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ABSTRACT Convolutional neural networks (CNNs) accelerators have been utilized widely for several
digital applications to improve processing efficiency. However, the traditional CNN accelerator processor
performance is insufficient to run the digital smart application as per the user’s needs, resulting in high
power consumption, delay, Look Up Table (LUT)- Random Access Memory (RAM) usage, and less
accuracy and throughput. Hence, the present research study was intended to design the modified CNN
accelerator for prediction and data broadcasting applications. Hence, the newly designed accelerator is
named a novel Siberian Tiger-based Convolutional Neural Accelerator architecture (STbCNA). Here, the
sparse features and the tiger fitness data reuse strategy have been considered to gain the exact prediction
outcome. The predicted outcome is transferred to the user to make the rainfall aware to satisfy this parameter.
Consequently, the Throughput and other FPGA parameters were calculated and compared with other models.
For comparison, all the traditional approaches were executed in the same proposed platform, and the
outcomes were compared with those of the proposed approach. In that, the modified CNN (STbCNA) scored
the finest outcome by attaining a high Throughput of 150 bps, reduced Power of 0.43W, high accuracy of
92.8%, less delay of 0.5ns, and LUT of 0.001. The presence of the Siberian tiger provided the continuous
optimal conditions for the present FPGA implementation. Hence, the STbCNA is significant for the FPGA
application in gaining the optimal outcome.

INDEX TERMS Convolutional neural networks, accelerator performance, rainfall prediction, optimization,
processing efficiency.

I. INTRODUCTION
Inspired by the natural anxious system, deep knowledge
has recently achieved commanding delicacy improvement.
Convolutional neural networks (CNNs), the most generally
applied model in deep knowledge, hold lived took on in var-
ious disciplines, including image and speech recognition [1].
The CNN Accelerator IP is paired with the Chassis Neural
Network Complier Tool [2]. The compiler takes the networks
elaborated ordinary machine learning fabrics, analyses them
for practical operation, simulates them for interpretation
and functionality, and also collects them for the CNN

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiang Wu.

Accelerator IP [3]. The suggestive delicacy improvement
of CNNs comes at the disbursement of huge computational
complications as it requires a total estimate of all the fields
across the point maps [4]. Tackle acceleration refers to
the operation of technical tackle, Graphics processing units
(GPUs), or Application-specific integrated circuits (ASICs)
to perform calculations more briskly than a general-ambition
central processing unit (CPU) [5]. Tackle acceleration can
significantly facilitate the speed and effectiveness of routine
and deep literacy conclusion operations in the plot of deep
literacy for AI [6]. Tackle acceleration can significantly
reduce the time it takes to train and emplace deep literacy
models [7]. For illustration, using a GPU can speed training
by a factor of 10- 100 assimilated to using a CPU alone [8].
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This can be particularly important for large-scale deep
literacy assignments, similar to training image or language
models with millions of parameters [9]. Tackle acceleration
can similarly facilitate the effectiveness of deep literacy
training processors by reducing the quantum of bounce
needed to carry out calculation processes [10]. This is
particularly consequential for assignments that bear a large
quantum of calculation, cognate as training large neural
networks [11]. Tackle acceleration can degrade training
costs and plant deep literacy models [12]. For illustration,
operating a GPU can significantly reduce the cost of training
equated to using a CPU, particularly for considerable- scale
tasks [13]. Hardware acceleration is a consequential tool
for perfecting the velocity and effectiveness of bottomless
literacy tasks [14].
By applying technical tackle, similar to GPUs, deep liter-

acy interpreters can significantly downgrade the occasion and
outlay of practice and planting abysmal literacy miniatures
[15]. Reducing the total compute and memory requirements
for such models without sacrificing their high sensitivity
is possible by cutting the depth of neural networks [16].
For example, the researchers have demonstrated that some
Deep Networks have substantial duplication (up to 90), that
may be trimmed without sacrificing delicacy [17]. Reducing
methods can open up the fast conclusion procedure by
hypothetically reducing the number of processes in the
difficulty algorithm [18]. However, frugal CNN designs are
unsuited for topologies using large datasets with FPGAs [19].
The final manufacturers optimize the information flow via
circle activities, such as unrolling and crossing circles.
Through this, it can effectively prevent design challenges
associatedwith sparsely comparable data, such as imbalanced
weight and uneven connections. However, CNNs have certain
drawbacks that restrict their applicability and understanding.
One of the main disadvantages of CNNs is that they bear
a substantial quantum of tagged data to train effectively,
which can be ultra-expensive and time-devouring to gain and
annotate [20]. The key contributions of this present work are
described as follows;

• Initially, the required parameters were defined in the
Xilinx environment.

• Moreover, a novel STbCNA is created with the opti-
mal functional modulus for improving the training
accelerators.

• Then, the created STbCNA is tested for the performance
and efficiency of the accelerator, including sparsity and
data reuse techniques.

• Finally, the performance improvement score and relia-
bility were measured regarding power utilization, Flip
flop, CU utilization, acceleration rate, and LUT.

The paper is arranged as follows; the second section has
detailed the recent works of the CNN accelerator. Third
section has exposed the traditional CNN with problems,
fourth section describes the proposed CNN accelerator, the
outcome of the proposed accelerator is exposed in fifth
section, and sixth section concludes the research article.

II. RELATED WORK
In this document, Li et al. [21] outlined a functional dual
complexity approach that isn’t embellished and is intended
for 3D CNN. In this Algorithm, activating and weighting
are either 0 or 1, not - 1 or 1 are processed. Furthermore,
a useful complexity cost O2M and classification storage
path is proposed, which may greatly reduce the pouring
input pixel processing time. A 3D AND- Net accelerator
is shown based on the enhancement methodologies. The
outcomes demonstrate how excellent our design is regarding
power consumption, recommended operation, and Digital
Signal Processor (DSP) efficacy when applied to bouncing
passes. It ought to be noted that collaborative optimization,
as opposed to tone-sustaining optimizing, can yield better
results when applied to techniques and threats.

In this exploration paper, Lee and Yoo [22] delineated that
DNN training iteratively processes three different ways, caus-
ing accidental recollection accesses and operations. Thus,
high bounce-operative DNN training tackle is compulsory
to ascertain DNN exercise on an edge juggle which has
circumscribed computational qualification and command
force. For the altitudinous energy-operative DNN training
tackle, three challenges must be optimized different dataflow,
extrinsic memory turn, and calculation.

In this context, Dhilleswararao et al. [2] reconsidered
recent advancements in DNN acceleration on technical tackle
infrastructures. Likewise, Embedded AI accelerators for the
acerbity terrain retain existed exhaustively bandied. The
reappraisal begins with a minute backdrop of DNNs, center-
ing on their pivotal missions and operations. CNNs, which
command a thick range of operations, the command has
also been numbered in retrospect. To ease the interpretation
of the tackle accelerator, we bandied multi-hued computing
infrastructures resembling profane and spatial infrastructures.

Mittal et al. [13] carried out a check of accelerator
arrangement and optimizations for CNN. They stressed their
pivotal inventions and arranged them into several orders.
Compactly bandy some exploration cynosures deserving
of instantaneous concentration from the experimenters, 3D
CNN accelerators have been big-time less analogized to
that beseemed into 2D CNN accelerators. For driving
added progression in 3D CNNs, it’s eventful to distinguish
motivating operations and exercise cases, particularly those
where 2D CNNs aren’t sufficient.

This paper by Xie et al. [23] offers a CNN design that
is mindful of sparsity and supports randomized and random
pruning methods. To use pruned networks, a preprocessing
method called the Weight Pretreatment method is created
for condensed weights. A Hybrid Parallelism (HP) on-
chip information flow is created according to the suggested
scheme tomaximize computation effectiveness. Furthermore,
the HP information transfer can process the convolutions
with different configurations flexibly. The suggested design
can significantly lower the quantity of access to outside
memories when combined with the full fusing information
flow.
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III. TRADITIONAL CNN ARCHITECTURE WITH PROBLEM
In many modern programs, processes are executed and stored
in chip memory. But, if chip memory is not optimized, it can
greatly raise the cost of memory overall, particularly for
particular workloads [24]. Numerous accelerator techniques
that use neural memory to boost chip performance have been
created. Superior results have been obtained while analyzing
chip features using neural principles [25]. Traditional deep
networks [26] are not sufficient for different applications.

FIGURE 1. CNN architecture with problem.

The kernel size alteration isn’t always enough to get the
best accelerator performance. Traditional CNN architecture
with problem is shown in Fig 1. The main problem that
reported by the traditional convolution neural accelerator is
high power and memory usage. It is due to the lack of tuning
or regulating process in CNN based on different application
[27]. If the CNN is not regulated proper then it might take
more time and space to execute every execution. To solve
these problems, a novel hardware accelerator method has
been developed that alters kernel sizes and pooling layers to
maximize the accelerator’s performance.

IV. PROPOSED METHODOLOGY
The demand for efficient hardware accelerators is increasing
due to the rapid growth of data-intensive applications
[28]. This research presents a novel Siberian Tiger-based
Convolutional Neural Accelerator architecture (STbCNA)
shown in fig 2, that uses sparsity and data reuse to
improve performance and energy efficiency. In addition,
to check the accelerator performance, the rainfall data
has been adopted. Finally, the robustness of the designed
accelerator was justified by measuring the key parameters
and comparing them with the existing approaches such as
Bit Parameters CNN (BP-CNN) [29], Deep Convolutional
Network Accelerator (DCNA) [30], Embedded features CNN
(EF-CNN) [30] and Coati CNN (C-CNN).

A. PROCESS OF PROPOSED METHODOLOGY
This research study mainly intends to build a new CNN
architecture with the sparsity features and optimization
principle. Hence, the introduced novel approach is called
STbCNA. Here, the pooling layer is changed to the optimal
layer with the function of the Siberian tiger [31]. At the
primary stage, the neuron initialization process was carried

out by eq 1.

F(s) = {s1, s2, s3, . . . , sn} (1)

Here, the training process is determined as F(s). and the
database is described as s. Moreover, the n number of data
samples are visualized as s1, s2, s3, . . . , sn.

Here, p is the number of convolution layers, Q is the
number of FC layers, and O is the optimal layer. Moreover,
D1,D2,D3 are the data bits, Dr is the dimensionality
reduction, DB1,DB2,DB3 are the database, M1,M2,M3 are
the mode functional operation, W1,W2,W3 are weights and
IFM is the input Feature map. Here, FP is the floating point,
FX is fixed integer and OFM is the Optimal Feature map
and represents weight of each neuron layers. The internal
architecture is illustrated in fig 3 and the bit processing of
control unit is shown in fig 4.

FIGURE 2. STbCNA:architecture.

FIGURE 3. STbCNA:internal structure.

Also, the optimal model operation is exposed in
algorithm1. This algorithm explained the optimization of
pooling layer of the CNN. Generally, the pooling layer
of the CNN carried out the dimensionality reduction of
the features in the test data. By introducing the Siberian
tiger fitness process [31] at the pooling layer of the CNN
achieved the optimal features for the specific prediction
in the dataset by tuning the pooling layer parameters.
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FIGURE 4. STbCNA:bit processing.

The optimized dimensionality reduction process attained
maximum accuracy in the prediction. After the neuron
initialization phase, the sparse features were updated as the
normalization and null value remover. Hence, the outcome
of the sparsity is a pre-processed normalized outcome.
Henceforth, feature map functional blocks were designed in
dual phases before and after the pooling function. So, the
feature map operation after the convolutional layer process
is mentioned in eq 2.

l∗ =
l−t + g

h
+ 1 (2)

m∗
=
m−t + g

h
+ 1 (3)

Here, the output feature map height is denoted as l∗

and l defined feature map input height. The convolutional
operation is represented as h, g denoted the padding function
of convolution operation and t is the filter size. Besides,m∗ is
the width of the output feature map and m is the input feature
map width. In addition, the feature map size of the STbCNA
after the pooling function is measured by eq 3.

l∗ =
l − p∗

h
(4)

m∗
=
m− p∗

h
(5)

Here, the size of pooling area is represented as p∗ and h
is the pooling operation. In addition, the ReLU activation
process is formulated in eq 4 and eq 5.

f (s)ReLU = max(0, s) (6)

After designing all those functioning phases, the rainfall
prediction database was considered, and the prediction was
made in eq 6. Here, the obtained rainfall data is initialized
in the neuron initializing function. Then, the noise filtering
is executed by processing the sparse function, the null values
were neglected using eq 7. The Operational architecture of

Algorithm 1 Optimal Pooling Layer(3*3)
1: Start()
2: if (m2,m3 = 0,M1 = p);
3: M1 = IFM (rd )
4: W = W1,W2, . . . ,Wn
5: elseif (m2,m3 = 1)
6: m2,m3 = Dr
7: if (M1(p∗) = max − acc)
8: process end
9: else continue( tune-optimal pooling 3*3)
10: Stop()

FIGURE 5. Operational architecture.

the novel CNN is exposed in Fig 5.

R = Ri,j +
Pr − v
Rs

(7)

The rainfall prediction constraint is determined as R, and
the rainfall constraints, such as humidity and temperature,
are represented as Ri,j. Also, Pr is the predicted rainfall
rate,v is the stored rainfall data and Rs is total rainfall rate.
Moreover, the selected features from the feature map are
denoted as the total rainfall statistics, which is stored in the
STbCNA memory.

To offer the predictive outcome, the stored statistics were
matched with the test rainfall features then the precipitation
level was determined. Once the upcoming rainfall rate is
predicted, that information is shared to the user clouds,
making the public aware of the rainfall occurrence. The
overall flow model is exposed in Fig 6, and the Algorithm
is given in Algorithm 2.

V. RESULTS AND DISCUSSION
The newly designed novel accelerator is tested in the Xilinx
platform and running in the Windows 10 platform. At the
primary phase, the CNN accelerator is designed with all those
steps process then the CNN architecture layer is changed by
the optimal features and the sparsity condition. Hence, the
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FIGURE 6. Process flow of STbCNA.

Algorithm 2 STbCNA
1: Start()
2: int s = 1, 2, 3, . . . , n;
3: Feature Map Creation()
4: int l,m, l∗,m∗;
5: feature = I/O(height + width)
6: ReLU Activation()
7: fn(ReLU) = max(0, s)
8: Testing()
9: int R,Pr ,Rs, v

10: Pr = Rs,Ri,j
11: Data Broadcasting()
12: Broadcast(Pr → cloud, user)
13: Stop()

newly built accelerator is STbCNA; the execution constraints
are exposed in Table 1.

After, the design of CNN accelerator, the performance
testing process is done in the MATLAB environment. Here,
for testing the accelerator, rainfall prediction application is
considered.

The accelerator chip status of the newly implemented
STbCNA is exposed in fig 7. It contains the power constraints
that include static and dynamic Power. Then, the functional
modules like clocks, signals, logic units, and I/O were
measured.

The waveform outcome of the proposed accelerator is
exposed in Fig 8, and the accelerator constraints details are
tabulated in Table 2.

TABLE 1. Execution constraints.

FIGURE 7. STbCNA chip status.

FIGURE 8. Waveform of proposed accelerator.

Here, the total LUT of the designed accelerator is
216960 in that 0.08% was utilized for rainfall prediction.
In addition, the total FF is 433920, and the utilization
percentage is 0.06%. Also, the total IO buffer is 304; 8.55%
of the buffer was utilized. Moreover, the total buffer port
is 256, and 0.39% was utilized. The sampling frequency
of each channel signal is 218 Hz. The hyper-parameters
of the model includes the number of layers, learning rate,
number of kernels, kernel size, length of strides and pooling
size which directly influence the training of the designed
accelerator. The sparsity condition and the fitness process of
the Siberian Tiger optimize all the hyperparameters of the

86038 VOLUME 12, 2024



H. Kurapati, S. Ramachandran: Enhancement of CNN Hardware Accelerators Efficiency

TABLE 2. Accelerator performance.

TABLE 3. Performance of traditional CNN and proposed CNN.

model for the better learning. The optimal parameters are
chosen through the validation strategy. From the total dataset,
70% is taken for training, 15% utilized for validation and 15%
for testing process of the designed accelerator. The validation
performance of the model was accessed by the k-fold cross
validation strategy. The key factors influencing the designed
CNN accelerators are the computational resources such as
energy, memory, bandwidth and utilization of processing ele-
ment array. The computational resources measure the upper
limit of the FPGA accelerator efficiency. The performance
of the designed accelerator is measured through some of the
evaluationmetrics such as throughput, delay, area, DSP usage
and energy. The model reduced the memory size by 57.6×.
The small memory size of the optimized network comes
out to 7.4Mb. The software running on the ARM handles
the load and pre-processes the weights, bias and test data
of the designed network. The pre-processing phase includes
the rearranging the data in a titled format for the created
accelerator.

A. PERFORMANCE ANALYSIS
To value the working function of the newly implemented
model, a few key parameters were considered, and the
validation was made with other traditional models. Some of
the past studies like Bit Parameters CNN (BP-CNN) [29],
Deep Convolutional Network Accelerator (DCNA) [30],
Embedded features CNN (EF-CNN) [30] and Coati CNN
(C-CNN). The performance parameters for the traditional
CNN and the proposed CNN are depicted in Table 3.
The traditional CNN scored 120bps throughput, 10nJ

energy utilization, 3000 area, 5-GOPS, 10% DSP utilization,
and 0.9 DSP efficiency. Moreover, the proposed accelerator
gained 150 bps throughput, 12 nJ energy consumption,
2500 area, 70GOPS, 8% DSP utilization, and 0.95 DSP
efficiency.

Here, the FF for the existing models BP-CNN, EF-CNN,
DCNA, and C-CNN attains 11.66%, 10.8%, 22.18%, and

FIGURE 9. Comparison of FF (%), Power (W), LUT (%).

FIGURE 10. Comparison of area and delay.

0.27%, respectively, and the proposed model gains 0.06%.
The Power achieved by BP-CNN is 5 W, EF-CNN is 1.52 W,
DCNA is 6.23 W, C-CNN is 1.116 W, and the proposed
model is 0.431 W. The LUT earned is BP-CNN is 16.71%,
EF-CNN 17.3%, DCNA is 39.1%, C-CNN is 0.26% and
the proposed model is 0.08%. Hence the comparison shows
the performance of the proposed model is better as it gives
very low FF, Power, and LUT. The comparison of these
metrics is depicted in Fig 9. To validate the performance,
traditional models like the Convolutional Operator (CO) and
Multiplication Operation Convolutional accelerator (MOCA)
[32] were adopted.
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FIGURE 11. DSP performance.

TABLE 4. Entire comparison.

Here, the Area earned by the existing models is CO
30000µm2, MOCA 6000µm2, CNN 3000µm2 and the
proposed model earns 2500µm2. The delay for the existing
models CO is 2ns, MOCA is 1ns, CNN is 4ns, and the
proposed model is 0.5ns. The value obtained by both Area
and delay is less than the existing models, showing better
performance. The comparison of Area and delay is displayed
in Fig 10.
DSPs modify and evaluate a signal to enhance its

performance or efficiency. It is designed to analog several
mathematical algorithms such as addition, subtraction, multi-
plication, and division very fast and digital signals to generate
their quality than the initial signal. The performance of the
DSP is displayed in Fig 11.

The entire performance of the proposed model is shown in
Table 4. This indicates that the proposed model performs bet-
ter at a very low rate. The traditional model BP-CNN scored
30.11 DSP and 9.37 LUT-RAM, EF-CNN scored 10.45 DSP
and 2.86 LUT-RAM, DCNA has gained 49.7 DSP and
48.8 LUT-RAM. Moreover, the C-CNN attained 15.56 DSP
and 0.04 LUT-RAM usage. Considering all these, the newly
designed accelerator gained the reduced DSP and LUT-RAM
utilization as DSP 8% and LUT-RAM 0.001.

To justify the strength of the executed model, the rainfall
data was considered for 2000 to 2023; for the testing, ten
years of data were taken. The mean square error is exposed
in Fig 12, training and testing presentation is given in Fig 13.
Moreover, the outcome of the ten years of data is exposed in
Fig 14.
The data collected is in CSV, Andhra Pradesh state, with

locations such as Visakhapatnam, Vizianagaram, and Krishna
district. In addition, the recorded accuracy for this rainfall
prediction is 92.8%. Hence, it justified that the designed
accelerator is appropriate for rainfall prediction.

FIGURE 12. MSE validation.

FIGURE 13. Training and testing.

FIGURE 14. Rainfall prediction.

To validate that the present accelerator is better than the
past accelerator, some of the existing CNN models for rain
prediction were considered, and results were validated with
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TABLE 5. Accuracy prediction comparison.

the proposed approach. The proposed accelerator is more
accurate than the compared models in Table 5.

VI. CONCLUSION
The present research work has built a novel CNN architecture
named STbCNA. The designed accelerator has included spar-
sity and optimal layers. Moreover, the designed accelerator
performance is checked in dual cases for prediction and
data broadcasting. Here, for prediction, the different data is
considered, such as rainfall data, flood data, land use and
land cover data is considered to measure the Throughput
of the built novel accelerator, and the predicted data is
transferred to the cloud user as an alert. Finally, the designed
accelerator is tested in the FPGA platform with the Xilinx
tool. The designed model attained the optimized LUT of
0.08% utilization, total Power of 0.431W, DSP 8, LUT-RAM
of 0.001, and FF is 0.06%. Hence, the proposed accelerator
has improved its performance by 3% compared to the
traditional accelerator. It has been verified that the proposed
accelerator is most appropriate for digital applications.
However, the dictionary features are not incorporated in the
present accelerator. In the future, incorporating the dictionary
features will improve the technique’s flexibility for different
applications.
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