportation system. In the non-coordinated experiment,
two raw data time series, i.e., the baseband I/Q sample
streams and the vehicle-count sample stream, are generated
and stored simultaneously over a sufficiently long time. Each
vehicle count sample can be obtained based on an image
snapshot of the road section, and it serves as the label of a
segment of data samples. Then, the data sections with labels
that fall in the required bins corresponding to the predefined
density levels or classes (specific values of Nv) are selected
as the templates for PDF estimation. Practical data collection
and labeling are out scope of this paper.

In the first step, corresponding to M predefined training
density classes, experiments are conducted to generate a
dataset of M measurements {yj[n], n = 1, 2, 3, · · · ,N
and j = 1, 2, 3, · · · ,M}, for training purposes. Here,
N represents the number of data points for each class.
We calculate the PDF templates using Kernel density
estimation (KDE) [47]. N bins are employed in KDE, and
the PDF estimated formula is as follows:

Qj(x) =
1
Nh

N∑
n=1

K
(
x − |yj[n]|

h

)
, (4)

whereK is a non-negative kernel function (e.g., normal) and h
is a smoothing factor. (4) is used to generateM PDF templates
of the training classes: Q1(x),Q2(x),Q3(x), . . . ,QM (x).
Similarly, with measurement data {y[n], n = 1, 2, 3, · · · ,N },
we can obtain ameasured PDFP(x) of a testing class in step 2.
This testing class corresponds to data from an unknown
number of vehicles.

Note that the JS-divergence is a smoothed version of the
KL-divergence, and it is preferred since it is bounded

(
0 ≤

JS( ) ≤ 1
)
no matter what density Nv is, and symmetric so

that the distance is independent of the order of the two PDFs
under test.

In the third step, the JS-divergence between P(x) andQj(x)
is calculated as follows:

JS
(
P(x)||Qj(x)

)
=

1
2
KL

(
P(x)||Gj(x)

)
+

1
2
KL

(
Qj(x)||Gj(x)

)
, (5)

where Gj(x) = (1/2)
(
P(x) + Qj(x)

)
, and KL( ) is the

Kullback-Leibler (KL) divergence given by

KL
(
P(x)||Gj(x)

)
=

∑
x

P(x) log2
P(x)
Gj(x)

, (6)

KL
(
Qj(x)||Gj(x)

)
=

∑
x

Qj(x) log2
Qj(x)
Gj(x)

. (7)

With M JS-divergence values obtained in the third step,
two types of estimators are explained as follows.

1) WEIGHTED-CENTROID ESTIMATOR
The weighted-centroid-based traffic density estimate is given
by

N̂v =

∑M
j=1 N

(j)
v JS

(
P(x)∥Qj(x)

)∑M
j=1 JS

(
P(x)∥Qj(x)

) − B̂(Nv), (8)

where N (j)
v is the actual number of vehicles associated with

the jth PDF template, and B̂(Nv) is an estimate of the bias
between the actual and estimated vehicle densities. Note that
pure weighted-centroid technique with JS-divergences as its
weights does not guarantee unbiased estimation. Indeed, the
bias is not zero according to some test results, and both
noise and clutter should have impacts on the bias. An error
correction process can be used to improve the estimation if
the error estimate B̂(Nv) is available. Practically, the bias for
a given clutter condition can be calibrated based on a set of S
measurements N̂v,s:

B̂(Nv) =
1
S

S∑
s=1

(N̂v,s − Nv) . (9)

2) OPTIMAL ESTIMATOR
Define vectors η, ζ , and ζ j:

η =

(
N (1)
v ,N (2)

v , · · · ,N (M )
v

)T
, (10)
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ζ =

(
JS

(
P(x)∥Q1(x)

)∑M
j=1 JS

(
P(x)∥Qj(x)

) ,

· · · ,
JS

(
P(x)∥QM (x)

)∑M
j=1 JS

(
P(x)∥Qj(x)

))T

, (11)

ζ i =

(
JS

(
Qi(x)∥Q1(x)

)∑M
j=1 JS

(
Qi(x)∥Qj(x)

) ,

· · · ,
JS

(
Qi(x)∥QM (x)

)∑M
j=1 JS

(
Qi(x)∥Qj(x)

))T

,

i = 1, 2, 3,M . (12)

where (12) can be obtained by replacing P(x) in (11) with
known PDF Qi(x), i = 1, 2, 3,M . Form a matrix that is a
stack ofM JS-divergence vectors:

Z =

 ζ T1
...

ζ TM


M×M

. (13)

Then, consider a linear model

Nv = ζ Tω, N (i)
v = ζ Ti ω, i = 1, 2, 3, · · · ,M , (14)

where ω is an unknown M × 1 weighting vector to be
determined. Of course, a specific value of ω cannot perfectly
satisfy all individual equations; instead, we need to find
a weighting vector ω∗ that is optimal overall. Note that
N (i)
v = ζ Ti ω, i = 1, 2, 3, · · · ,M , in (14) can be rewritten

in a compact form:

Zω = η, (15)

which leads to the LSE solution:

ω∗
=

(
ZZT

)−1
Zη, (16)

and the optimal estimate is given by:

N̂v = ζ Tω∗ . (17)

Note that only a limited number of templates Qj(x) are
employed for training, but this does not prevent the estimator
from handling a wide range of density levels.

B. TRAFFIC FLOW AVERAGE SPEED ESTIMATION
For the purpose of traffic management, we care about the
traffic flow speed as a whole, instead of individual vehicle
speed. Some existingwork based on level crossing rate (LCR)
[48] can be borrowed and extended for this purpose. The
LCR of the envelope of post-processed received signal y(t)
is defined as the number of cross counts per second, where
each count corresponds to an event that the envelope level
down-crosses a certain threshold Ath. The LCR expression
in Rayleigh fading channels has been derived in [49] and is
expressed as:

Nρ
LCR =

√
2π ρ e−ρ2 sv

λc
, (18)

FIGURE 3. Traffic flow average speed estimator of multiple targets
(vehicles).

where λc is the carrier wavelength and ρ is the ratio of the
threshold level Ath to the root mean square level YRMS of the
envelope of y(t), which can be given as follows:

Ath = ρ YRMS . (19)

For a single target, given the LCR value Nρ
LCR from the

received signal envelope, the estimated vehicle speed sv can
be obtained as:

sv =
e λc
√
2π

Nρ
LCR . (20)

Note that the value of ρ is used to control the threshold level
at which the signal crosses. In many cases, ρ = 1 is chosen,
representing a straightforward and common scenario where
the signal level crosses a fixed threshold.

Inspired by what is described above, we consider a traffic
flow speed estimator as illustrated in Fig. 3, where the low
pass filter is to reduce the noise impact. The key idea is
to correct the errors made by the pure LCR-based speed
estimator originally designed for the single-vehicle case.
As validated by simulation, the error can be regarded as
a function 1sv = f (σn,Nv,NLCR). Practically, 1sv =

f (σn,Nv,NLCR) can be implemented as a lookup table (LUT)
approximated using experiment.

C. PROACTIVE BEAM ALLOCATION
In this application, we make use of our proposed traffic
density estimation scheme to enhance the QoS of vehicular
user communication. Specifically, we propose a proactive
beam allocation technique that enables the BS to allocate
antenna modules and mmWave beams based on the estimated
number of vehicles. With proactive beam allocation, beam
resources can be assigned to required vehicular users quickly.
For comparison, we also consider fixed reservation as a
benchmark. Note that beam alignment is out of scope of this
paper and it can be done based on the location information of
each vehicle, which can be obtained with the use of available
positioning technologies during the requests process.

Assume vehicular users request radio beams for data
communication, and the service requests follow the Poisson
arrival model [50]. Consider a Poisson process with a mean
arrival rate λ = α · τ , where α is the number of packets
transmitted in the time interval τ , and λ > 0. Then, the
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success probability of the BS to serve the vehicles using NB
mmWave beams can be expressed as:

Psuc(NB|Nv, λ) =

∑
r≤NB

(Nvλ)r e−Nvλ

r !
, (21)

where r is the number of requests per vehicle. Note that to
achieve successful communication for the active vehicles, the
beam assignment should satisfy the constraint r ≤ NB. If the
probability that r exceeds the number of beams NB, this is
known as the outage probability, which can be represented
as:

Pout (NB|Nv, λ) =

∑
r>NB

(Nvλ)r e−Nvλ

r !
, (22)

Two beam allocation schemes are considered in this paper.
Let us start with the fixed beam allocation scheme. In this
scenario, a fixed number of beamsNB is allocated to serve the
vehicles, where NB can be chosen based on historical traffic
data and it should not exceed the maximum number of beams
Nmax that BS can support. The outage probability P̄out can be
expressed as:

P̄out (λ) =

∑
Nv

p(Nv)Pout (NB|Nv, λ) , (23)

and the mean number of idle (not used) beams L̄ is given by:

L̄(λ) =

∑
Nv

p(Nv)
∑
r≤NB

(Nvλ)r e−Nvλ

r !
· (NB − r) . (24)

Note that the fixed beam allocation scenario does not
provide flexibility and imposes coverage problems when the
number of vehicles is greater than the number of allocated
beams. Therefore, we propose a proactive beam allocation,
which alleviates the problems of the fixed beam allocation.

For the proactive beam allocation, we introduce a control
function a(Nv + ϵ) = a(N̂v) that is a predefined offset
function (or lookup table) for adjusting the reservation level
as Nv changes, where ϵ = N̂v − Nv is the estimation
error. Practically, there must be a ceiling Nmax for resource
availability. The number of allocated beams can be expressed
as

Nalo =round
(
min

(
Nmax , N̂vλ + a(N̂v)

))
= round

(
min

(
Nmax , (Nv + ϵ)λ + a(Nv + ϵ)

))
,

(25)

where round( ) is the round function. The corresponding
conditional outage probability (conditioned on Nv and a) is
as follows:

Pout (Nv, a, λ) =

∑
ϵ

q(ϵ|Nv) Pout
(
Nalo|Nv, λ

)
, (26)

where q(ϵ|Nv) is a conditional distribution of estimation
errors, and Pout

(
Nalo|Nv, λ

)
can be calculated using (22) but

replacing NB with Nalo. Then, we have the outage probability
of the proactive scheme:

Pout (a, λ) =

∑
Nv

p(Nv) Pout (Nv, a, λ) . (27)

Another important parameter is the mean number of idle
beams (conditioned on Nv and a) that can be expressed as:

L(Nv, a, λ) =

∑
ϵ

q(ϵ|Nv)
∑
r≤Nalo

(Nvλ)r e−Nvλ

r !

· (Nalo − r) , (28)

and, the mean number of idle beams is:

L(a, λ) =

∑
Nv

p(Nv) L(Nv, a, λ) . (29)

Finally, the optimal beam allocation is to find the optimal
control function given by

a∗(N̂v, λ) = argmin
a

L(a, λ)

s.t. Pout (a, λ) ≤ b (30)

where b is a pre-selected threshold representing themaximum
tolerance of outage probability. It needs to be pointed out
that in practice a∗(N̂v, λ) is not easily obtainable and may be
replaced by a suboptimal function.

V. QUANTITATIVE ASSESSMENT AND COMPARISON
A. SIMULATION SETUP
In our simulations, we evaluate traffic density estima-
tion, flow speed estimation, and proactive beam allocation
performances, assuming a geometrical-based single-bounce
channel model and known path loss. The IoO is located
at (−700, −50) m and a receive BS located at (2500, 40)
m. In the sensing mode, the IoO and the receive BS
beamwidths intersect to cover a road section of one mile
length.We consider the transmitted signal as an OFDM signal
withNc = 1024 subcarriers and a mid-band carrier frequency
fc = 6.8 GHz. For pulse shaping, a root-raised-cosine filter
with a roll-off factor of 0.25 is utilized.

At the sensing receiver side, assume the received signals
are reflected from vehicles with RCSs σv following the
uniform distribution U ∼ [1, 11] based on the experiments
reported in [51]. The vehicles’ average speed is sv =

60 mph, and the separation distance between vehicles is
a random number between [10 − 20] m. Note that the
distribution of the vehicles on the lanes follows a uniform
distribution with consideration of the specified separation
constraint. The received signal y(t) is divided into chunks,
each chunk includes N = 41374 I/Q samples mixed
with noise such that the signal-to-noise ratio (SNR) is
2.7 dB. Four PDF templates for Nv ∈ {2, 20, 50, 100} are
considered for density estimation, and they are formed based
on synthetic datasets generated using simulation. We call
these density classes {2, 20, 50, 100} used for training as
training classes. In performance evaluation, we use testing
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TABLE 2. Setting of major simulation parameters.

datasets corresponding to some classes (e.g., 35) that may
not belong to the training classes, and we call these classes
testing classes. The same terminologies are used for speed
estimation.

For proactive beam allocation, the mmWave beams operate
at fc = 28 GHz. For the comparison purpose, two additional
schemes, i.e., fixed reservation and unlimited reservation,
are considered as benchmarks. A semi-analytical approach,
a mix of Monte Carlo simulation and analysis, is adopted to
generate the allocation performance results.

Simulations are implemented on MATLAB R2020a run-
ning on a Windows 10 PC with an Intel Core i7 processor
operating at 3.6 GHz and 16 GB RAM. The major simulation
parameters used in the system evaluation of this paper are
summarized in Table 2.

B. ERROR PERFORMANCE OF PROPOSED TRAFFIC
DENSITY ESTIMATION
We initially assess the performance of the weighted-centroid-
based estimator, followed by the evaluation of the LSE
method.

Single-lane, two-lane, and three-lane scenarios are tested
using simulation, and it is found they lead to very similar
statistics. Fig. 4 shows the estimated PDF of the received
signals for different numbers of vehicles considering the two-
lane scenario, suggesting that the PDF is close to Gaussian
and the standard deviation of the received signal increases
as the number of vehicles increases. Similar behavior is
observed in both single-lane and three-lane scenarios.

The four JS-divergence values for a ground true of
35 vehicles are given in Table 3. First of all, one can see
that the divergence values at each column are very close at
different number of lanes. In other words, the divergence
values are somehow independent of the number of lanes.
For the ground true of 35 vehicles, the weighted-centroid
estimator leads to an estimate N̂v = 37.8 for single-lane
scenario, N̂v = 38 for two-lane scenario, and N̂v = 38.1 for
three-lane scenario, which are close to the true number
Nv = 35. Following that, we study the effect of clutter
on the PDF templates estimation and weighted-centroid
traffic density estimator. For the PDF templates estimation,
we found that adding clutter objects does affect the PDF
templates estimation, especially when there is a small number
of vehicles (Nv = 2), as shown in Fig. 4 (b). Specifically,

FIGURE 4. Estimated PDF of the received signal at different numbers of
targets (two-lane scenario).

TABLE 3. JS-divergences (averaged over several trials) between the PDF
templates of training classes and a PDF of testing class (35 vehicles)
under no-clutter condition.

for the PDF template generated from (Nv = 2), its peak
value was 0.75 with no clutter (see Fig. 4 (a)), and it was
reduced to 0.35 when considering clutter (see Fig. 4 (b)).
However, other PDF templates with a greater number of
targets (Nv = 20, 50, 100) maintained the same values in
both scenarios (clutter and no clutter). For traffic density
estimation using the weighted-centroid method, the accuracy
of the estimator does not change significantly; there is a slight
offset of 15%. Specifically, the estimated number of vehicles
increased to 43 in the presence of clutter, compared to 38 with
no clutter.

Furthermore, we test the optimal traffic density estimation
using JS-divergence and LSE method. The estimator yields
estimates of N̂v = 35.6, N̂v = 35.7, and N̂v = 38.4 for
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FIGURE 5. Average relative estimation errors over Nv .

the single-lane scenario, two-lane scenario with no clutter,
and two-lane scenario with clutter, respectively. For three-
lane scenario, the estimates were N̂v = 35.7 without clutter
and N̂v = 38.8 with clutter. Note that the clutter leads to a
slight offset in the estimation similar to the weighted-centroid
estimator.

Generally speaking, both estimators’ performance remains
consistent, whether considering a single-lane or two-lane
scenario, and the estimation results in both scenarios closely
align with each other. Additionally, the clutter does not
degrade the performance of the estimators. Therefore, for
performance evaluation, we consider a two-lane scenariowith
no clutter.

The estimation performance of both estimators is evaluated
in mean square error (MSE) conditioned on the number of
vehiclesNv. Specifically, the total absolute and relativeMSEs
conditioned on Nv can be calculated as follows:

EAbs(S|Nv) =

∑
ϵ∈S

ϵ q(ϵ|Nv) , (31)

ERel(S|Nv) =
EAbs(S|Nv)

Nv
, (32)

where error set S refers to ‘‘all’’ (i.e., all possible values for
error ϵ), ‘‘−ve’’ error (ϵ < 0), or ‘‘+ve’’ error (ϵ > 0).
If the PDF ofNv, p(Nv), is known, then we have unconditional
MSEs:

ĒAbs(S) =

∑
N ′
v

p(N ′
v)EAbs(S|N ′

v) , (33)

ĒRel(S) =
EAbs(S)
Nv

. (34)

Note that we denote the optimal values of EAbs(S|Nv),

ERel(S|Nv), ĒAbs(S), ĒRel(S) as E∗

Abs(S|Nv)
, E∗

Rel(S|Nv)
, Ē∗

Abs(S),

Ē∗
Rel(S) which are corresponding to MSE obtained from the

LSE method.
Fig. 5 shows the estimation errors conditioned on Nv for

both weighted-centroid and the LSEmethod, where only four
(M = 4) PDF templates are utilized for training, while the
testing is conducted across {Nv = 10, 20, · · · , 80}. The LSE

FIGURE 6. Standard deviation of estimation errors over Nv .

method exhibits lower average estimation error in all cases
compared to the weighted-centroid. Additionally, in the LSE,
a slight bias is present, attributed to differences in the statistics
between the training and testing datasets. However, it is clear
that the weighted-centroid is a biased estimator, where the
negative relative error ĒRel(−) is smaller compared to the
positive relative errors ĒRel(+), suggesting that the estimator
most likely outputs a number N̂v greater than the true number
Nv. This biased estimation tends to request slightly more
mmWave beam allocation to reduce the outage probability.
Note that the estimation bias B(Nv) is not zero and we may
intentionally leave it as is for the weighted-centroid.

Fig. 6 illustrates the standard deviation (std) of estimation
errors of both estimators, with the LSE method exhibiting
a lower standard deviation in comparison to the weighted-
centroid.

C. COMPARATIVE ASSESSMENT OF TRAFFIC DENSITY
ESTIMATION
In this subsection, we conduct a thorough assessment by
comparing our proposed scheme with two distinct AI-based
traffic density estimators, followed by a comparison with
existing traffic density estimation schemes. Three estimation
schemes are considered for comparison, and each scheme
consists of two phases. Phase-1 is to measure distances
between a set of predefined density levels (classes) and
current density using some distance metric, while phase-2
estimates current density via some interpolation technique
based on the distances obtained in phase-1.

In the AI-based approaches, the first method (see Fig. 7)
combines artificial neural networks (ANN) and linear regres-
sion, while the second method employs K-means clustering
in combination with linear regression. Note that linear
regression is comparable to LSE.

1) C-1: SETUP OF MACHINE-LEARNING-BASED
BENCHMARK DENSITY ESTIMATORS
For the ANN with linear regression, the ANN is used
as a feature extractor before applying linear regression.
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FIGURE 7. The structure of the implemented ANN used for comparison (w : weight, b : bias, and AF : activation function).

Specifically, in our study, the ANN is trained on four classes,
each corresponding to the signals reflected from a known
number of targets Nv ∈ {2, 20, 50, 100}. This training allows
the ANN to capture complex patterns and relationships within
the data. The output of the ANN serves as the input or features
for the linear regression model. Then, linear regression is
performed to fit (train) a linear model with the extracted
feature data for estimating (inferring) an unknown number
of cars (here Nv = 35 is used for testing) with a test
dataset. Fig. 7 shows the structure of the implemented ANN.
It includes 1 input layer, 3 hidden layers, and 1 output layer.
15, 5, and 1 neurons are contained at the first, second, and
third hidden layers, respectively. The activation functions
employed are as follows: AF1 and AF2 are both Sigmoid
functions, while AF3 is a linear regression function. T
For the K-means clustering-based density estimator, four

(K = 4) clusters corresponding to the four levels of target
densities Nv ∈ {2, 20, 50, 100} are established as references
using the training dataset. After that, we generate a testing
cluster using a test dataset with Nv = 35 targets, and
calculate the distance between the test cluster and the four
pre-trained reference clusters. Note that the distance between
any two clusters is defined as the distance between their
centroid points. Finally, we apply linear regression to find the
estimated number of cars.

2) C-2: COMPLEXITY ANALYSIS
Asymptotic Big O complexity analysis of the three density
estimators is provided in the following, assuming N is the
number of training samples andM is the number of classes.

For the ANN model-based estimator, the time complexity
isO(N 2M2), primarily due to the algorithm’s training phase,
which requires the most computational resources. The space
complexity is determined by the amount of memory required
for the algorithm to store the neural network parameters
which is equal to O(N 2M2). Specifically, the algorithm
needs to store neural network parameters, test data, and
training data [52].
For estimation with K-means clustering, the time com-

plexity of various operations is as follows: feature extraction
takes O(NM), splitting the data into training and testing
sets requires O(M), clustering the training data using K-
means consumes O(NMk), feature extraction of the testing
signal is O(M), calculating the average distance from the
new signal to each cluster center takes O(kM). Then, the
overall time complexity is O(NMk). The space complexity

TABLE 4. Comparison between the proposed traffic density estimation
scheme and two benchmark AI-based approaches we implemented for
comparison purpose.

for K-means clustering is determined by several factors. The
feature matrix and training data both contribute to a space
complexity of O(NM). Additionally, the cluster centers
introduce a space complexity of O(kM). When we combine
these components, we obtain an overall space complexity of
O(NM+ kM) [53].
In our proposed estimator, the time complexity is solely

dependent on the number of training samples, which is
equal to O(N ). On the other hand, the space complexity is
related to the memory needed for storing the signal samples
corresponding to the PDF templates, resulting in a space
complexity of O(NM).

3) C-3: SUMMARY OF COMPARISON
The comparison results between our scheme, ANN, and K-
means clustering using the same raw data are summarized
in Table 4. The evaluation is based on the following five
key metrics: required size of dataset, relative mean square
deviation (RMSDRel), running time, time complexity, and
space (or computational) complexity. Notably, our scheme
beats the two benchmark estimators with large margins in
all considered metrics. This observation partially confirms
that our pre-designed JS-divergence-based classifier has a
superior structure with fewer parameters to tune, compared
to the two supervised learning-based classifiers.

In addition, we qualitatively compare our scheme with
several existing traffic density estimation schemes, as a
quantitative comparison is not quite feasible. Table 5
highlights the major differences between our scheme and the
traffic density estimation methods presented in [6], [9], [31],
and [36]. As indicated in Table 5, the majority of existing
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TABLE 5. Comparison with existing traffic density estimation schemes.

FIGURE 8. Fading amplitude for 20 vehicles moving at speed 60 MPH.

schemes are considered as ‘‘active’’ estimation schemes,
which introduce additional communication and computation
overheads. Also, they rely on AI-based approaches for
traffic density estimation, requiring large labeled datasets and
involving complex algorithms.

Although the scheme proposed in [36] is categorized as
a passive traffic density estimation scheme, it still requires
a relatively large training dataset to teach/tune the machine
learning classifier to produce the desired estimation output.

In summary, our proposed scheme can effectively and
efficiently estimate traffic density with a much smaller size
of dataset. Moreover, it is promising to adapt to bad weather
conditions and dynamic environments.

D. ASSESSMENT OF TRAFFIC FLOW AVERAGE SPEED
ESTIMATION
Synthetic data is used to assess the proposed traffic flow
speed estimation. Specifically, we measure the fading ampli-
tude of signals reflected from vehicles moving at speeds
sv = {45, 60, 70} mph over different density levels. Fig. 8
illustrates the fading amplitude of a signal received from
20 vehicles moving at a speed of 60 mph, and this result
is utilized for calculating the LCR. Error function 1sv =

f (σn,Nv,NLCR) is implemented using a LUT based on the
measurements (synthetic training data).

FIGURE 9. Average flow speeds estimation errors at different number of
vehicles.

The accuracy of the estimator can be measured in absolute
root mean square error deviation (RMSD):

RMSD =

√∑T
t=1(ŝvt − svt )2

T
, (35)

where s̃vt is the speed estimation at iteration t , svt is the actual
average speed, and T is the number of iterations.

The quality of the proposed traffic speed estimator is
shown in Fig. 9, displaying the RMSD over diverse numbers
of vehicles. One can see that the RMSD increases as the
density and speed increase. This phenomenon seems to agree
with our observation that moving speed and the number of
vehicles contribute to the randomness of the fading signal.

E. ASSESSMENT OF BEAM ALLOCATION
For evaluating the beam allocation strategies, we consider
five candidates as shown in Fig. 10, where (i) simple-
proactive with ceiling and (ii) optimal-proactive with
ceiling are two proposed practical strategies, while the rest
are three reference candidates for comparison.

The proactive scheme includes an adjustable control
function to proactively allocate the beams based on the
current density estimate obtained using weighted-centroid or
LSE methods. For the simple version, the control function
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FIGURE 10. Beam allocation strategies considered for assessment
(‘‘Without Ceiling’’ means Nmax → ∞).

a(N̂v) is defined as

a(N̂v) = max
(
0, round

(
γ · λ · N̂v

))
, (36)

where γ is a positive real constant (γ can be chosen in
the simulation). For the optimal version, a(N̂v) is computed
using (30).

Fig. 11 (a), 11 (b), and 11 (c) show evaluation results
of outage and beam waste, respectively, for three strategies
of fixed, simple-proactive with ceiling and simple-proactive
without ceiling. The results are semi-analytically obtained for
different numbers of vehicles Nv estimated using weighted-
centroid or LSE methods, assuming a uniform distribution of
Nv ∈ [10, 80]. For the fixed-allocation benchmark scheme,
NB = 17 is selected. For simple proactive allocation, the
number of allocated beams is equal to Nalo defined in (25)
with the control function given by (36). For the ‘‘with ceiling’’
scenario, the ceiling valuesNmax are set to either 12, 20, or 30,
while for the ‘‘without ceiling’’ scenario Nmax → ∞.

As expected and observed from Fig. 11 (a), the proac-
tive schemes experience fewer outages compared to the
fixed scheme, which improves the QoS accordingly. This
improvement is attributed to the proactivity backed up by
the real-time traffic density estimation. Note that the simple-
proactive ‘‘without ceiling’’ achieves an outage probability
lower bound close to zero (Pout ≈ 0) at the cost of unlimited
resource occupation (Nmax → ∞). However, in scenarios
with extremely limited resources (e.g., the ceiling Nmax set
to a low value like 12), the proactive scheme may experience
a higher outage compared to the fixed scheme. Moreover, it is
evident that the outage probability for the beam allocation
schemes over different numbers of vehicles estimated using
LSE is lower compared to the weighted-centroid-based
method. This is because the weighted-centroid is biased
towards positive errors, resulting in a vehicle density estimate
greater than the actual number, thereby requiring a larger
number of beams.

On the other hand, the level of resource waste is evaluated
using the mean number of idle beams (L̄ and L̄) as a metric.
As shown in Fig. 11 (b) and 11 (c), the simple-proactive
‘‘without ceiling’’ exhibits the highest level of resourcewaste,
with the level of resource waste increasing gradually as the
number of vehicles rises. This because the calculation ofNalo

FIGURE 11. Evaluation of fixed, simple-proactive with ceiling, and
simple-proactive without ceiling beam allocation strategies.

is primarily dependent on the term (N̂vλ + a(N̂v)) in (25),
while it neglects the role of

(
min

(
Nmax , Ñvλ + a(Ñv)

))
due

to theoretically unlimited resources available (Nmax → ∞).
Specifically, when Nv = 80, this level of waste reaches
approximately L̄ ≈ 30 for the weighted-centroid and
L̄ ≈ 18 for the LSE. In the case of the simple-proactive
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FIGURE 12. Evaluation of fixed, simple-proactive with ceiling, and
simple-proactive without ceiling beam allocation strategies.

strategy ‘‘with ceiling’’, the level of resource waste varies
less as the number of vehicles changes compared to the
fixed strategy. This is due to the proactivity of our scheme,
which can adapt the number of reserved beams based on
the number of estimated vehicles. Interestingly, there is a
turning point at Nv = 20 in Fig. 11 (b) and 11 (c),
and the proactive scheme outperforms the fixed counterpart
when Nv < 20; as Nv increases, the proactive scheme
approximately maintains a small constant level of idleness.
However, in scenarios with extremely limited resources
(Nmax = 12), the proactive scheme exhibits a lower level of
idleness. Similar to the outage probability analysis, the LSE
method exhibits a lower level of resource waste (see Fig. 11
(c)) compared to the weighted-centroid (see Fig. 11 (b) ).
This is because the weighted-centroid, with its positive bias,
allocates a larger number of beams than needed. Note that
the overall beam allocation performance is measured by both
outage and idleness, and it can be stated that as the number
of vehicles increases, the simple-proactive ‘‘with ceiling’’
scheme performs significantly better than the fixed strategy
at a minor penalty of L̄ ≈ 1.3.

FIGURE 13. Mean number of idle beams comparison with optimal beam
allocation at different numbers of vehicles estimated using LSE.

Next, we investigate the impact of the control parameter
γ on the outage probability and the level of waste resource
over different numbers of vehicles estimated using weighted-
centroid and LSE methods. As shown in Fig. 12 (a),
increasing the value γ leads to a decrease in the outage
probability for both weight-centroid and LSE methods.
On the other hand, as depicted in Fig. 12 (b), a reduction
in γ values correlates with a decrease in the level of wasted
resources.

The aforementioned (simple) proactive schemes can be
further improved to reach the optimum by selecting the
control function a(·) using (30), jointly considering the beam
waste and outage. We emphasize our focus on the LSE
method due to its superior estimation accuracy and the fact
that it serves as an unbiased estimator. Fig. 13 illustrates
the mean number of idle beams with optimal allocation
based on (30) for both proactive beam allocation schemes
(with ceiling and without ceiling). Generally, one can observe
that the optimal-proactive beam allocation scheme exhibits
a lower level of waste resource compared to the simple
proactive schemes (see Fig. 11 (c)). Moreover, according to
Fig. 13, the optimal beam allocation ‘‘without ceiling’’ under
a given outage constraint b = 0.1 exhibits a larger number
of idle beams (L̄ ≈ 14) when compared to the scenario with
ceilings (L̄ ≈ 0.8). This behavior remains consistent when
increasing the threshold b to 0.3. In conclusion, it’s evident
that for both the simple and optimal proactive strategies,
scenarios ‘‘without ceiling’’ consistently exhibit a larger
average number of idle beams, which increases gradually as
the number of vehicles rises, due to the unlimited resources.
This highlights the importance of the ceiling in effectively
restricting L̄.

VI. CONCLUSION AND FUTURE WORK
This paper presents an efficient and cost-effective traffic
monitoring scheme to support ITS by leveraging the synergy
between sensing and communication in an ISAC framework.
The proposed scheme reuses the communication waveform
for estimating both traffic density and speed, and simulta-
neously enhances the connectivity and QoS for vehicular
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users via proactively allocating mmWave beams aided by
the traffic density estimation. The performance analysis
and comparison show that the proposed traffic estimators
require less training, are computationally efficient, and can
yield accurate estimates at diverse vehicle density levels.
The assessment results also suggest that proactive beam
allocation is very promising due to its superiority over fixed
beam allocation. As a matter of fact, the traffic sensing
outcomes can benefit different resource allocation tasks.
Also, the proposed mmWave beam allocation scheme can
be directly used for channel allocation in lower frequency
bands. Numerous related topics can be further explored in
the future, such as combining beam sweeping techniques with
beam allocation, considering more practical traffic scenarios,
and further improving the estimators.
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