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ABSTRACT The success of Transformer-based models has encouraged many researchers to learn CAD
models using sequence-based approaches. However, learning CAD models is still a challenge, because they
can be represented as complex shapes with long construction sequences. Furthermore, the same CADmodel
can be expressed using different CAD construction sequences. We propose a novel contrastive learning-
based approach, named ContrastCAD, that effectively captures semantic information within the construction
sequences of the CAD model. ContrastCAD generates augmented views using dropout techniques without
altering the shape of the CAD model. We also propose a new CAD data augmentation method, called
a Random Replace and Extrude (RRE) method, to enhance the learning performance of the model
when training an imbalanced training CAD dataset. Experimental results show that the proposed RRE
augmentation method significantly enhances the learning performance of Transformer-based autoencoders,
even for complex CADmodels having very long construction sequences. The proposed ContrastCADmodel
is shown to be robust to permutation changes of construction sequences and performs better representation
learning by generating representation spaces where similar CAD models are more closely clustered. Our
codes are available at https://github.com/cm8908/ContrastCAD.

INDEX TERMS Contrastive learning, CAD model, transformer autoencoder, CAD generation.

I. INTRODUCTION
CAD models are widely used in various industrial applica-
tions such as product design, circuit design, and component
manufacturing. They are used from initial design to final
product production when designing 3D products. These CAD
models are often generated by experienced CAD designers
using commercial CAD tools such as Solidworks and
AutoCAD. However, generating complex and professional
CAD models is a challenge, even when using well-known
CAD tools, because CAD models involve various geometric
shapes and details, requiring professional CAD expertise.

The associate editor coordinating the review of this manuscript and

approving it for publication was Weiping Ding .

CAD models are represented in the form of sequences
with multiple operations during the design process in CAD
tools, known as construction sequences, and each operation
represents a drawing step of the CAD model, which finally
results in the 3D shape of the CAD model.

CAD models are basically 3D shapes, and many studies
have been conducted in the computer vision domain.
There have been many attempts to learn CAD models
in a discretized form such as point clouds or polygonal
meshes [1], [2], [3], [4]. However, these discretized forms
have limitations in learning CAD models as they neglect
key shape details that CAD designers consider when creating
CAD models. CAD designers carefully design CAD models
in sequence using construction sequences, but these aspects
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are ignored when we learn CAD models using discretized
representations. In contrast, numerous researchers have tried
to learn CAD models using construction sequences owing
to the similarity between sequences in natural language
processing and construction sequences in the CAD model.
In particular, Transformer-based models that are highly
successful in natural language processing and computer
vision areas exhibited excellent performance for learning
CAD models based on construction sequences [5], [6], [7].
One of the pioneering works for learning CAD models
using Transformer-based models is DeepCAD [5], which
represents CAD models in the form of sketch and extrusion
pairs using construction sequences and reconstructs CAD
models using a Transformer-based autoencoder.

Although recent Transformer-based models have demon-
strated some success in learning CAD models, there are still
major issues that need resolution. One of the major difficul-
ties is that a single CADmodel can be represented bymultiple
CAD construction sequences. Figure 1(a) shows an example
where two different CAD construction sequences generate
the same CAD models. Furthermore, similar construction
sequences can generate very different CADmodels, as shown
in Figure 1(b). This example also demonstrates that a few
operation changes in construction sequences can produce
completely different CADmodels. This explains the need for
employing contrastive learning when learning CAD models:
the model should learn to position similar CAD data close to
each other in the latent spacewithin the training dataset, while
dissimilar CAD data should be positioned farther apart.

Various CAD data augmentation methods have been
studied by researchers to enhance the learning performance
of the model. DeepCAD, a well-known CAD training dataset,
is an imbalanced dataset where the proportions of each com-
mand within the construction sequence are not uniform [5].
Therefore, when a model is trained on this imbalanced
dataset, it cannot sufficiently learn some 3D shapes based
on specific commands; consequently, the diversity of the
learned CAD model may be insufficient. We also point out
that many previous works have encountered considerable
difficulties in learning long construction sequences in the
training dataset that are necessary for representing complex
CAD models. Various attempts have been made to address
these issues using data augmentation techniques to increase
the training data so as to enhance the learning performance.
Wu et al. proposed a method that swaps some operations
between two different construction sequences in the training
dataset [5]. While their CAD data augmentation method
is effective in increasing CAD data and also improves the
learning performance of the model by generating completely
new 3D shapes in the training dataset, it is applicable to only
a subset of the training data. Xu et al. augmented training
data by adding random noise to the coordinates of geometry
tokens [6]. However, their approach only adds some noise
to existing shapes and has limitations in terms of generating
diverse and entirely new 3D CAD shapes.

We propose a novel CAD model learning approach based
on contrastive learning. The proposed CAD model learning
comprises three main aspects. First, we propose a new
CAD data augmentation method, called Random Replace
and Extrude (RRE), to enhance the learning performance
of the model when training an imbalanced training CAD
dataset. Second, we effectively reconstruct CAD construction
sequences using a Transformer-based autoencoder. The
proposed Transformer-based autoencoder takes construction
sequences as input, performs embedding and self-attention
in the encoder to create latent vectors, and reconstructs
construction sequences from these latent vectors in the
decoder.

As a final step, we propose a ContrastCAD model
based on contrastive learning to effectively capture semantic
information within the construction sequences of the CAD
model. Contrastive learning aims to train positive pair data to
have similar embedding values while ensuring that negative
pair data have dissimilar embedding values. In computer
vision communities, transformation-based contrastive learn-
ing is widely used because various transformation-based
techniques are simple and effective techniques for image-
based applications, but these techniques can lead to invalid
CAD models when applied to CAD models having 3D
shapes.

We are inspired by a dropout technique in natural language
processing that masks a certain portion of embedding values
to zero randomly and considers the resulting embedding
vectors as positive pairs. We apply two different dropout
masks to the latent vectors to form positive pairs and construct
negative pairs from latent vectors of different CAD models
within the same batch. In this way, we generate augmented
views without changing the shape of the CAD model. Our
goal is to train latent vectors of similar CAD models to
be closer and latent vectors of dissimilar CAD models to
be further apart. We also aim to show that our model’s
representation space, through contrastive learning, exhibits
better clustering results compared to existing approaches.
Finally, when the proposed ContrastCAD is well-trained,
we can automatically generate diverse and complex CAD
models from learned latent vectors.

Our contributions can be summarized as follows:
• We propose the ContrastCAD model, which per-
forms novel representation learning by augmenting
the embedding for CAD models through contrastive
learning.

• The proposed ContrastCAD trains similar CAD models
to be closer in the latent space by reflecting the semantic
information of construction sequences more effectively.
ContrastCAD is also robust to the permutation changes
of CAD construction sequences.

• We introduce a new CAD data augmentation method,
RRE data augmentation, which can be applied to
all CAD training data and substantially improves the
accuracy of the autoencoder during reconstruction.
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FIGURE 1. Two examples illustrating the difficulties of CAD model training. (a) Two different CAD construction sequences can generate the same
CAD model and (b) a few operation changes in the construction sequence produce a completely different CAD model.

II. RELATED WORKS
A. 3D REPRESENTATION LEARNING
For learning representation of 3D models, researchers train
neural networks using data structures such as point clouds,
meshes, and voxels to discretize 3D shapes. Researchers have
also proposed approaches to extract geometric features from
point clouds to construct 3D surfaces [1], [2], [3]. Xu et al.
represented boundary representation (B-rep) from mesh and
point cloud data, introducing a new geometric representation
called zone graph from neural networks [4]. Lambourne
et al. proposed representing CAD models from voxel data
using signed distance functions [8]. Mo et al. successfully
represented the hierarchical features of 3D shapes using
graph neural networks [9]. Jones et al. synthesized 3D
shapes successfully based on geometric representations [10].
Other researchers efficiently represented geometric features
of CAD models represented by B-Rep using neural net-
works [11], [12], [13].

B. 3D CAD GENERATION
There has been considerable progress in automatically gen-
erating CAD models using generative models. Researchers
successfully generated CAD models by representing the
Boolean operations of CADmodels expressed in constructive
solid geometry as hierarchical trees [14], [15], [16]. Lam-
bourne et al. proposed a method to generate CAD models
from voxel data using neural networks [8]. Researchers
suggested methods to represent and automatically generate
CAD models from 2D hand-drawn sketches [17], [18], [19],
[20]. However, these approaches require additional steps to
convert the generated CAD models into a format usable in
CAD tools for editing.

Consequently, recent studies have attempted to represent
CAD models as construction sequences that are user-
editable. Wu et al. proposed a method to represent CAD
models belonging to [21] as construction sequences that
are composed of CAD commands and trained them using
a Transformer-based autoencoder [5]. Other researchers
proposed an approach to generate CAD models using
construction sequences that are represented as discrete code-
books [6], [7]. CADmodels represented by these construction
sequences are user-editable, and Transformer-based models
that are successfully used in the field of natural language
processing can be used to learn these construction sequences.

C. CONTRASTIVE LEARNING
Supervised learning-based approaches require a large amount
of labeled data. There has been considerable research on
self-supervised learning. In particular, contrastive-learning-
based approaches have received immense attention with
a view to conduct representation learning for image or
text data without labeled data. Researchers improved the
recognition performance of neural networks for images
through contrastive learning, using data obtained through
different data augmentation methods for a single image [22],
[23]. Other researchers effectively mitigated representation
collapse during training by handling negative pairs and
positive pairs used in contrastive learning [24], [25], [26].
In the field of natural language processing, Gao et al.
demonstrated that contrastive learning is possible without
data transformation by applying dropout techniques, thereby
alleviating representation collapse issues [27]. Chuang et
al. learned natural language sentence embeddings through a
difference-based approach that performs contrastive learning
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TABLE 1. CAD commands and parameters.

between natural language sentences and their masked coun-
terparts [28].

Recently, Ma et al. represented CAD models in a
multimodal fashion and introduced dropout-based contrastive
learning similar to [27] for effective representation learning
across different modalities [29]. While this approach is effec-
tive for learning multimodal representations, the proposed
contrastive learning method has limitations in that it requires
the existence of data with at least two modalities and also
requires additional steps to align different modalities.

III. CAD CONSTRUCTION SEQUENCE
We represent and learn CAD models using construction
sequences that are composed of a series of CAD commands.
Each construction sequence is in the form of a sequence
of commands, making it easily understandable for humans
and exportable to commercial CAD tools such as Solidworks
and AutoCAD. In addition, it can be easily transformed into
other forms for representing CAD models, such as B-rep.
Recent research has successfully used construction sequences
to learn CAD models [5], [6], [7].

The commands in the construction sequence can be divided
into two parts: sketch and extrusion commands. The sketch
commands draw closed curves on a 2D plane, referred to as
loops. Each loop begins with the ⟨SOL⟩ command, followed
by a series of commands, Ci, sequentially. There are three
types of commands representing sketches: line, arc, and
circle. The extrusion command extends 2D sketch profiles
from a 2D plane into a 3D body.

The extrusion command includes parameters that define
the orientation and origin of the 2D sketch plane, as well as
the extrusion type and the merging form with the existing
3D body. The extrusion type can be one-sided, symmetric,
or two-sided, depending on the sketch plane of the profile.
When the generated 3D body is combined with a previously
created body, the merging with the previously created shape
during extrusion determines whether the existing 3D body
will be joined, cut, or intersected. The extrusion command
includes parameters for the scale of the associated sketch

FIGURE 2. CAD model example defined by two sketch commands and
two extrusion commands. In ‘‘Sketch 1’’, four consecutive commands (A2,
L3, L4, L5) form a loop and the extrusion command E6 generates a single
3D body in Extrusion 1. In ‘‘Sketch 2’’, two consecutive commands (C8 and
C10) form two loops and the extrusion command, E11, generates another
3D body. It merges with the previously created 3D body in a joining form.

TABLE 2. Number and proportion of construction sequences with respect
to three command types in the sketch command: line, circle, and arc.

profile and the extrusion distance. The commands and
parameters used in the paper are listed in Table 1, comprising
a total of 16 types of parameters. Readers can refer to [5] for
further details of each parameter.

Figure 2 illustrates a CAD model example defined by
sketch and extrusion commands. In this example, ‘‘Sketch
1’’ was defined using four consecutive commands (A2, L3,
L4, L5), followed by using the extrusion command E6 to
generate a single 3D body. The extrusion type was one-
sided, as extrusion was performed in one direction. Then,
‘‘Sketch 2’’ was created using two consecutive commands
(C8 and C10), followed by using the extrusion command E11
to generate another 3D body. Next, one-sided extrusion was
performed. Finally, during extrusion, it was merged with the
previously created 3D body in a joining form.

IV. METHOD
The proposed CAD model learning and generation method
are illustrated in Figure 3(a). First, the proposed RRE CAD
data augmentation method augments CAD training data
to enhance the training capability of the model. Second,
we propose a new contrastive learning-based model, named
ContrastCAD, as shown in Figure 3(b). In ContrastCAD,
a Transformer-based autoencoder is employed to efficiently
reconstruct the CAD construction sequences and learn
the latent vectors of the construction sequences based on
contrastive learning. Finally, once ContrastCAD is well-
trained, CAD models are automatically generated using the
learned latent vectors.

A. RRE CAD DATA AUGMENTATION
The DeepCAD dataset [5] we utilized as our training dataset
is a large-scale dataset representing 3D CAD models as
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FIGURE 3. (a) Overview of the proposed CAD model learning and generation method and (b) proposed ContrastCAD model based on
contrastive learning.

TABLE 3. Number and proportion of construction sequences with respect
to three extrusion types: one-sided, symmetric, two-sided.

construction sequences, commonly employed in various
previous studies for training 3D CAD models. However, this
dataset suffers from the following issues.

First, there are three types of commands that represent
sketches: line, arc, and circle. However, the proportion of
construction sequences containing each sketch command in
the dataset is not uniform. Table 2 presents the proportion of
sequences containing each sketch command in the DeepCAD
dataset. As presented in the table, 78.38% of the sequences
contain the line command, whereas only 19.76% contain
the arc command. Consequently, the model may suffer from
limitations in reconstruction performance for CAD models
that include such sketch commands.

Second, the extrusion type parameter of the extrusion com-
mand can have three type of values: one-sided, symmetric,
and two-sided. However, most CADmodels in the dataset are
labeled as one-sided, leading to a limitation in the diversity
of 3D shapes created through extrusion. Table 3 presents the
proportion of sequences with extrusion types labeled as one-
sided, symmetric, and two-sided in the DeepCAD dataset.
As listed in the table, sequences with the one-sided extrusion

type account for 92.60%, while those with symmetric and
two-sided extrusion types account for only 9.00% and 1.71%,
respectively.

We propose a new method that augments CAD training
data called the Random Replace and Extrude (RRE) method.
The proposed RRE data augmentation method operates
as follows. First, a portion of the line commands in the
construction sequences from the dataset is randomly selected
and replaced with arc commands. The parameters of the
replaced arc commands, namely the x and y parameters,
remain the same as those of the original line commands, while
the sweep angle (θ ) parameter is randomly sampled from a
uniform distribution from the integers in the range [1, 255],
and the counter-clockwise flag (c) parameter is randomly
chosen between 0 and 1. This allows the model to better
learn arc commands that need to be augmented more in the
training dataset and introduces various new 3D shapes by
transforming straight lines into curves.

Second, the extrusion type (w in Table 1) and extrusion
distance parameters (δ1, δ2 in Table 1) of the extrusion
commands are randomly changed. Specifically, for w, values
from the set {0, 1, 2} (representing One-sided, Symmetric,
Two-sided, respectively) are randomly sampled from a
uniform distribution, while δ1 and δ2 are randomly sampled
from a uniform distribution from integers in the range
[0, 255]. This enables the model to learn a wider variety
of 3D shapes produced through extrusion, including those
with symmetric or two-sided extrusion types. As a final step,
we randomly choose some sketch and extrusion pairs from
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the current CAD construction sequence during a training
step.We also randomly choose another construction sequence
from the training dataset and select some sketch and extrusion
pairs. We swap these sketch and extrusion pairs from these
two selected construction sequences.

Unlike previous approaches, the proposed RRE data
augmentation can be applied to all construction sequences
in the training dataset, regardless of the number of sketch
and extrusion pairs. Figure 4 visualizes the construction
sequences and their 3D shapes before and after applying
the proposed RRE data augmentation method. As shown
in the figure, the line command (L2) is replaced with an
arc command (A2), introducing a new curve. Furthermore,
changes in extrusion type (from One-sided to Two-sided in
E1) and extrusion distance (from 132 to 140 in E1, from 128 to
132 in E1, and from 140 to 150 in E2, E3) result in a new
CAD model with a thicker base as shown in the figure.
Furthermore, a shape in the form of a cuboid on the top in
the original CAD model transforms into a completely new
shape, a cylinder, in the new CAD model.

B. CONTRASTCAD
1) AUTOENCODER
The proposed autoencoder model takes a construction
sequence Xi = [C1, . . . ,CN ] consisting of a sequence of
N commands, Ck , as input. The encoder generates a latent
vector, zi, projected from Xi. Here, Xi is the i-th element
of a batch composed of m construction sequences. The
decoder predicts a reconstructed construction sequence, X̂i =[
Ĉ1, . . . , ĈN

]
, from this latent vector. The reconstruction loss

(lrec) between Xi and X̂i is then computed.

a: ENCODER
The encoder of ContrastCAD consists of a CAD embedding
layer, a Transformer encoder, and an average pooling layer.
First, the CAD embedding layer takes the input Xi =

[C1, . . . ,CN ] and outputs CAD embeddings [e1, . . . , eN ].
Unlike natural language processing, Ck is separated into
tk that represents the type of command (i.e., line, arc,
circle, extrusion, ⟨SOL⟩, ⟨EOS⟩) and pk ∈ R1×16 that
represents the parameters of the command. As explained
in Section III, there are 16 types of parameters (i.e.,
pk =

[
x, y, θ, c, r, α, β, γ, ox , oy, oz, s, δ1, δ2, b,w

]
). There-

fore, embeddings need to be performed separately for tk
and pk . Let dE denotes the embedding dimension, the CAD
embedding ek ∈ R1dE ) for Ck is calculated as follows by
adding a learned positional encoding epos to the embedding
of tk and pk :

ek = tkW cmd
+ pkW param

+ epos, (1)

where W cmd
∈ R1dE and W param

∈ R16dE are weight
matrices.

Next, the Transformer encoder takes [e1, . . . , eN ] as input,
performs self-attention and feed-forward computations, and
outputs [h1, . . . , hN ]. The Transformer encoder consists of

L stacked layers of self-attention and feed-forward layers,
following the conventional Transformer encoder architecture.
Finally, after passing through an average pooling layer, the
latent vector zi (i = 1, . . . ,m) of Xi is produced as output,
where the dimension of zi is dE .

b: DECODER
The decoder of ContrastCAD consists of a Transformer
decoder and a classifier layer. Similar to the Transformer
encoder, the Transformer decoder comprises L consecutive
self-attention layers and feed-forward layers. The Trans-
former decoder takes a learned constant embedding as
input and performs self-attention and feed-forward com-
putations, attending to zi. The output of the Transformer
decoder is passed to the classifier layer, where it undergoes
linear transformation and outputs softmax probabilities
for the reconstructed construction sequence

[
Ĉ1, . . . , ĈN

]
for [C1, . . . ,CN ]. Each Ĉk consists of the reconstructed
command type t̂k for tk and the reconstructed command
parameter p̂k for pk .

2) CONTRASTIVE LEARNING
We propose to perform contrastive learning by augmenting
embeddings using dropout techniques for CAD models.
It forms positive pairs by applying two different dropout
masks to the latent vectors. This approach is known to
be effective in creating augmented views without data
transformation [27]. Our work is the first to apply this
approach to CAD construction sequences. The contrastive
learning portion of ContrastCAD comprises a projection
layer and a masking layer based on dropout operations,
as shown in Figure 3(b). The projection layer, a simple
linear layer, takes zi (i = 1, . . . ,m) as input and outputs
zproji (i = 1, . . . ,m), projected into a new embedding
space. The introduction of this projection layer is known to
enhance the representation quality of zi and aid in contrastive
learning [22], [23].

Then, zproji is inputted twice into the masking layer. The
masking layer performs standard dropout operations with a
probability of p for each of the two zproji , using different
dropout masks. Therefore, if we denote the outputs of the
masking layer as di and dj (i = 1, . . . ,m and j = m +

1, . . . , 2m), di and dj act as positive pairs in contrastive
learning, having similar but different embedding values.
In contrast, the outputs of other masking layers within the
batch, excluding di, act as negative pairs with respect to di.
By applying this embedding augmentation, we can better
capture semantic information by generating augmented views
for contrastive learning. They can be created for the same
construction sequence without altering the shape of the CAD
model represented by the input construction sequence.

3) TRAINING
The autoencoder learns the representation of construction
sequences in CAD models in an unsupervised manner and
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FIGURE 4. (a) Original CAD model example with construction sequences in the training dataset and (b) newly generated CAD model with construction
sequences using the proposed RRE.

places latent vectors of similar CAD models closer together
and those of dissimilar CAD models farther apart. Therefore,
the proposed ContrastCAD trains the model using both
reconstruction loss (lrec) and contrastive loss (lcont ). Here,
lrec is utilized to learn the latent vectors of CAD construction
sequences, while lcont is used for contrastive learning. Thus,
the loss function of ContrastCAD is defined by combining
lrec and lcont as follows:

lContrastCAD = lrec + λalcont , (2)

where λa is a hyperparameter adjusting the losses.
As each command in the construction sequence is divided

into command type and parameters, it is necessary to learn
representations for command types as well as command
parameters. Therefore, lrec is calculated as the sum of
cross-entropy loss between (tk and t̂k ) and (pk and p̂k ) and
denoted as:

lrec = CE(tk , t̂k ) + λbCE(pk , p̂k ), (3)

where CE represents the standard cross-entropy loss, and λb
is as a hyperparameter adjusting the loss of command and
argument that determines how much the cross-entropy loss
for parameters is reflected in the overall lrec.
In the contrastive learning portion of ContrastCAD, for a

batch of size m, masking layers are applied twice to generate
2m augmented views as shown in Figure 3(b). We reduce

the distance in the latent space between positive pairs among
the 2m augmented views and increase the distance between
negative pairs. Therefore, it is necessary to compute the
similarity between two output vector pairs (i.e., positive and
negative pairs). We use cosine similarity to compute the
similarity. Let the two output vectors of the masking layer
be u and v. Then, the similarity between u and v, SIM(u, v),
is calculated as follows:

SIM(u, v) =
u⊤v

∥u∥∥v∥
, (4)

where ∥ · ∥ means L2-norm.
Therefore, a contrastive loss function, lcont , is calculated

to increase the similarity of positive pairs (di, dj) while
decreasing the similarity of negative pairs (di, dk ), which is
computed as follows:

lcont = − log
exp

(
SIM

(
di, dj

)
/τ

)∑2m
k=1 I[k ̸= i] exp (SIM (di, dk) /τ)

, (5)

where I[k ̸= i] ∈ {1, 0} represents an indicator function
that equals one iff k̸=i, and τ denotes the temperature
hyperparameter.

C. CAD GENERATION
When ContrastCAD is well-trained, it can automatically
generate CAD models from latent vectors. In this study,
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we aim to performCADgeneration using latent-GAN.Unlike
conventional GANs, latent-GAN learns over the latent space,
enabling the generation of discrete data like construction
sequences and capturing complex features of the latent space.

In our CAD generation method, the latent-GAN [30] first
learns to generate new latent vectors from random noise.
Specifically, the latent-GAN consists of a generator (G) and
a discriminator (D). Both the generator and discriminator
are simple multilayer perceptrons (MLPs), composed of four
linear layers and non-linear activation functions. First, the
generator takes random Gaussian noise ϵ ∼ N (0, I ) as
input to produce fake (generated) latent vectors G(ϵ) = z̃i
(i = 1, . . . ,m). The pre-trained encoder of ContrastCAD
takes Xi as input to generate real latent vectors zi, which are
used as ground truth for discriminator training. During CAD
generation, all weights of ContrastCAD are frozen to prevent
additional learning. The discriminator receives zi or z̃i as input
and outputs logit scores to distinguish whether they are real
or fake latent vectors. During training, the generator is trained
to maximize the lg in order to fake the discriminator with the
generated z̃i from ϵ, which is denoted as:

lg = D (G (ϵ)) . (6)

In contrast, the discriminator is trained to minimize ld ,
to effectively distinguish between zi and z̃i. When we train
the generator, the weights of the discriminator are frozen, and
during discriminator training, the weights of the generator
are frozen. Furthermore, for stable training, gradient penalties
such as those used in [31] are employed. The loss function for
training latent-GAN is calculated as follows:

ld = D (G (ϵ)) − D (zi) + λclgp, (7)

where lgp is a gradient penalty and λc is a hyperparameter for
scaling.

Once the latentGAN is well-trained, we can obtain
latent vectors z̃i generated from random noise ϵ. Finally,
by inputting these z̃i into the pre-trained decoder of Contrast-
CAD, we can generate construction sequences for new CAD
models.

V. EXPERIMENTS AND RESULTS
A. DATASET
We use the DeepCAD dataset for our experiments, which
represents the CAD models using construction sequences
and is widely used for training CAD models [5]. DeepCAD
consists of a total of 178,238 construction sequences.We split
the DeepCAD dataset into training/validation/testing sets
with approximately a 90%/5%/5% ratio. Consequently, the
resulting data comprises 161,240 training samples, 8,946
validation samples, and 8,052 test samples.

B. IMPLEMENTATION DETAILS
All experiments were implemented using PyTorch and
trained on an RTX A6000 GPU. Following [5], we fixed N to
60 for all construction sequences, and shorter sequences were

TABLE 4. Reconstruction performance of the Transformer-based
autoencoder between the vanilla ContrastCAD without RRE and the
ContrastCAD with RRE based on the command accuracy (ACCcmd),
parameter accuracy (ACCparam), invalid rate, and median Chamfer
distance (CD).

padded with the ⟨EOS⟩ command. We set dE to 256, L to 4,
feed-forward dimension to 512, and the number of attention
heads to 4. The dropout rate was set to 0.1. During training,
we utilized the Adam optimizer [32] with an initial learning
rate of 0.001, along with linear warmup for 2,000 steps and
gradient clipping at 1.0. We trained for 1,000 epochs with a
batch size (m) of 1,024. The λa and λb values for the loss
function were set to 2, and τ was set to 0.07. The λc was set
to 10. The η value in Equation (8) was set to 3.

C. EFFECTIVENESS OF RRE DATA AUGMENTATION
METHOD
1) BASELINE
In this experiment, we test the effectiveness of the proposed
RRE data augmentation method when it is combined
with the ContrastCAD model. Specifically, we compare
the reconstruction performance of the Transformer-based
autoencoder on the DeepCAD test dataset between the vanilla
ContrastCAD without RRE and the ContrastCAD with RRE.

2) METRICS
In this experiment, performance evaluation was conducted
using four metrics. First, to evaluate the reconstruction per-
formance of ContrastCAD’s output construction sequences
compared to the input construction sequences, we measured
command accuracy (ACCcmd) and parameter accuracy
(ACCparam) on the DeepCAD test dataset. ACCcmd measures
the difference in command types between the input and
reconstructed sequences, while ACCparam measures the
difference in command parameters between them. Each
accuracy metric is calculated as follows:

ACCcmd =
1
N

N∑
k=1

I
[
tk = t̂k

]
,

ACCparam =
1
T

N∑
k=1

|p̂k |∑
l=1

I
[∣∣pk,l − p̂k,l

∣∣ < η
]
I
[
tk = t̂k

]
,

(8)

where T =
∑N

k=1 I
[
tk = t̂k

]
|pk |. Here, T represents the

number of correctly predicted parameters, |pk | denotes the
number of parameter types (=16), and η is the tolerance for
parameter accuracy [5].
We also measured the median Chamfer distance (CD) of

point clouds to evaluate the reconstruction performance of the
3D geometry of the CAD models. We evaluated the median
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CD by sampling 2,000 point clouds from the 3D shape
generated from both the input sequence and the reconstructed
sequence. Finally, to assess the extent of invalid topology in
the 3D CAD models generated from ContrastCAD’s output
construction sequences, we measured the invalid rate. Here,
we considered validity based on whether the CAD model
could be created by the CAD kernel and transformed into
a point cloud among the entire reconstructed construction
sequences [5].

3) RESULTS
Table 4 compares the reconstruction performance of the
output construction sequences and the resulting CADmodel’s
3D geometry. We observe that the ContrastCAD with RRE
demonstrates higher reconstruction performance in all four
metrics compared to the vanilla ContrastCAD without RRE.
In particular, we observe a 13.9% improvement in the median
CD of ContrastCAD. The experimental results show that
augmenting data with RRE enhances the learning capability
of ContrastCAD and improves its reconstruction perfor-
mance. The main reason for the significant improvement in
ACCparam observed in the experimental results is that the arc
command, which previously had poor performance owing to
being the scarcest within the dataset, experienced enhanced
learning performance of the model through proposed RRE
data augmentation. As a result, there was a substantial
enhancement in ACCparam for the arc command.

Figure 5 illustrates the command accuracy (ACCcmd),
parameter accuracy (ACCparam), and median CD depending
on the length of construction sequences. We observe that
ContrastCAD with RRE exhibits higher accuracy across all
sequence lengths compared to vanilla ContrastCAD without
RRE. One of the notable results is that the proposed RRE
data augmentation significantly improves the learning of
long construction sequences. As CAD models with longer
construction sequences mostly represent complex 3D shapes,
it is crucial for models to learn these long construction
sequences well. The experimental results demonstrate that
the effectiveness of the proposed RRE data augmentation
becomes more evident as the length of the construction
sequence increases. We observe that the performance gap
between ContrastCAD with RRE and vanilla ContrastCAD
without RRE increases as the length of the construction
sequence increases, especially for construction sequences
that exceed a length of 38. For example, for construction
sequences with a length 59, which is the longest, Con-
trastCAD with RRE exhibited improvements of 4.24% in
ACCcmd, 6.39% in ACCparam, and 29.70% in median CD
compared to vanilla ContrastCAD without RRE.

D. EVALUATION OF REPRESENTATION LEARNING
PERFORMANCE
1) BASELINE
We evaluate the representation learning performance of the
proposed ContrastCAD by comparing the baseline model,

FIGURE 5. Command accuracy (ACCcmd), parameter accuracy ACCparam,
and median CD with respect to the lengths of construction sequences
between the vanilla ContrastCAD without RRE and the ContrastCAD with
RRE.

TABLE 5. Similarity results between the original construction sequences
and the newly generated construction sequences with permutation
changes measured by the cosine similarity (SIM) and euclidean distance
(ED).

DeepCAD, which is composed solely of a Transformer-based
autoencoder without any contrastive learning. To purely
evaluate the performance improvement of the proposed
contrastive learning, both ContrastCAD and the baseline
model, DeepCAD, were used for experiments without
employing any data augmentation methods.

2) METRICS
In this experiment, we evaluate the representation learning
performance of ContrastCAD by using four evaluation
metrics to assess the latent space of ContrastCAD and
DeepCAD. We evaluated how well the latent vectors of
similar CAD models are clustered in the latent space.
As the original DeepCAD dataset does not have class labels,
we performed K-Means clustering on the latent space by
assigning cluster labels to the latent vectors. Subsequently,
using the assigned cluster labels, we measured the silhouette
coefficient (SC) and sum squared error (SSE) as evaluation
metrics for each latent space. Let xi be a i-th data point in a set
of size n in the dataset X . Let ai denote the average distance
between xi and the other points in its cluster, and bi denote
the average distance between xi and points in other clusters.
The SC is defined as follows:

SC =
bi − ai

max (ai, bi)
. (9)

The SC takes values between −1 and 1, where a value
closer to one indicates better clustering. Next, the SSE is
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FIGURE 6. Clustering results using the K-means algorithm between
ContrastCAD and DeepCAD.

calculated as the sum of the squared distances between the
data points and the centroids:

SSE =

n∑
i=1

(xi − x̄i)2 , (10)

where x̄i is the centroid of xi. Lower SSE values indicates
better clustering.

To measure the similarity between latent vectors between
two CAD models, we use the SIM and Euclidean distance
(ED). Let the latent vectors for two construction sequences
be u and v. Then, ED is calculated as follows:

ED(u, v) = ∥u− v∥, (11)

where ∥·∥means L2-norm. A lower ED value indicates better
similarity, with a minimum value of zero.

3) CLUSTERING RESULTS USING A K-MEANS ALGORITHM
Figure 6 shows the results by measuring SC and SSE as the
number of clusters (K ) increases when K-means clustering
method is employed. We observe that the ContrastCAD
model shows much better clustering results with higher SC
and lower SSE values compared to the baseline model.
ContrastCAD shows the best results when the ‘‘number of
clusters / number of test samples’’ is 0.25. ContrastCAD
exhibits a 6.55% increase in SC and a 28.02% decrease
in SSE compared to the baseline model. Our results show
that ContrastCAD brings similar shapes of CAD models
closer together in the latent spaces, ultimately resulting in a
more highly clustered representation space for similar CAD
models.

4) RESULTS ON ROBUSTNESS OF THE MODEL WITH
RESPECT TO PERMUTATION CHANGES
In this experiment, we evaluate the robustness of Contrast-
CAD with respect to permutation changes of construction

sequences. We expect ContrastCAD to be able to learn to
position the latent vectors of construction sequences of CAD
models that have identical shapes but different permutations
close to each other in the latent space.

We generate a new construction sequence by performing
permutation changes on the original construction sequence
of CAD models. Note that the newly generated construction
sequences have the same shapes as the original construction
sequence. We generate new construction sequences by
changing the permutations of original construction sequences
that include three sketch and extrusion patterns, P1: (⟨SOL⟩,
L, L, L, L, E), P2: (⟨SOL⟩, L, L, L, L, L, L, E), and P3:
(⟨SOL⟩, C, ⟨SOL⟩, C, E), which appear most frequently in the
test dataset. When we change the permutations of the original
construction sequence for the patterns P1 and P2, wemaintain
the orientation of the original construction consequence but
shift the commands. For example, if the original construction
includes a sketch and extrusion pattern that has (L1, L2, L3,
L4), a new construction sequence randomly includes one
of these three sketch and extrusion patterns: (L2, L3, L4,
L1), (L3, L4, L1, L2), and (L4, L1, L2, L3), with the same
orientation. For the third sketch and extrusion pattern P3,
we generate a new construction sequence by switching the
two circle commands in the construction sequence. Finally,
we measure the similarity between the original construction
sequence and the newly generated construction sequence in
the latent space.
In Table 5, we compare the similarity results of latent

vectors between the original construction sequence and new
construction sequences with a different permutation. From
the results in the table, we observe that the ContrastCAD
model exhibits higher similarity compared to DeepCAD
when measured using SIM and ED. Specifically, SIM and
ED have been improved by 0.98% and 6.22%, respectively,
in ContrastCAD compared to DeepCAD. Our experimental
results show that ContrastCAD can position CAD models
having the same shape but different permutations closer in
the latent space compared to DeepCAD.

5) RESULTS ON SIMILARITY AMONG SIMILAR CAD MODELS
In this experiment, we evaluate how closely CAD modes that
have similar shapes and dissimilar shapes are positioned in
the latent space after training ContrastCAD. As illustrated
in Figure 7, we select five CAD models (indices 971, 1121,
6432, 6740, and 8002) from the test dataset that are visually
similar to a specific CADmodel (index 900) and define them
as a similar set.We also select eight other CADmodels (index
1578, 2951, 3117, 3791, 4442, 4534, 4571, and 8257) from
the test dataset that visually differ from the CAD model with
index 900 and define them as the dissimilar set.
In Figure 8, we present the similarity matrix evaluated

by the Euclidean distances among the latent vectors of
the 15 compared CAD models used in the experiment.
We observe that the similarity among CADmodels belonging
to the similar set have smaller ED values compared to those
among CAD models belonging to the dissimilar set in the
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FIGURE 7. Various CAD models that have similar shapes (similar set) and
dissimilar shapes (dissimilar set) with the CAD model (index 900) that are
used to test similarity in the latent space.

FIGURE 8. Similarity matrix evaluated by the Euclidean distances among
the latent vectors of the compared 15 CAD models.

latent space. We also observe that as shown in the top-left
portion of Figure 8, the proposed ContrastCAD demonstrates
smaller Euclidean distances between CADmodels belonging
to the similar set in the latent space compared to DeepCAD.
Specifically, when calculating the average Euclidean distance
in the latent space between a CAD model with index 900 and
other CAD models within the similar set, the value for
DeepCAD is 0.8, whereas for ContrastCAD it is 0.67, which
means that similar CAD models are more clustered for the
ContrastCAD compared with the DeepCAD. ContrastCAD
is able to learn to position CAD models with similar shapes
closer together in the latent space compared to DeepCAD.

E. CAD GENERATION PERFORMANCE
1) BASELINE
In this experiment, we compared the CAD generation per-
formance of ContrastCAD with RRE, ContrastCAD without
RRE, and DeepCAD to evaluate the CAD model generation
performance. Both methods utilized the latent GAN approach
described in Section IV-C during CAD model generation.

2) METRICS
We randomly generated 9,000 sample CAD models and
measured the Validity and Uniqueness of the generated 3D

TABLE 6. Evaluation results for Validity, Uniqueness, COV, JSD, and MMD
of the generated 3D CAD models.

CADmodels. Validity refers to the proportion of construction
sequences within the entire generated sequence that can
produce CAD models by CAD kernels and can be converted
into point clouds [5]. Uniqueness represents the proportion of
samples within the generated set that are not duplicated. For
Validity as well as Uniqueness metrics, higher values indicate
better performance.

To evaluate the 3D CAD models generated from Con-
trastCAD’s latent vectors, we measure the difference in the
geometric domain between the test samples and the generated
samples. We extracted point clouds from the generated
3D CAD models and measured Coverage (COV), Jensen–
Shannon divergence (JSD), andMinimumMatching Distance
(MMD) [5], [30]. COV represents the percentage of ground
truth samples that match generated samples, JSD measures
the similarity between the distributions of the generated set
and the ground truth set, and MMD denotes the minimum
matching distance between generated samples and their
nearest neighbors in the ground truth set. Here, the ground
truth samples refer to the samples from the DeepCAD test
dataset. Higher COV, lower JSD, and lower MMD indicate
better performance.

3) RESULTS
Table 6 presents the evaluation results for Validity, Unique-
ness, COV, JSD, and MMD of the generated 3D CAD
models. As observed from the table, the CAD generation
performance of ContrastCAD with RRE outperforms other
compared models. Specifically, ContrastCAD with RRE
achieves enhancements of 1.17% and 1.02%, respectively,
when measured by the Validity and Uniqueness compared to
those with DeepCAD.

From these results, we observe that the proposed
ContrastCAD-based models effectively learn the distribution
of CAD models in the training dataset and successfully
generate new CAD models from random noise. This
indicates that ContrastCAD-based models produce fewer
invalid topologies compared to DeepCAD and can gen-
erate various 3D CAD models without duplication. The
latent vectors trained by the ContrastCAD-based mod-
els also lead to substantial performance improvements
when generating new 3D CAD models compared to
DeepCAD.

Figure 9 illustrates examples of 3D CADmodels generated
using ContrastCAD with RRE. As evident in the illustration,
the proposed model successfully generates diverse and
complex 3D CAD models.
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FIGURE 9. Examples of 3D CAD models generated using the ContrastCAD model with RRE.

VI. CONCLUSION
In this paper, we propose a novel contrastive learning-based
approach for learning CAD models expressed in CAD con-
struction sequences. The proposed ContrastCAD performs
contrastive learning by augmenting embeddings, allowing
for better reflection of the semantic information of CAD
models. We also introduce a new CAD data augmentation
method called RRE data augmentation for enhancing the
learning capability of the model with an imbalanced CAD
training dataset. Our experimental results show that the new
RRE data augmentation method significantly improves the
reconstruction accuracy of the autoencoder. In particular,
it considerably improves the long sequence learning problem
by improving the reconstruction accuracy of the input
CAD sequences. The proposed ContrastCAD achieves better
representation learning and therefore, CAD models with
similar shapes are positioned closely in the latent space.
We also observe that the proposed ContrastCAD model is
robust to the permutation changes of construction sequences.

CAD models can be represented in various forms of
multimodal data such as point cloud, mesh, and sketch.
In future work, we plan to further research multimodal
learning methods that can simultaneously learn frommultiple
forms of multimodal data. There is still a limitation where
only random shapes of CAD models are generated instead of
the shapes desired by the user during CADmodel generation.
We plan to conduct research on conditional generation of
CADmodels, where users can input text or images to generate
the desired CAD model.
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