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ABSTRACT EEG is a test that helps in the clinical diagnosis of epilepsy. Epilepsy diagnosis is facilitated by
establishing the presence of interictal epileptiform abnormalities on EEG, which predict an increased risk of
seizure. The identification of interictal epileptiform discharges is a time-consuming task that requires highly-
trained experts. Amethod to assist in the recognition of EEGswith epileptiform abnormalities was developed
using transfer learning on multiple channels of paediatric EEGs, without the use of human annotations. The
dataset included 350 children with normal EEGs and 597 children with interictal abnormalities, and it was
divided into training data (n=452), validation data (n=112), and testing data (n=383). Spectrograms from
each EEG signal channel were used as input for five pre-trained transfer learning models (Inception, ResNet,
DenseNet, VGG16 and VGG19) and traditional feature-based machine learning methods were developed
as a benchmark. A comparison was made between a transfer learning-based method and a traditional
feature-based machine learning algorithm. The results revealed that the transfer learning-based method
outperformed the feature-based machine learning methods, achieving an accuracy of 77%, an F1 score
of 0.85, and a balanced accuracy of 77% on the test set. Our transfer learning-based method can identify
interictal abnormalities without the need for feature estimation by domain experts or human annotations. This
method can assist in the recognition of EEGs with epileptiform abnormalities in children thereby facilitating
the clinical diagnosis of epilepsy.

INDEX TERMS Epilepsy, EEG, paediatric, transfer learning, machine learning.

I. INTRODUCTION
There is great optimism that the use of artificial intelligence
(AI) in healthcare can greatly improve all aspects of the field,
from diagnosis to treatment. AI is seen as a tool to support
and enhance the work of health professionals. The application
of machine learning on biomedical signals (e.g. ECG [1] and
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EEG [2]) and images (e.g. CT [3], MRI [4] and X-ray [5]) has
facilitated medical diagnosis, prediction of potential diseases
or events, and improvement of preventive care and treatment.

Unfortunately, there are many commonly encountered
difficulties associated with the deployment of AI systems,
such as ‘‘out-of-distribution generalization’’ [6]. When the
distribution of a model’s training data does not align with
its performance distribution, the model may underperform.
In addition, if the training data contains features that are
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misleadingly correlated with the outcomes the model is
designed to predict, the model may rely on irrelevant features
for making predictions. To mitigate these issues, creators of
machine learning models should strive to match the training
data distribution with the performance distribution as closely
as possible. Clinicians using any machine learning model
should be aware of its limitations and potential shortcom-
ings stemming from its training distribution. Explainable
Artificial Intelligence (XAI) offers a potential solution for
certain issues. By providing a justification for the output
generated by a system, XAI enables users to comprehendwhy
it arrived at that particular conclusion. This interpretation can
be contextualized within a specific framework, which makes
machine learningmodelsmore acceptable and trustworthy for
clinicians [7].

EEG is the most important test in the evaluation of patients
with unprovoked seizures and epilepsy [8]. EEG recordings in
individuals with epilepsy often reveal isolated abnormalities
that occur between seizures but have a high association
with epilepsy [9], [10]. These are referred to as interictal
epileptiform discharges (IEDs), spikes or sharps [11]. IEDs
are more frequent than seizures [11]. Most research to
date has focused on seizure detection, whereas research on
automatedmethods for identifying IEDs is limited, especially
in children.

Most published IED detection methods [12], [13], [14],
[15], [16] require EEGs to be divided into epochs which are
labelled as having IEDs or not, which is a labour-intensive
process. We are not aware of any research on automated
methods to identify IEDs that do not rely on human
annotations. Furthermore, the majority of IED detection
methods have been developed using EEGs from adults or a
mix of adults and children. Research has shown that EEGs
change with age [17] making adult-based methods unsuitable
for paediatric use. To the best of our knowledge, there is
only one other paediatric-specific IED detection method [16].
In this study, we developed a transfer learning-based interictal
EEG abnormality identification method on multiple channels
of paediatric EEGs (350 normal EEGs; 597 EEGs with IEDs)
without using human annotations. This approach could aid
in identifying epileptiform abnormalities within children’s
EEGs, thereby supporting the clinical diagnosis of epilepsy.

II. MATERIALS AND METHODS
A. SUBJECTS
Ethical approval was granted from the Medical Research
Ethics Committee of Our Lady’s Children’s Hospital
Crumlin, Dublin, Ireland (GEN/617/17). 350 children with
normal EEGs and 597 children with epileptiform abnormal-
ities were used in this study. The study included children
with normal EEGs, ranging in age from 6 to 10 years
old (with a median age of 8 years old). Additionally,
children with epileptiform abnormalities were also included,
comprising 287 cases of focal interictal EEG abnormalities
(aged from 6 to 17 years old; median age: 9 years old)

and 310 cases of generalised interictal EEG abnormalities
(aged from 6 to 18 years old; median age: 11 years old).
We created a balanced training dataset with 283 normal
EEGs and 281 EEGs with epileptiform abnormalities. The
remaining EEGs (normal = 67; epileptiform = 316) were
used for testing. It is important to highlight that EEGs from
normal children or those with focal or generalised epilepsy
employed in this study have been labelled by an expert.
However, the study did not annotate the specific IED events
within these EEGs. The details of the dataset used in this
study is shown in Table 1.

TABLE 1. Number and duration of EEG recordings used in this study.

B. CHANNEL SELECTION
The EEG was recorded using the 10-20 system of electrode
placement [18]. Nineteen channels were selected to obtain
information from the different brain regions (Figure 1).

FIGURE 1. 10-20 system of electrode placement.

C. FEATURE-BASED MACHINE LEARNING METHODS
1) DATA PRE-PROCESSING
The CHI EEG dataset was sampled at different sampling
frequencies of 200Hz, 256Hz, and 500Hz. Therefore, the
EEG signal was resampled to 256Hz. Powerline interference
was eliminated from the raw EEG signals using a 50 Hz notch
filter, and DC offset was removed from the EEGs.

2) FEATURE ESTIMATION
Time and frequency domain features were estimated. To filter
the signals, we employed Butterworth filters with a 6th-order
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Infinite Impulse Response (IIR) design [19], for which the
frequencies of interest mainly lie between 0-64 Hz. EEG
frequencies are grouped into bands: delta frequencies are
<4 Hz; theta is from 4 to 8 Hz; alpha is from 8 to 13 Hz;
beta is 13 to 32 Hz; the gamma band is >32 Hz.
For each channel, 23 features were estimated from 5s

epochs with 2.5s overlap. The mean, standard deviation,
signal envelope, kurtosis, skewness, complexity, mobility,
variance, and fractal dimension of preprocessed absolute
amplitude were calculated in the time domain. In addition,
wavelet decomposition was used to capture rhythm activities
in delta, theta, alpha, beta, and gamma, and the relative
and absolute band power of these rhythm activities was
estimated. The absolute band power of EEG amplitude,
Mel-frequency cepstral coefficients (MFCCs) [20], power
spectral density (PSD), and amplitude modulation spectro-
gram (AM spectrogram) were also calculated as features.
These features have been successfully used for brain event
detection in EEGs in previous studies [21], [22], [23].

3) RANDOM FOREST ALGORITHM
We employed the random forest algorithm to develop an
automated method for identifying interictal EEG abnormality
in children. The implementation of the random forest
classifier was done in a Python 3 environment, utilising
the sklearn library [24]. Two parameters were optimised;
n-estimators, the number of trees in the forest; andmax depth,
which is the maximum depth of the tree. These parameters
(n-estimators and max-depth) were optimised based on the
validation set’s performance to improve the method for
identifying interictal EEG abnormalities in EEG recordings.
We did not have the specific start and end times of the
epileptiform abnormalities in the EEG recordings. Therefore,
we explored two random forest-based (RF) methods in this
study.

a: RF 1 METHOD
We trained and tested the signal on 5s with 2.5s overlap
epochs (23 features in each epoch) and used the final
annotation (normal EEG: 0; epileptiform EEG: 1) to label
each epoch. For instance, if a child had interictal EEG
abnormalities, all their EEG epochs were labelled as 1;
conversely, all epochs were labelled as 0 for children with
normal EEGs. After that, we applied the random forest
algorithm to these epochs. The majority vote of epochs was
then used to determine the final diagnosis for each child.
If more than 50% of the epochs in the EEG recordings were
predicted as epileptiform EEG, the final annotation for that
child was with epileptiform EEG and vice versa.

b: RF 2 METHOD
The mean value of each feature was calculated for the entire
EEG recordings of each child to develop the random forest
method. This means that each child had one value for each
feature.

D. SPECTROGRAM-BASED TRANSFER LEARNING
METHOD
1) DATA PROCESSING
Butterworth filter (infinite impulse response) was used to
obtain the band of interest in the CHI EEG recordings
(0.1-64 Hz). Previous studies on identifying IEDs in EEGs
primarily used time series plots [25], [26]. However, spec-
trograms offer a more comprehensive representation of the
frequency content of EEG signals over time compared to time
series plots [27]. Spectrograms facilitate the identification
of frequency patterns and changes that may not be easily
discernible in time series plots. Therefore, spectrograms
were employed in this study for the identification of IEDs.
We generated a spectrogram for each EEG channel, with each
spectrogram corresponding to either the channel of a child
with normal or epileptiform EEG.

2) PRE-TRAINED TRANSFER LEARNING MODELS
Five popular CNNs architectures were adept at building the
interictal abnormality detection method as follows:

a: INCEPTIONV3
Inception is a deep convolutional neural network; a key
characteristic of an inception network is that it uses an
inception module in which convolution is performed on
an input using three different filter sizes (1×1, 3×3 and
5×5) [28]. The outputs are concatenated and sent to the next
inception module. 1 × 1 convolutions are used to reduce
the computational cost dimension. More convolutions were
added to further reduce the computational complexity and
improve the accuracy of the model [29].

b: RESNET50
ResNet, short for Residual Networks, is a classic neural
network used as a backbone for many computer vision
tasks [30]. In ResNet, skip connection is used by residual
blocks in their architecture so that training from a few
layers is skipped and fed directly to the last layer or output.
Therefore, if any layer reduces the performance of the
architecture, regularisation will be applied to skip it. As a
result, networks with a large number of layers can be trained
without increasing the training error percentage. ResNet can
help in tackling the vanishing gradient problem using identity
mapping.

c: DENSENET
In a Dense Convolutional Network (DenseNet) [31], each
layer is directly connected to the other and uses deep
connections to reuse features. DenseNet layers are narrow
and do not need to learn redundant feature maps. Each
layer receives new input from the layer above it and
sends its own feature map to the layer below it. These
characteristics allow DenseNet to achieve better performance
with fewer parameters and computational costs. In addition,
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FIGURE 2. Overview of the transfer learning-based method for identifying interictal abnormalities in children. Powerline interference was
removed by using a 50 Hz notch filter for EEGs. Butterworth filter (IIR: infinite impulse response) was used to obtain the signal in 0.1 -
64 Hz. The filtered signal on each channel was then converted into a spectrogram and fed to the VGG19 model. The post-processing
method uses MLP on multiple channels (19 channels in total) to derive the final result, which defines whether the EEG belongs to the child
with normal EEGs or abnormal epileptiform EEG (0 represents the child with normal EEGs; 1 represents the child with abnormal
epileptiform EEGs).

DenseNet alleviates the vanishing-gradient problem,
strengthens feature propagation, and encourages feature
reuse.

d: VGG16 AND VGG19
VGG16 is a very deep convolutional neural network [32].
As a result of its good generalisation performance, VGG-16
can improve the classification accuracy by using its
pre-trained model on the ImageNet dataset. VGG-16 com-
monly uses a small convolution kernel (3 × 3) to increase the
depth of the network for better capacity. VGG-19 is another
typical extended model that adds a fully connected layer and
a pooling layer.

These pre-trained models are used as feature extractors by
freezing the initial layers and using an input figure with a
size of 256×256×3. The final output layer is removed, and
two fully connected layers (Dense: 128 and 64) are added
to train the model, each followed by a rectified linear Unit
(ReLU) activation. Regularization (L2: 0.05) is implemented
to improve generalization and prevent overfitting. Sigmoid
activation is at the bottom of the output layer for the detection
of an abnormal epileptiform EEG. An Adam method [33] is
used for the training optimiser, with a batch size of 64. The
random seed was set to 42. The epoch is set to 100 for each
of these five models. The early stopping technique [34] is
applied to reduce overfitting with a patience value of 20.

3) POST-PROCESSING
Abnormal EEG activities are very often not evident on
all recorded EEG channels; most EEG abnormalities are
focal. To tackle this issue, a Multi-layer Perceptron classifier
(MLP) is employed to combine the transfer learning model’s
(VGG19) predictions of each spectrogram (same time frame)

from nineteen channels in the training set. The MLP model,
trained using the VGG19 predictions, is then applied to the
output of the transfer learningmodel on the nineteen channels
of the test set, and the final result for each spectrogram
would be classified as a child with normal EEG or child with
abnormal epileptiform EEGs. The architecture of the method
is shown in Figure 2.

4) EXPLAINABILITY (XAI)
Explainability of machine learning is particularly important
in the healthcare sector [7]; the explanations can be used by
domain experts to diagnose systematic errors and potential
biases in the black box. To encourage the appropriate level of
trust by clinicians in the machine learning method, SHapley
Additive exPlanations (SHAP) is utilised to explain the
predictions [35]. The SHAP plot is used in this study to
show the importance of channels, which could help clinicians
understand the prediction and assist them in identifying IEDs
in children.

E. PERFORMANCE EVALUATION
The sensitivity, specificity, precision, accuracy, F1 score and
balanced accuracy were used in estimating the performance
of the transfer learning-based interictal epileptiform abnor-
mality identification method.

Sensitivity =
TP

TP+ FN
(1)

Specificity =
TN

TN + FP
(2)

Precision =
TP

TP+ FP
(3)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)
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F1 = 2 ∗
Sensitivity ∗ Precision
Sensitivity+ Precision

(5)

Balanced Accuracy =
Sensitivity+ Specificity

2
(6)

where:
• True Positives (TP): the number of children with inter-
ictal abnormalities predicted as children with interictal
abnormalities

• False Positives (FP): the number of children with normal
EEGs predicted as children with interictal abnormalities

• True Negatives (TN): the number of children with
normal EEGs predicted as children with normal EEGs

• False Negatives (FN): the number of children with inter-
ictal abnormalities predicted as children with normal
EEGs

III. RESULTS
A. RELATED WORK
Table 2 provides an overview of previous research on IED
detection. However, the difference between datasets and
evaluation methods makes a direct comparison between
methods challenging.

TABLE 2. Previous work on IED automatic detection.

B. FEATURE-BASED MACHINE LEARNING METHODS
Table 2 presents the performance of feature-based machine
learning methods on the test set. The results indicate that
RF 1 has high precision and specificity, both above 80%, but
low sensitivity and accuracy, at 38% and 46%, respectively.
RF 2 achieves a precision of 93% and a specificity of 92%,
but its sensitivity and accuracy are only around 30%.

C. SPECTROGRAM-BASED TRANSFER LEARNING
METHOD
1) TRANSFER LEARNING-BASED INTERICTAL EPILEPTIFORM
ABNORMALITY IDENTIFICATION MODELS
Table 4 shows the performance of spectrogram-based transfer
learning models on the training and validation set. The result
shows that VGG 19 has the highest accuracy on the training
and validation set, compared to Inception, ResNet, DenseNet
and VGG16, with an accuracy of 80% and 77% on the
training and validation set, respectively.

TABLE 3. Performance of feature-based machine learning methods on
the test set.

TABLE 4. Performance of spectrogram-based transfer learning models on
the training and validation set.

2) POST-PROCESSING USING MLP FOR VGG19
The performance of the transfer learning-based interictal
epileptiform abnormality identification method on the train-
ing, validation and test sets is shown in Table 5. By employing
the post-processing method using the MLP across multiple
channels, the sensitivity and accuracy of the test set improved
by approximately 20%, and the F1 score increased by
around 0.15 as compared to the results obtained without
post-processing.

3) EXPLAINABILITY (XAI)
Table 6 shows the rank of the channel importance in
the training and test set (ranked in descending order of
importance), which indicates that channel C3 is the most
significant, while channel P4 is the least significant in most
cases. The SHAP plot depicted in Figure 3 displays the

FIGURE 3. SHAP plot shows the rank of the important channels in the
training dataset.
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TABLE 5. Performance of the transfer learning-based interictal epileptiform abnormality identification method on training, validation and test set. Along
with the application of the post-processing method using the MLP on the VGG19 model that involves multiple channels.

TABLE 6. The rank of channel importance in the training and test set (Train: The training set consists of EEG data used for training the model; Test All: The
test set comprises a variety of EEG recordings, including normal EEGs, EEGs with focal interictal abnormalities, and EEGs with generalised interictal
abnormalities; Test Normal: This subset of the test set exclusively contains normal EEG recordings; Test Focal: This subset of the test set includes EEG
recordings with focal interictal abnormalities; Test Gen: This subset of the test set comprises EEG recordings with generalised interictal abnormalities).

FIGURE 4. Example of EEG signal and spectrogram from a child with epileptiform abnormalities. Channel C3 is
the most important channel, and channel P4 is the least important channel in this study.

channel importance in the training set. Figure 4 shows
the EEG signal and spectrogram of the most and least
important channels, demonstrating that channel C3 displays
clear abnormal epileptiform activity, while channel P4’s
epileptiform activity is less evident.

IV. DISCUSSION
We investigated the use of feature-based machine learning
algorithms in combination with random forest to identify
IEDs in a paediatric population. The results (see Table 3)
showed that while RF 1 had high specificity and precision,
it had low sensitivity and accuracy, indicating a high number
of false negatives (FN) and a low number of true positives
(TP). This can be attributed to the fact that even abnormal
EEGs consist of predominantly normal activities. Conse-
quently, we labelled all events in each EEG as either normal
or abnormal, without accurate times for the epileptiform
abnormalities. This caused the random forest algorithm to
predominantly learn normal events, thereby causing RF 1 to
predict most events in the EEG as normal. As a result,

the epochs were not labelled with specific start and end
times of epileptiform abnormalities, making feature-based
machine learning algorithms unsuitable. Therefore, accurate
annotation of each epoch as normal or abnormal is necessary
for feature-based machine learning algorithms to be effective.

The RF 2 approach resolves the annotation problem and
computes the average value of each feature for each child’s
EEG, ensuring that no epoch is mislabeled. Based on the
results shown in Table 3, specificity increased by about 10%
compared to the RF 1 method. However, it is impossible
to obtain the characteristics of the entire EEG accurately
based on the mean value of each feature. Consequently, the
performance was not satisfactory.

In order to address the challenges of identifying epilep-
tiform abnormalities in paediatric EEGs, we proposed a
spectrogram-based transfer learning model. Transfer learning
can address this issue by adopting a well-trained network
from one domain to another. To achieve this, convolutional
layers are usually kept as general feature extractors, while
only fully connected layers are retrained. As a result,
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pre-trained networks require less data for fine-tuning.
In this study, we employed five popular CNN architectures,
Inception, ResNet, DenseNet, VGG16, and VGG19. Our
findings indicate that VGG19 performed the best in terms
of accuracy on the training and validation sets (Table 4).
Previous work confirms that EEG abnormalities are not
always evident in each EEG channel [42]. Thus, we utilised
the MLP algorithm to combine the predictions of the VGG19
model across all 19 channels to obtain the final outcome.
After post-processing, the sensitivity and accuracy of the test
set increased by approximately 20%, and the F1 increased
by around 0.17, as compared to the results obtained without
post-processing (Table 5).
There is limited research on automated methods for

identifying interictal abnormalities. Thomas et al. [12]
developed a classification system based on IEDs detection,
which comprised pre-processing, waveform-level classifi-
cation using a Convolutional Neural Network (CNN), and
EEG-level classification using a support vector machine. The
dataset was obtained from Massachusetts General Hospital
(MGH), Boston, and was recorded using the International
10-20 electrode system, the age of the patients is not
specified. Their approach involved analyzing 30-minute EEG
recordings of 156 participants, which included 93 patients
with epilepsy with annotated IEDs and 63 spike-free EEGs.
The system achieved a mean 4-fold classification accuracy of
84% for classifying EEGs with and without IEDs.

In a follow-up study, Thomas et al. [13] trained and tested
a CNN on a larger database from 545 subjects – 84 patients
with epilepsy (43males aged 35.2±27.2 years and 41 females
aged 37.1±28.2 years) with annotated IEDs and 461 EEGs
from people without epilepsy. Their system achieved a false
detection rate of 0.2±0.1 per minute with 80% sensitivity on
the MGH dataset. Furthermore, they evaluated their detector
on two additional datasets: one from the Medical University
of South Carolina with a range of ages from 0 to above
70 years, where the false detection rate at 80% sensitivity
was 1.4 per minute, and another from the National University
Hospital Singapore with 43 males (age 58.8±18.4 years) and
32 females (age 63.9±17.8 years), achieving an agreement
accuracy of 81.4% with a clinical expert.

Lourenco et al. [15] built a VGG network to detect
IEDs. EEG data from 217 patients between 4 and 72 years
of age were used. The patients were randomly selected
from the digital database of the Medisch Spectrum Twente
in the Netherlands. The dataset analyzed in this study
comprised interictal EEGs obtained from patients with either
focal (50 patients) or generalised (49 patients) epilepsy,
which contained IEDs. The dataset also included EEGs
with non-epileptiform abnormalities (51 patients) and normal
EEGs (67 patients). The method was trained on 2-second
EEG epochs from patients with focal (39 patients) and
generalised (40 patients) epilepsy, as well as 53 people
without epilepsy. Their approach achieved a sensitivity of
79% on the independent test set.

Shoji et al. [16] developed a CNN for detecting both ictal
and interictal epileptic abnormalities in children. The dataset
used in this study was obtained from 19 patients at Juntendo
University Nerima Hospital in Japan. The patients’ ages
ranged from 6 to 15 years old, and the dataset consisted of
multiple measurements from each patient taken on different
occasions. The highest sensitivity that their method achieved
was 77%. Significantly, all 19 patients had generalised
epilepsy. In contrast, our cohort of nearly 600 children had
a mixture of focal and generalised epilepsy, which more
accurately reflects the heterogeneity of a paediatric epilepsy
population.

De et al. [25] conducted a study on unsupervised deep
learning models, specifically Autoencoders and Variational
Autoencoders, for detecting IEDs in adults. Their dataset
consisted of 203 clinical EEGs, with 115 from patients
diagnosed with epilepsy containing IEDs, and 88 normal
EEGs. The best performance achieved a sensitivity of 81.9%
and a specificity of 91.7%.

Zhang et al. [26] used a convolutional neural network
framework for automatic IED detection in EEG analysis.
They transformed the research topic into a 4-labels classi-
fication problem and validated the algorithm on long-term
EEG recordings from 11 pediatric patients with epilepsy.
The computational results demonstrated high classification
accuracy, reaching up to 87%. Rao et al. [37] proposed a novel
IED detection approach called ‘‘IED Conformer’’, which is
based on Transformer architecture. By analyzing EEG data
from 11 pediatric epilepsy patients, their approach achieved
an IED detection accuracy of 96.11%.

Previous research (Table 2) has primarily relied on
annotated epileptiform abnormalities, which is laborious.
An automatic method that could identify epileptiform abnor-
malities without human annotations would be highly bene-
ficial. To our knowledge, no existing research has explored
automated epileptiform abnormality identification that does
not require specific start and end times for epileptiform
abnormalities. Our method addresses this gap and can iden-
tify epileptiform abnormalities based on multiple channel
EEGs without annotations from clinicians. This method
achieved sensitivity, specificity and accuracy above 77% on
the independent test set, indicating good generalizability.
Although our method’s quantitative performance was inferior
to that of previous methods [12], [13], [43], it was specifically
developed and evaluated in the real-world setting of a
diagnostic paediatric EEG laboratory, with a heterogenous
patient case-mix. In addition, our method can recognize
epileptiform abnormalities in children without the need for
domain experts to estimate features and time-consuming
human annotations. Moreover, in some work [12], [14], the
epochs in the training and testing set may be from the same
patient. This will result in overfitting, and the models may
not generalise well. In our training and testing, we took
care to separate the children into either the training or test
set to ensure the independence of the test set and mitigate
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overfitting. Furthermore, our method does not require a large
amount of time and computational resources compared to
most deep learning methods.

Previous studies on brain event detection in EEG record-
ings have addressed the concept of channel importance.
Alotaiby et al. [44] developed a seizure detection method in
EEGs and demonstrated that channel C3-C4 exhibited the
best seizure detection performance compared to other single
channels. Similarly, the work presented in [45] indicated that
channels C3 and C4 yielded the most favourable results in
EEG classification. Temko et al. [46] presented a seizure
detection system based on SVM, where the utilization
of a single channel C3-C4 achieved the maximum ROC
(Receiver Operating Characteristic) in their EEG recordings.
Furthermore, in the study conducted by Ellis et al. [47],
a seizure detection method in EEGs highlighted that chan-
nels T8 and C3 were identified as the top two most important
channels.

In this study, we also find that channel C3 is important
in identifying epileptiform abnormalities in EEGs. The use
of SHAP to evaluate channel importance is significant in
the context of attributing plausible biological explanations
to findings derived from AI models. In this regard, we are
uncertain as to why the C3 channel was found to be
important in our study. Central electrodes (C3, and C4) are
involved in generalised epileptic discharges and in some
focal discharges. It is possible that the relative importance
of C3 may be attributable to an over-representation of
left hemispheric focal epilepsies within the dataset. This
possibility is supported by the relative SHAP importance of
the T3 and T5 channels, which are adjacent to C3 and which
may be particularly active in self-limiting epilepsy with
centro-temporal spikes, for example [48]. The distribution of
discharges and lateralization of the epilepsy was not included
in the information provided to the algorithm. The importance
of a central, left-sided channel may not generalize to other
epilepsies and will need to be validated in further work in
order to understand the biological significance of the finding.

A limitation of this study is the uncertainty regarding
whether the method distinguishes EEGs with epileptiform
abnormality based solely on interictal spike abnormality
in the C3 channel or if other ‘‘unseen’’ measurements
are involved. In future work, we aim to further explore
explainable AI techniques to provide insights into the reasons
behind the method’s predictions and to build appropriate
trust with clinicians. Additionally, we intend to integrate this
method into a web server, enabling practical use for research
purposes.

Another limitation is that the study focuses on identifying
interictal epileptiform abnormalities in school-aged children
and adolescents, aged 6 to 18 years old. We acknowledge
the absence of a much younger age group in our analysis.
In future research, we aim to address this limitation by
expanding our dataset to encompass a wider age range,
ensuring the applicability of our method across different age
groups. Additionally, wewill systematically evaluate how age

influences interictal epileptiform abnormalities to enhance
the comprehensiveness of our findings.

In this study, we have provided visualizations of the
spectrogram of each EEG to aid clinicians in verifying epilep-
tiform abnormalities in the frequency domain. Additionally,
the importance of channels has been demonstrated using
SHAP, which may assist clinicians in recognising EEGs
with epileptiform abnormalities. It is important to note that
certain events were EEG visible but not spectrographically
visible [49], which could affect the method’s performance.
To enhance its effectiveness and suitability for clinical
settings, we plan to integrate EEG signals and spectrograms
into the method in future work.

V. CONCLUSION
In this study, a method for identifying epileptiform abnor-
malities on multiple channels of paediatric EEGs was
developed using transfer learning with five popular CNN
architectures (Inception, ResNet, DenseNet, VGG16, and
VGG19). The CNNs were trained on the spectrogram of
EEGs, with the convolutional layers being kept and frozen
while the fully connected layers were updated for the new
situation. The initial weights of the networks were taken
from their previous training on the ImageNet dataset. Unlike
traditional feature-based machine learning methods, our
method does not require domain experts to extract features
and can automatically identify epileptiform abnormalities.
This method has the potential to enhance diagnostic accuracy,
save clinicians time, and ultimately improve the quality of
care for patients.

APPENDIX
Our code can be accessed at GitHub (https://github.
com/LanWei0624/-identification-of-paediatric-EEGs-with-
interictal-epileptiform-abnormalities)
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