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ABSTRACT Phase picking is a critical task in seismic data processing, where deep learning methods have
been applied to enhance its accuracy. While lightweight deep learning networks have been optimized for
edge computing devices, there is a lack of networks developed explicitly for embedded systems. This paper
presents a seismic phase picking model, a hybrid network integrating convolutional neural networks and
Transformer, designed for embedded systems. Optimizing network parameters and computational resources,
the model significantly reduces resource consumption while guaranteeing accuracy. It employs a multi-
branch architecture. Specifically, the global branch employs amodified self-attentionmechanism, effectively
extracting global features through shared contextual information. The local branch retains local information
from the input features. Such a multi-branch architecture facilitates effective interaction between global
features and local details, therebymore efficiently capturing the relationships among features. Themodel can
be configured into variants with different sizes to match various embedded systems. This research evaluated
the model using the Stanford Earthquake Dataset, achieving a precision of 99.9% for the P-phase and 99.3%
for the S-phase. On Raspberry Pi, the model reduced inference time by 58.1% compared to the earthquake
transformer while maintaining comparable detection performance.

INDEX TERMS Phase picking, lightweight network, modified self-attention, embedded systems.

I. INTRODUCTION
In recent years, with the rapid advancement of science and
technology, research in seismology has deepened. These
studies not only aid researchers in better understanding
the causes and characteristics of earthquakes but also pro-
vide scientific foundations for earthquake data analysis and
inversion, the development of early warning systems, and
disaster risk assessment [1], [2], [3]. Utilizing advanced mon-
itoring equipment and data analysis techniques, researchers
can more accurately predict seismic activity and formu-
late corresponding warning and emergency response plans,
thereby effectively reducing the harm that earthquakes pose to
society.

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

In seismic data processing, phase picking is a crucial
and challenging task. Traditional machine learning methods
primarily rely on manually extracted features and classi-
cal algorithms, such as PAI-S/K, [4] FilterPicker, [5] and
AIC [6]. Thesemethods typically requiremanually set thresh-
olds, are susceptible to noise, and usually cannot match the
accuracy of manual picking. In contrast, deep neural net-
works can automatically learn complex features from large
datasets without manual feature extraction. They outper-
form traditional methods in accuracy and generalization and
have shown promising results in seismic data denoising,
phase picking, and data inversion [7], [8]. However, per-
formance enhancement is accompanied by increased model
size and longer inference times. As distributed computing
and IoT technologies are increasingly applied to geophys-
ical instruments, the demand for on-site seismic phase
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picking is rising, driving networks with fewer parameters and
lower FLOPS.

Existing research on lightweight networks primarily tar-
gets mobile and edge devices. Although processors on edge
devices are less potent than GPUs/TPUs, their computa-
tional capacity is still considerable. However, controllers in
existing geophysical instruments mainly employ embedded
CPUs/MPUs designed for low power consumption and high
efficiency. Despite limitations in processing speed and par-
allel computation, embedded CPUs/MPUs have been applied
intelligently in diverse domains, such as smart agriculture [9],
[10], fisheries [11], and livestock management [12], [13].
Given their extensive use in geophysical exploration instru-
ments, this research intends to design a seismic phase picking
network, optimized for embedded systems.

When it comes to designing efficient computational net-
works, Convolutional Neural Networks (CNN) are favored
concerning their processing speed and strong inductive capa-
bilities, making them a cost-effective choice for lightweight
networks. Nonetheless, CNNs are constrained by their limited
local receptive fields, capturing local spatial correlations in
images at each layer but failing to account for global inter-
actions, which hinders further performance enhancement of
the model [14], [15], [16]. Compared to CNNs, Transformers
offers a novel paradigm by implementing global interac-
tions through self-attention mechanisms rather than focusing
solely on local spatial correlations. In computer vision, Trans-
formers have demonstrated superior performance to CNNs
in many existing studies. It effectively captures informa-
tion across the entire image by decomposing images into
a sequence of tokens and leveraging self-attention mecha-
nisms. To enhance Transformer performance, the trend is
toward increasing model parameters, which requires substan-
tial computational resources [17], [18], [19].
On this basis, hybrid networks that integrate the strengths

of Transformers in learning global context with the powerful
inductive biases of CNNs have manifested significant perfor-
mance improvements in image processing research [20], [21],
[22], [23]. These networks facilitate global feature interaction
while preserving local feature details.

This study revolves around applying a seismic phase
picking Transformer (SPPFormer) on embedded systems,
proposing a lightweight deep learning network that integrates
CNN and Transformer. This hybrid network integrates the
inductive learning of CNN with the global perception ability
of the Transformer. SPPFormer uses a multi-branch archi-
tecture, where the global branch modifies the self-attention
mechanism in the Transformer, optimizing network parame-
ters and computational resources to achieve a balance of high
accuracy and fast inference speed on embedded systems. The
local branch retains local input features. This multi-branch
design allows the network to learn global and local infor-
mation, effectively capturing relationships between features
and aiding in accurately identifying P-waves and S-waves
in seismic signals. The contributions of this study are as
follows:

1. A lightweight deep learning network named SPPFormer,
which integrates CNN and Transformer, is presented for seis-
mic phase picking on embedded systems.

2. The SPPFormer block employs a multi-branch structure
that facilitates effective interaction between global attributes
and local details, thereby more effectively capturing inter-
feature relationships.

3. The SPPFormer can be configured into variants with
different model sizes to match the computational capaci-
ties and resource constraints of embedded systems, enabling
deployment on various devices.

II. RELATED WORKS
A. LIGHTWEIGHT NEURAL NETWORKS
With the flourishing applications of machine learning, there
is a surging demand across diverse domains to harness the
potential of deep neural networks effectively. This demand
has spurred research into efficient network architectures. For
instance, the MobileNet [24] drastically alleviates the com-
putational burden of traditional convolution operations by
introducing depthwise separable convolutions, making them
more applicable to resource-constrained edge computing
environments. MobileNetV2 [14] further refines the design
by incorporating inverted residual modules. Building on this,
research efforts have been targeted at proposing more effi-
cient CNN architectures, such as Inception [25] and Mnas-
Net [26], designed to optimize network performance and
reduce computational cost. Another line of research focuses
on the development of lightweight networks, such as Shuf-
fleNetv1 [27], ESPNetv2 [28], GhostNet [29], MobileNeXt
[30], EfficientNet [31], and TinyNet [32]. These modeling
strategies aim to strengthen computational efficiency with
as few parameters as possible. Despite this, these architec-
tures typically emphasize capturing local spatial correlations
within convolutional layers instead of global information
exchange, which could be a limitation in their applications.
Large matrix computations, particularly on CPUs, still pose
a considerable computational overhead.

B. SELF-ATTENTION MECHANISMS
Recent advancements reveal that leveraging self-attention
mechanisms and extensive datasets, Vision Transformer
(ViT) [33] and its variants [34], [35], [36], [37], [38]
have achieved unprecedented inference accuracy in numer-
ous computer vision tasks [39], [40]. However, ViT-based
networks often require significant computational power
and memory resources. Researchers are exploring diver-
sified approaches to optimize the operational efficiency
of these networks. Notably, MobileViT [21] integrates the
lightweight MobileNet [28] with the ViT structure, main-
taining a lightweight profile while achieving impressive
performance in visual recognition tasks. Another study by
EdgeViT [41] introduces a local-global-local bottleneck
design to effectively reduce model size, which promotes
deployment in practical applications. Additionally, studies
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FIGURE 1. Overview of SPPFormer. The full details of each block were presented in the methods section.

integrating Transformers and CNNs, such as RepViT [42],
manifest that such combinations can dramatically foster
performance. Concurrently, the MobileFormer [43] model
employs a parallel strategy, using MobileNet [24] to capture
local features and a Transformer model for global fea-
tures, integrated through a bidirectional bridging mechanism,
thereby drastically lifting overall performance. Finally, Effi-
cientFormer [23] focuses on a hybrid approach, combining
the merits of convolutional and self-attention layers, ensuring
both high recognition accuracy and network efficiency.

C. MODEL EVALUATION
It remains a challenge to find networks that reduce param-
eters and computational operations while maintaining the
performance of hybrid CNN and Transformer architec-
tures. Although some hybrid networks have made attempts
at inference on edge devices, the chips used in relevant
research are still designed for high computational perfor-
mance. In lightweight model research, emphasis is mainly
laid on model parameters and computational complexity.
In contrast, research by Dehghani [44] and Vasu [45] reveals
that inference time is equally critical when performing infer-
ence on single-board computers and does not always directly
correlate with the model’s parameter count and computa-
tional operations.

Moreover, in existing research, efforts to optimize model
inference time are relatively scarce, as evidenced by networks
such asMNASNet [26],MobileNetv3 [46], and ShuffleNetv2
[16]. This is particularly noticeable in the study of hybrid
CNN and ViT architectures, where the mainstream focus
lies on parameters and computational complexity rather than

higher inference efficiency. A key reason for this trend is
that assessing inference timemust consider specific hardware
characteristics. Different processor platforms have unique
instruction sets and compilation tools.

III. MTEHODS
This research aims to develop a lightweight hybrid CNN and
Transformer network to better balance inference time and
accuracy when deploying the network on embedded systems.

A. PRINCIPLE OF MODEL
This section provides a comprehensive explanation of the pro-
posed network. For phase picking on embedded systems, this
research has designed a resource-efficient deep learning net-
work that fuses CNNs with Transformers, which can account
for the transformation and transition of different semantic
features between CNNs and Transformers. The model pre-
cisely predicts each time point by mapping input time series
samples to corresponding probability outputs. This approach
efficiently processes time series data and reliably detects
crucial information in seismic signals.

In the initial stage of the network architecture, unlike the
Vision Transformer (ViT) [33], which linearly maps input
data into tokens, this research employs a series of convo-
lutional layers to process the input [23], [47], [48]. Given
the computational challenges of the Transformer’s atten-
tion mechanism, which scales quadratically with the rise of
tokens, extensive feature data drastically raise computational
complexity. To solve this, some studies have applied attention
mechanisms only to local sub-regions or tokens of the feature
data [49], [50], [51], [52]. While this reduces computational
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complexity, it is at the price of ViT’s key advantage of global
information aggregation, potentially reducing inference accu-
racy, as global contextual information is crucial in the model.

The SPPFormer block developed in this study involves
multiple parallel branches to address this. For one thing, the
MSA is applied within the global branch, leveraging con-
textual information for global feature extraction. In addition,
the local branch maintains the integrity of original features
for further data processing. More detailed information is pre-
sented in section C . Moreover, this research proposes MSA,
detailed in section D, to facilitate global feature extraction
while ensuring compatibility with embedded systems.

B. OVERALL DESIGN ARCHITECTURE
Figure 1. illustrates the overall architecture of the model.
Initially, a series of standard convolutional layers is adopted
to transform the input data into features instead of applying
the linear mapping method in Transformer. This approach
captures the features of the seismic data with lower com-
putational expense, involving three convolutional layers with
3× 3 kernels and a stride of 2. The SPPFormer block utilizes
a multi-branch design to preserve local information during
feature extraction and concurrently learn local and global
information. Furthermore, MSA is introduced to restore
representational capacity lost during feature extraction to
capture the relationships between features more effectively.
The deconvolution module maps the extracted features onto
a probabilistic sequence correlated with the P and S phases of
seismic signals at each point in time.

C. SPPFORMER BLOCK
Let X ∈ RL×C represent the input feature for the SPPFormer.
Through XPW = PW (X ), the features undergo point-wise
convolution (PW) to produce output XPW ; then, they are
passed through a bottleneck layer (BottleNeck) for feature
dimensionality reduction and enhancement of the model’s
non-linear expressive capabilities, yielding the output

XBottle = BottleNeck(XPW ). (1)

The updated features XBottle, are split into two branches:
local and global. The local branch passes XBottle directly in
a residual manner, while the global branch subjects XBottle

to depth-wise convolution (DW) convolution, producing
output XDW ,

XDW = DW (XBottle). (2)

This is followed by a modified self-attention (MSA) mech-
anism to obtain XMSA,

XMSA = MSA(XDW ). (3)

The features extracted from the local and global branches
are summed to yield XFeature,

XFeature = XBottle + XMSA. (4)

To preserve more information, XMSA and XFeature are con-
catenated along the channel dimension to obtain XConcat ,

XConcat = XFeature + XMSA. (5)

In the hybrid architecture that integrates CNNs with Trans-
formers, noise often disrupts the low-level features extracted
by CNNs, exerting an impact on global information transfer.
To mitigate this, a skip-connection branch named lightbag is
applied. It adds the features extracted by PW and DW convo-
lutions, fuses them through a 1×1 convolution, and then adds
the fused information to XConcat . In this way, an appropriate
receptive field is ensured during skip connections.

Ultimately, the output of the SPPFormer is designated
as XBlock ,

XBlock = lightbag(XPW + XDW ) + Fuse(XConcat ). (6)

D. MODIFIED SELF-ATTENTION
The multi-branch design compensates for the local feature
information loss resulting from attention computation. The
representational power is somewhat diminished as attention
operations are conducted on low-resolution features. This
research modified the attention module to address this, intro-
ducing a modified self-attention mechanism (MSA). The
module’s input and output have the exact dimensions, per-
mitting the stacking of multiple modules to consolidate the
model’s feature extraction capacity.

The structure of MSA is as follows: First, Xi ∈ RL×Ci is
defined as the input to the mechanism. In this research, the
standard output of a CNN is adopted as the input, specifically
a 5 × 5 standard convolution. The input for attention, com-
prising queries, keys, and values, is formed by distributing the
output of the convolutional layer accordingly.

This research aims to enhance the expressive capacity
by facilitating the aggregation of spatial information within
the input feature while mitigating the complexity of train-
ing. To counterbalance the rise in computational costs, the
study eliminated the separate linear transformations applied
to queries and keys, instead representing them as X ′

Q,X ′
K ,X ′

V ,

X ′
Q = reshape(X [0,

Ci
3
]), (7)

X ′
K ,X ′

V = Split(reshape(X [
Ci
3

,Ci])). (8)

where reshape alters the channel count of the input features,
and split bisects the input tensor by channel numbers. The
output of the MSA is XMSA,

XMSA = X + SiLU (UP(X ′′)). (9)

The SiLU activation function is defined as: f (x) =

x ∗ sigmoid (x), with sigmoid (x) being the standard sig-
moid function, mapping values between 0 and 1. The
characteristics of SiLU cover non-linearity and continuous
differentiability, and it is defined across the entire range from
negative to positive infinity. X ′′ is defined as follows:

X ′′
= Concat(X ,Attention(X ′

Q,X ′
k ,X

′
v)). (10)
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Concat denotes the operation of joining two tensors along
their channel dimension. Attention is defined as follows:

Attention(Q,K ,V ) = Softmax(
QKT
√
dk

)V . (11)

where d represents the number of channels in query and key.

IV. EXPERIMENTS RESULTS
Experiments were conducted to evaluate the SPPFormer and
compare with existing networks on the Stanford Earthquake
Dataset (STEAD).

A. EXPERIMENTAL SETTING
The SPPFormer is primarily designed for embedded systems
commonly applied in seismic exploration equipment. Addi-
tionally, its performance on CPUs and GPUs was examined
for comparison. This paper uses the following three proces-
sors and platforms during experiments.

• An ARM Cortex-A53 single-board computer operating
at 1.4GHz, specifically the Raspberry Pi 3 Model B+.
Although categorized as low-end, the ARMCortex-A53
is a quad-core 64-bit processor. In addition, the Rasp-
bian OS and PyTorch 1.6.0 were adopted to execute the
model.

• An Intel Xeon CPU E5-2686 V4 processor based on the
Broadwell architecture, with 18 cores and 36 threads,
and a maximum single-core turbo frequency of 3.0GHz.
Ubuntu 18.04.6 LTS and PyTorch 1.10.1 were utilized
to run the network.

• An NVIDIA GeForce RTX 3090 GPU features 24GB
of GDDR6X memory on a 384-bit bus. It has a core
clock speed of 1,395MHz and a boost clock speed of
1,695MHz, with 10,496 CUDA cores and 328 third-
generation Tensor cores for machine learning. The
system utilizes Ubuntu 18.04.6 LTS and PyTorch 1.10.1.

This research implemented and tested all networks using
the PyTorch framework, with all networks operating based
on the Seisbench library. Inference time for data process-
ing was measured by inputting batches into the network.
The batch size was set to 1024 on the GPU and CPU and
32 on Raspberry Pi, and the runtime on each platform was
recorded. Multiple inferences were executed to record the
average latency to ensure accuracy. During measurement,
unrelated applications were shut down. All computations
were performed using 32-bit floating-point operations.Model
training was implemented on an RTX 3090 GPU platform,
with inference times being subsequently evaluated on varying
platforms.

B. DATASETS
This study trained and tested networks using the STEAD
datasets [53], developed by Stanford University to advance
the application of machine learning in seismology.
The dataset consists of high-quality global seismic and
non-seismic signals recorded at a sampling rate 100 across
three orthogonal components. It is collected worldwide

and features diverse seismic characteristics with detailed
metadata, including event location, magnitude, and station
information. Each waveform record lasts one minute, com-
prising approximately 1.05 million three-component seismic
records and around 100,000 noise samples. The diverse
seismic events facilitate the network’s development, training,
and evaluation. The large-scale, precisely labeled STEAD
dataset supports the advancement of robust deep learning
networks. Stored in efficient HDF5 files with comprehensive
CSV metadata, STEAD allows for rapid data retrieval and
access. During training, the dataset is randomly split into 70%
training, 10% validation, and 20% testing sets, maintaining
the original 100Hz sampling rate.

C. EVALUATION
During training, this research approached phase picking as
a sequence-to-sequence learning problem. Regarding eval-
uation criteria, model output is considered a True Positive
(TP) if the peak probability differs from the actual event time
by no more than 0.35 seconds. Conversely, it is deemed a
False Positive (FP) if the difference exceeds 0.35 seconds.
Additionally, if the model fails to generate a probability
peak matching the actual event, it is classified as a False
Negative (FN).

Based on these definitions, performance metrics were cal-
culated for the classification model, including Precision (Pr),
Recall (Re), F1-Score (F1), and the Matthews correlation
coefficient (MCC), with the following formulas:

Pr =
TP

TP+ FP
(12)

Re =
TP

TP+ FN
(13)

F1 = 2 ×
Pr × Re
Pr + Re

(14)

MCC =
TP× TN − FP× FN

√
(TP+ FP) (TP+ FN ) (TN + FP) (TN + FN )

(15)

The metrics above jointly provide a comprehensive frame-
work for performance evaluation, guiding further improve-
ments and judgments of the seismic phase picking model
efficacy.

D. TRAINING DETAILS
This research examined six size variants, namely SPPFormer-
XXS, XS, S, M, B, and L, as illustrated in Table 1. For
SPPFormer-XXS, -XS, -S, and -M, the feature extraction
module maps inputs to 32 SPPFormer-XXS, -XS, -S, -Mwith
a varying number of stacked self-attention modules set at 1,
2, 3, and 4, respectively. The SPPFormer-XXS, B, and L map
input features 32, 64, and 96 dimensions, each utilizing a
single enhanced attention mechanism. In the meantime, the
number of deconvolution module layers is adjusted to match
the varying dimensions. All networks were trained and tested
on a normalized dataset.
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TABLE 1. Design of sppformer variants with different model sizes.

TABLE 2. Inference performance of different networks on different
platforms.

For training SPPFormer, a batch size of 1024 and an ini-
tial learning rate of 0.01 were set. In addition, the research
adopted the Adam optimizer with an exponential decay learn-
ing rate strategy and trained the model for 100 epochs on the
STEAD dataset. On the premise of guaranteeing randomness
and consistency in data processing, this research randomized
the shuffling of the training set and normalized the input
data. Data augmentation techniques applied during training
included randomoffsets, addition of Gaussian noise, insertion
of random blank gaps, and random zeroing of one or two
channels.

E. MODEL COMPLEXITY
Table 2 compares SPPFormer and other seismic phase pick-
ing networks on model complexity. Inference efficiency was

tested on a dataset of 12,656 samples using NVIDIAGeForce
RTX 3090 GPU, Intel CPU, and Raspberry Pi. The results
demonstrate that GPUs significantly expedite inference in
SPPFormer, whereas CPU and Raspberry Pi require more
time. Take the

SPPFormer-M as an example on the Raspberry Pi. It can
process 14 samples, each 60 seconds long, in one second, ade-
quately serving seismic exploration and relevant applications.

Increasing the number of MSA in SPPFormer, without
changing the input feature dimension, brings about more
model parameters and longer inference time. On the contrary,
enlarging the input feature dimension while not changing the
MSA number leads to a further increase in parameters but a
decline in inference time. This is partly because the increase
in feature dimensions dramatically boosts the parameters, but
large matrix multiplications are executed faster on hardware
compared to several smaller ones, thereby shortening infer-
ence time. Similarly, larger matrices reduce the number of
memory access operations, decreasing inference time. Apart
frommodel size and parameters, the number of floating-point
operations (FLOPs) required by the model is also worth
considering. Figure 2. compares several learning-based mod-
els from the three dimensions of model size, parameters,
and FLOPs. When deploying models in practice, selecting a
variant that aligns with the device’s memory capacity, power
consumption constraints, and inference time requirements is
essential.

The identification and localization of the P-phase and
S-phase in seismic data is illustrated in Table 3. To quantify
the performance of the model, a set of statistical metrics is
employed, including mean and standard deviation (std), mea-
sured in seconds, as well as the mean absolute error (MAE).
These metrics shed light on the accuracy and reliability of
the model. The mean reflects the average deviation between
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TABLE 3. Performance of different networks on phase picking.

FIGURE 2. Parameters and FLOPs. The scale of the abscissa axes is
logarithmic. The radius of the graph in the figure is positively correlated
with the corresponding model size.

the model’s picking time and the actual phase arrival time
of seismic events, while the standard deviation can reveal
the variability of these picking times. Additionally, the MAE
represents the average of all individual prediction errors and
is an intuitive measure of prediction accuracy.

The comparative networks utilized during tests are derived
from official pre-trained models, which have been opti-
mized and evaluated through retraining on the seisbench.
After a detailed comparative analysis, the results demonstrate
that the SPPFormer-L exhibits performance comparable to
Earthquake Transformer (EQTransformer) [55]. Moreover,
SPPFormer-L shows superior performance in most metrics
compared to other competing networks.

Different configurations of SPPFormer, when compared
with other seismic phase picking networks, consistently
achieve similar or even better picking accuracy for both
P and S phases. SPPFormer-L, in particular, has a higher
accuracy than the top-performing EQTransformer in pick-
ing both phases and a remarkable inference time advantage.
Enhancing the input feature dimensions in SPPFormer can
yield better phase picking results than merely stacking MSA.
Although this enhancement significantly enlarges themodel’s
parameters, it can reduce inference time. Conversely, main-
taining a small input dimension while stacking MSA brings
about a minor parameter increase with improved inference
performance, albeit at the cost of longer inference time.

F. PREDICTION ON SEISMIC DATA
Figure 3. illustrates the phase picking performance of
SPPFormer-L on test sets using Raspberry Pi across various
noise levels. The network performs well in phase picking
with both high and low signal-to-noise ratios (SNR) in
Figures 3a and 3bwhile exhibiting strong robustness to highly
noisy data, as presented in Figure 3c. This can be attributed to
its structural design, which mitigates its sensitivity to noise in
seismic data compared to traditional phase picking networks.
Additionally, in Figure 3d, when the E-component is missing,
and only two valid components are available, SPPFormer-L
also achieves excellent prediction results.

Figure 4 illustrates the picking results of SPPFormer-L and
comparison models on the STEAD test set. SPPFormer-L and
EQTransformer demonstrate similar picking performance,
significantly outperforming other models. Phasenet shows
good picking capability at high SNR but performs poorly on
P-wave picking in low SNR conditions. LEQNet excels at
P-wave picking but fails to pick S-waves in both scenarios.
SEANet is capable of picking both P-waves and S-waves,
but the P-wave picking time deviates from the actual time
by approximately 0.5 seconds. DPPPicker performs poorly
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FIGURE 3. Panels a-d show four representative waveforms of SPPFormer applied to the test set. Each waveform has a length of 60 seconds with
100 samples per second. Each panel displays only a 30-second-long waveform containing P and S phases. The top of each panel shows three channel
waveforms, and the bottom shows the output prediction of phase picking. The vertical color-coded lines in panels are the manually selected arrival
times from the catalog.

in both scenarios, with ineffective picking if the threshold is
set too high.

Phase picking is highly dependent on the geological struc-
ture, meaning signals observed in different geographical
backgrounds may exhibit distinct characteristics. To enhance
the network’s generality and validate its adaptability and
reliability under varying geological conditions, we con-
ducted thorough testing and analysis using continuous
waveform data provided by the EarthScope Consortium
(Figures 5a and b) and National Institute of Geophysics
and Volcanology (INGV) (Figures 5c and d). EarthScope

Consortium, which operates the U.S. National Science Foun-
dation’s geodetic and seismic facilities, is dedicated to
supporting transformative global geophysical research and
education. INGV is the Italian National Institute, provides
extensive seismic data resources crucial for seismological
research and disaster risk assessment.

Data preprocessing is a crucial step to ensure the accu-
racy of the network. Before testing, necessary preprocessing
steps were performed on the raw data, including denoising,
filtering, and resampling, to ensure data quality meets the
analytical requirements. Additionally, to enhance the training
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FIGURE 4. Picking results of SPPFormer-L and comparison models on the
STEAD test set. Panels a and b have SNR of 13.2 and 30.5, respectively.
Each waveform is 60 seconds long with 100 samples per second. Each
panel displays only a 20-second segment containing P and S phases. Only
the vertical component is shown above, although all three components
are used as model inputs.

and prediction efficiency of the network, the preprocessed
continuous data was segmented into 1-minute windows.
In practical implementation, appropriate overlap between
these windows is introduced to increase data continuity and
reduce boundary effects. These 1-minute data windows can
be individually or batch-wise input into the SPPFormer.
Before feeding the data into the network for prediction, nor-
malization was applied to eliminate the influence of varying
magnitudes and dimensions of the data, thus improving the
accuracy of event picking.

FIGURE 5. Test results on continuous waveform data. The model’s
performance on continuous waveform data is demonstrated by applying
the model to a representative segment of continuous waveforms from the
EarthScope Consortium (Panels a, b) and INGV (Panels c, d). Panel a and c
have multiple events within a two-minute window. Panel b and d have
events occurring near the edges. Only the vertical component is depicted
above, while all three components are taken as model inputs.

The training data for SPPFormer consists solely of sam-
ples from individual phase picking events. However, the
model has demonstrated strong adaptability and robustness,
as shown in Figures 5a and c. Even in scenarios where
multiple seismic events are present within a single window
and distributed across different time points, this model can
still accurately identify and pick these events. In addition,
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FIGURE 6. The KDE plots of the time residuals of the predicted and true
phase arrivals. Panel a is the distribution of P-picking residuals. Panel b is
the distribution of S-picking residuals.

as shown in Figures 5b and d, the proposed network in
this study can accurately pick complex events at the edges
of the signals. This indicates that the SPPFormer presented
in this research can achieve precise spatiotemporal local-
ization of events within seismic signals, even when these
events are close to the data window’s starting or ending
boundaries.

1) PERFORMANCE OF SPPFORME
The model’s picking error is a crucial performance metric,
which refers to the deviation between the predicted arrival
time of seismic waves by the model and the manually picked.
This paper conducts kernel density estimate (KDE) analysis
to examine the distribution of picking errors. In the test results
presented in Figure 6, density curves of picking errors for
each model are visualized using KDE plots. The curve’s
steepness unveils the concentration or dispersion of picking
errors, while the variation in height displays the distribution
of the model’s phase picking errors in the validation data. The
data points are primarily concentrated in a specific region if
the density curve exhibits a peak.

As shown in Figure 6, except for LEQNet, the time resid-
uals of the remaining models for the P and S phases exhibit a

Gaussian distribution centered around zero, with most residu-
als below 0.1s. Observing the density curves of picking errors
for each model shows that PhaseNet, DPPPicker, EQTrans-
former, and SEANet have similar density curves, revealing
that they have roughly the same distribution. Despite this,
LEQNet’s picking errors deviate significantly from other
models, suggesting that it compromises the model’s accu-
racy to a greater extent when lightweight EQTransformer.
Additionally, among all the models, SPPFormer-L has the
steepest KDE curve, and the most negligible picking errors
correspond to the peak, indicating that its picking errors
are more concentrated. Comparing Figure 6a and b, it can
be inferred that SPPFormer-L performs better in picking P
phases than picking S phases, suggesting that its predictions
are closer to manually selected arrival times, leading to better
fitting of the labeled data.

V. CONCLUSION
This research proposed a seismic phase picking net-
work called SPPFormer, specifically designed to operate
in resource-constrained embedded systems. This network
optimizes the trade-off between inference accuracy and com-
putational speed, ensuring practicality and efficiency on
low-power devices. The architecture of SPPFormer effec-
tively merges CNN’s capability in feature extraction and
the global perception advantage of Transformer in capturing
long-range dependencies. Additionally, this study modified
the standard attention mechanism of the Transformer to
enhance its representation capability in complicated pattern
recognition of seismic signals. Moreover, to validate the
effectiveness of the SPPFormer, a series of seismic phase
recognition experiments were carried out on the Raspberry
Pi. The experimental results demonstrate that the SPPFormer
network maintains a high level of picking accuracy and
exhibits fast inference speed when executed on this hard-
ware. The current research lays a theoretical foundation and
provides experimental evidence for developing efficient seis-
mic monitoring systems in embedded or edge computing
environments.

While the SPPFormer achieves a commendable balance
between inference accuracy and computational speed, it is
not without its limitations, particularly regarding the com-
putational complexity inherent in Transformer models. The
quadratic computational requirement of the Transformer’s
self-attention mechanism can pose challenges, especially on
resource-constrained embedded systems where processing
power and energy efficiency are critical. Despite the modi-
fications made to enhance the representation capability for
seismic signal patterns, themodel’s scalability may be limited
by the increased computational demand as sequence lengths
grow. Future work could optimize the self-attention mecha-
nism tomitigate this complexity, ensuring that the SPPFormer
remains practical for real-time seismic monitoring on low-
power devices.
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