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ABSTRACT It is interesting to realize that traffic intersections provide an essential mechanism to handle
traffic flows in different directions while ironically traffic bottlenecks, gridlocks, and accidents tend to occur
in the vicinity of the intersections. Meanwhile, with the recent developments in internet of things (IoT)
technologies, there is a great potential for integrating them for improving operational efficiencies of road
infrastructure and connected autonomous vehicles (CAVs). This paper aims to leverage the capabilities
of both autonomous intersection manager (AIM) and CAVs for more energy-saving and safe-traffic
management. A mixed-traffic environment where human-driven vehicles (HDVs) and CAVs sharing the
same road is considered. A two-layer framework is adopted to handle signal and vehicle controls effectively.
The first layer is a signal control layer where the AIM receives the traffic network states, trains with the data
through machine learning (ML), and outputs a set of optimal green times for each intersection phase. The
second layer is a decentralized-vehicle control layer where the CAVs receive the signal phase and timing
(SpaT) information from the AIM to compute the optimal speed values. The proposed solution helps the
CAVs to minimize idling at red signals or to speed up to safely arrive at and pass through a green signal. Our
proposed framework is designed to optimize intersection efficiency and minimize vehicle average delay and
fuel consumption. All experiments have been conducted in a microscopic traffic simulation environment,
the PTV-VISSIM, simulating real-world dynamics of vehicles and drivers’ behaviors based on decades of
field-data.

INDEX TERMS Intelligent transportation, connected autonomous vehicles, signalized intersections, mixed-
traffic, machine learning, adaptive speed control.

I. INTRODUCTION
Managing traffic intersections is one of themost sophisticated
problems due to its impacts on the frequency and severity of
accidents, energy consumption, traffic delay-time, and gen-
eral traffic state. Since the early existence of traditional road
intersections, scientific and engineering communities have
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always tried to provide solutions to improve efficiency, safety,
and comfortability of commuters and drivers. The attention
to reducing accidents by enhancing the road intersections
has been rising gradually. As per the European Union’s
community database on road accidents, CARE, although
there is a reduction in the number of accidents by 40%
from 2007 to 2016, there were 5000 deaths from 25700 acci-
dents in 2016 because of accidents at intersections [1]. In the
US, a study in 2008, showed that from 5,811,00 crashes,
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almost 40% of crashes were related to intersections [2].
In China, according to [3], from 2007 to 2016, about 30%
of road accidents and collisions were intersection related.
In addition to the invaluable cost of people’s lives, there
are monetary field dataciated with such accidents (e.g., the
costs of the intersection-related crashes in USA are US$120
billion and US$371 billion in economic and societal aspects,
respectively [4]). Furthermore, traffic congestion is globally
a leading contributor to CO2 emissions representing 23% as
the highest share of gas emission from transportation [5].
Consequently, there exists a high demand to improve

traditional traffic signal control by utilizing the recent
progress in artificial intelligence (AI) and internet of things
(IoT) technologies [6]. The vehicle-to-everything (V2X)
enabling technology, which combines V2V and V2I, can
provide communications among vehicles and infrastructures.
This merit offers great potential for researchers to improve
traffic operations. Although there are numerous research
efforts in developing traffic intersections, all technological
advances are still not fully utilized.

Traffic signal control methods have extensively been stud-
ied by the transportation engineering research communities
starting from the fixed cycle-time signal control to the latest
advanced methods such as adaptive signal control. Beginning
with the early decades, Webster [7] introduced analytical
models for traffic signal formulation to produce the optimal
settings for reducing the average vehicular delay, which is
still regarded as a classic academic basis in transportation
engineering. Transitioning from the traditional analytical to
modern adaptive signal control, Wu et al. [8] developed
an adaptive signal control scheme, which outperformed the
analytical formulation, to enhance the intersection operation
and optimize the queue spillover condition relying on
the vehicle speed rather than the queue length. With the
recent advances in autonomous vehicles and the enabling
technologies (e.g., IoT and V2X), Lee et al. [9] utilized such
advancements and built an autonomous intersection manager
to enable receiving information about the vehicles’ states
and the traffic network states and then generate optimal
green phases of signals towards the intersection’s maximum
throughput and minimum average vehicle-delay.

The eco-driving approach at signalized intersections is
aiming at improving the efficiency of the traffic intersection
operation by utilizing the connectivity-enabling technologies.
The main purpose of Eco-driving is to generate real-time
speed advice for connected vehicles to enable them to adjust
their velocities or driving behavior and perform particular
actions tominimize fuel consumption and reduce their delays.
In a multitude of research works, it is indicated that the
eco-driving approaches are able to decrease fuel consumption
and greenhouse gas (GHG) emissions by almost 10% on
average [10].

From the perspective of methodology, optimal control
methods have been introduced in the literature. Feng et al.
[11] presented an adaptive signal control algorithm, which is

a bi-level optimization utilizing V2X to reduce the delay time
of vehicles and queue length. The experiments demonstrated
that the total delay had decreased significantly under high
market penetration rate (MPR) of CAVs compared to the
traditional actuated control. A model predictive control has
been investigated by many researchers due to its practicality.
Kamal et al. [12] proposed a model predictive control
approach for generating optimal signal phases in urban traffic
providing online modifications for all free traffic parameters,
i.e., cycle length, offsets, and split times. Other methods
depend on intelligent computation to produce optimal signal
control such as Artificial Neural Networks (ANNs), which
are commonly used in machine learning (ML) and deep
learning, Fuzzy Systems [13] and Reinforcement Learning
(RL) [14].

ML techniques have introduced revolutionary solutions for
many research problems and changed the way data-driven
solutions can be utilized. Supervised learning can be used for
improving the road traffic networks and signal controllers by
considering the data recorded from the networks considering
real-time traffic conditions as can be seen in [8], [15], and
[16]. In the literature review article by Nguyen et al. [17], the
deep learning method utilized in the intelligent transportation
systems domains has been discussed.

Traffic simulation software tools play a significant role in
designing effective traffic solutions. A variety of simulation
tools have been used to simulate traffic at intersections.
In the study of [18], the authors provided detailed modeling
of the reservation-based technique for intersection control.
They used the VISSIM external driver model EDM, which
provides a possibility to replace or modify the internal driving
behavior of PTV-VISSIM. The EDM dynamic link library
is called by VISSIM to pass the current state data of each
vehicle at every simulation run to the dynamic link library.
Chen and Sun [19] utilized microscopic simulation tools
to improve an algorithm for real-time signal control with
dynamic programming (DP). The objective is to optimize
the average vehicle delay, intersection throughput, and queue
length. Moreover, in [20], VISSIM simulation is conducted
with real-time data gathered for the City of Riverside, CA,
USA. To recap, many distinguished works in the literature
utilized PTV-VISSIM, which is also used in our paper, as the
microscopic simulation tool that can mimic the real dynamics
of traffic networks.

In modern traffic intersections, the traffic environment
combines both HDVs and CAVs. In addition, connectivity-
enabling technologies such as V2X and IoT are integrated.
However, these recent technologies are still forming a hot
research spot that requires a multitude of extra controllability
and new designs to make them applicable in real-time scenar-
ios. The objective of this paper is to utilize the V2X and CAVs
technologies for improving traffic intersections which have
local impacts on the CAVs and global impacts on the traffic
network. As summarized in Table 1, it demonstrates the
distinctive features of the proposed solution compared with
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TABLE 1. Related works for the eco-driving solutions compared with the proposed approach.

existing approaches across multiple key metrics, including
mixed-traffic environment handling, speed control, and signal
control, as well as the consideration of vehicle and network
impacts, and multi-lane scenarios. The primary contributions
of this study are summarized as follows:

1) Integrated Framework for Traffic Optimization:
This paper proposes a comprehensive framework that
employs connectivity technologies to enhance traffic
networks both at the micro and macro scales. Distinct
from previous works such as [8] and Kamal et al. [26],
which only focus on global impacts, or Fayazi and
Vahidi [27], which concentrates solely on the effects of
CAVs, our approach is dual-faceted. On themicro level,
it introduces a vehicle control layer optimizing CAVs’
driving behaviors to reduce fuel consumption, and
improve average delay and travel time. On the macro
level, it adapts traffic signals according to vehicle flow
rates, thereby enhancing intersection throughput and
reducing average delays and queue lengths.

2) Generic Platform for Research Advancement: The
framework is built upon a versatile platform that
encourages further research exploration. It tackles
the signal timing control dilemma through a unique
data-driven and simulation-based approach, resulting
in a Machine Learning (ML) model that is thoroughly
developed, trained, analyzed, and evaluated to produce
optimal traffic signals based on traffic flow and
Market Penetration Rate (MPR) of CAVs. Furthermore,
it introduces an Eco-driving adaptive speed algorithm
for the effective longitudinal and lateral control of
CAVs. This generalizable solution lays the groundwork
for solving a broad spectrum of traffic dilemmas.

3) Superior Performance and Promising Implications:
Through empirical comparisons, this paper showcases
the significant improvements and superior performance
of our proposed framework against other recent
and fundamental solutions. These results highlight
the framework’s potential to significantly impact
traffic management practices in the transportation
industry.

The rest of this paper is organized as follows. Section II
describes the methodology used for both the signal-timing
control layer and vehicle-control layer of the proposed

Eco-driving framework. Then, Section III details the exper-
iments’ setup and the simulation environment followed by
Section IV which presents the final results. Finally, Section V
concludes the paper.

II. METHODOLOGY
This Section introduces the methodologies used for devel-
oping the eco-driving framework for a smart AIM. Figure 1
illustrates the participating actors of the proposed framework.
In the vehicle-control layer, the CAVs receive the signal phase
and timing (SPaT) information and speed limits of the road
from the AIM. Then, they process the received information
and compute the corresponding optimal control actions such
as the acceleration value and lane-change decision to clear
the intersection minimizing the energy consumption, average
vehicle delay, and travel-time. On the other hand, in the
signal-timing control layer, the AIM utilizes the information
it receives from the RSUs such as the vehicles’ flow rates and
theMPR of CAVs. Then, it processes these data and computes
the optimal green signal times given to each section of the
intersection to minimize the total-vehicle average delay and
maximize the throughput of the intersection.

FIGURE 1. Typical intersection environment with V2X.

The proposed Eco-driving framework covers both the
signal-timing control layer and vehicle-control layer as
shown in Figure 2, which introduces the overall structure of
the proposed solution.
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FIGURE 2. The proposed Eco-driving framework for both traffic signal
layer, and vehicle control layer.

A. SIGNAL-TIMING CONTROL LAYER
Initially, a typical 4-leg intersection that permits all move-
ments for every signal phase namely, a ‘‘standard-four-
phase’’ is utilized in the literature in [28], [29], and [30] and
is also considered in this paper as demonstrated in Figure 1.
Every single-phase sequence is composed of the following
states (All-red, Red/Amber, Green, Amber, and All-red).
To find the optimal green signals for the intersection, a data-
driven solution is used.

1) DATA-SET GENERATION
A data-set generation process is adopted in this paper due to
the lack of data-sets that cover the needed traffic scenarios
(such as different cases of MPR of CAVs and multiple flow
rates per each intersection entry). The PTV-VISSIM micro-
simulation is utilized to generate the data-set by using the
COM-interface and Python scripting. Algorithm 1 is used for
generating the data-set.

Algorithm 1 Data-Set Generation
Cycle_lengths← [40 : 180]
Saturation_flow← 2800
Total_Flows← [0.3 ∗ Saturation_flow : Saturation_flow]
MPR← [0 : 1]
green_times_list ← generate_green_times()
flow_ratios_list ← generate_rates()
for c in Cycle_lengths do

for green_times in green_times_list do
for flow_ratios in flow_ratios_list do

Run_simulation(c, flow_ratios, green_times)
save_results()

end
end

end

The following procedure is the complete sequence for the
data-set generation process.

1) Initially, the simulation environment is built as in
Section III.

2) The scenario variables and settings are defined as
shown in Table 2. For every simulation run, a scenario
setting is applied to the simulation environment.

TABLE 2. The scenario settings for the simulation runs.

3) The total traffic F is the sum of all flow rates per each
intersection’s entry. F is selected based on a percentage
r1 ∈ {0.4, 0.5, .., 1} of the traffic saturation rate S
which is set to be 1900 veh/hr per lane.

4) The flow rate per entry fi where i ∈ {1, 2, 3, 4} is
selected based on a percentage r2 ∈ [0.1, 0.7] of F in a
way that:

4∑
i=1

fi = F (1)

5) After every simulation run, the script records the
evaluation results such as vehicle average delay, and
fuel consumption.

6) A filtration step is applied by finding the optimum
green times combination and MPR for every set of
flow rates that give the minimum delay and fuel
consumption.

7) The resultant green times of the filtered data-set will
be used as ground-truth values during the training of
the ML model. Table 3 presents an example of the
generated data-set after filtration.

2) MACHINE LEARNING MODEL
An artificial neural network (ANN) is used to build a
regression model that maps the input data (flow rates per
each approach fi and the MPR of CAVs) into output data
of continuous real-number values (the green signal times).
The activation function is a rectified linear-unit (ReLU). The
merit is that ReLU maps negative values to zero, converges
quickly and decreases the number of firing neurons. Due to
the difference in ranges of the input features of the model,
they are all normalized in a range of [0, 1]. Normalization
helps the algorithm to converge faster. The hyperparameters
such as the number of hidden layers, the number of neurons
per layer, and learning rate values are determined after several
experiments of tuning. Nine experiments are conducted to
find the ANNmodel’s optimal architecture. Each experiment
selects a number of hidden layers combined with a number
of neurons. The loss is plotted as shown in Figure 3. The
architecture of 3 layers with 32 units is chosen as it has a
fewer number of neurons and reduces the overfitting and the
generalization error for testing data. The loss function for the
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TABLE 3. An example of the generated data-set after filtration. The headings are CL: cycle-length, F : total-traffic flow, {f1..f4}: traffic per entry, {g1..g4}:
green-time per signal phase, D: average delay, and FC : fuel consumption.

FIGURE 3. Results of 9 experiments to find the optimal ANN architecture
for the learning model.

training model is selected to be the mean square error:

MSE =
1
n

n∑
i=1

(yi − y′i)
2 (2)

where yi is the ground truth value of the green time, and y′i is
the predicted values from the ANN model. The metric used
in the model is the mean absolute error (MAE), and the used
optimizer is the adaptive moment estimation (ADAM).

3) ANN MODEL TRAINING AND TUNING
The data-set is divided into three parts; 70% for training,
15% for validation, and 15% for testing. The validation
data-set is used to track the performance of the model
during the training. As seen in Figure 4, the performance
of the initial model is found to be unacceptably low.
To improve the performance, the following procedures are
considered:
• K-fold cross-validation: This technique is utilized
to represent a general view of the model performance
(not limited to a specific range of data). First, the
data-set is divided into K sections to be trained on
K identical models. Second, each ANN is trained on
K−1 sections of the data while evaluating the remaining
sections. Finally, the validation score is the average
of the K validation scores. After applying the K-fold

cross-validation technique, the hyper-parameters are
tuned such as the number of layers, and the number of
neurons per layer.

• Weights Regularization: This technique can be
enforced by adding a penalty function (cost function)
to the loss function preventing the weights getting too
large. There are two levels of regularization; first level
L1, and second level L2.

L1 = L+ λ
∑
i

|ωi| (3)

L2 = L+ λ
∑
i

|ω2
i | (4)

L in Equations (3, 4) represents the old loss function,
while L1 and L2 describe the new loss function. λ is
a regularization parameter. L1 acts by forcing many
weights to be zero, which ends up with sparse weights.
L2 acts by forcing all weights to be small while some of
them can reach zeros as well. It is clear that the model
performance has been improved as the gap between the
training loss and validation loss is reduced significantly
as seen in Figure 4b.

The model is tested using the testing data, and the perfor-
mance is evaluated. The scored loss (MSE) of 0.0045 and
MAE of 0.0414 are achieved. It should be known that
generally a good score of loss starts with L ≤ 0.5.
Justifications on the sufficient values of training loss is
available in [31].

4) COMPUTATIONAL COMPLEXITY
The complexity of the model is categorized into two parts:
1) training, and 2) testing. When training an ANN model,
the complexity of the algorithms such as feedforward and
backpropagation are considered. It can be estimated by:

O

(
nt ×

K−1∑
i=1

||mi|| × ||mi+1||

)
(5)

where n refers to the count of epochs, m is the samples used
for training, k is the count of layers, and ||mi|| is the count
of units in the ith layer. In computing the Big-O notation, the
constants in Equation( 5) are cancelled resulting in:

O(nt) (6)
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FIGURE 4. The performance (loss function) of training and validation
before and after tuning.

It should be noted that the impacts of the complexity of the
training model are not influencing the model performance in
the deployment stage as the training is performed only once
and then the model is deployed for usage and testing. The
model’s time complexity for deployment is found by:

O

(
K−1∑
i=1

||mi|| × ||mi+1||

)
= constant time (7)

5) UNCERTAINTY EVALUATION WITH SENSITIVITY ANALYSIS
For regression models, it is important to study the model’s
robustness against the input noise. Nowadays, the CAVs are
still under development and the MPR is still low in smart
cities. This MPR can be a result of an estimation model or
collected data from sensors and measurements. As a result,
in our case, it is very important that our model’s sensitivity
for the CAVs MPR remains to be very low. Consequently,
a sensitivity analysis based on variance using the approach
in [32] is investigated.

For any prediction model formulated as Y = f (t1, t2, . . . ,
tk ), a first order of variance-based sensitivity for variable ti is
determined by:

Vti
(
Et̄i (Y |ti)

)
(8)

where ti denotes the ith parameter and t̄i is the other
parameters but not ti. The average of output Y for all t̄i, when
ti is constant, is called the internal expectation operator. The
external variance is computed for all values of ti. In this case,

the first-order index of sensitivity is determined by:

Si =
Vti
(
Et̄i (Y |ti)

)
V (Y )

(9)

The first-order index indicates the contribution of an input
parameter to the output regardless its effects on other input
parameters. If an interaction with other input parameters
is considered, then the overall participation of every input
parameter, STi is:

STi =
Et̄i (Vti (Y |t̄i))

V (Y )

= 1−
Vti (Et̄i (Y |ti))

V (Y )
(10)

The Saltelli sampler is utilized as implemented in SALib
Python package [34]. Due to the normalization of the
features, a range of (0, 1) is selected as bounds for the inputs
to the sensitivity analysis. Figure 5 illustrates the contribution
of the uncertainty in MPR of CAVs measurements to the
predicted green times. The total order is greater than the first
order as it describes the interaction among other variables
(traffic flow in each intersection’s entry). Although there is
little difference among the four splits, the average of the
first-order and total order of sensitivity index for MPR of
CAVs are significantly low (0.006) indicating the model’s
sensitivity to measurements’ errors in the estimations ofMPR
of CAVs in the traffic network.

FIGURE 5. Sensitivity analysis of the ANN model for the parameter MPR.

6) OTHER MACHINE LEARNING TECHNIQUES
To verify that the proposed ANN approach is a suitable
and proper ML algorithm that fits our research problem,
seven experiments are conducted in this research using Linear
Regression (LR), K-Nearest Neighbors (KNN), Decision
Tree (DT), and Random Forest (RF), direct multi-output
regression using SVR, and chained multi-output regression
using SVR. The evaluation methods of the performance of
the seven models were mean square error (MSE) and mean
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absolute error (MAE). Table 4 shows a comparison among
the mentioned ML algorithms. The results show that the
performance of the ANN approach outperformed the other
algorithms with an MAE of 0.0414 and MSE of 0.0045.

7) ANALYTICAL SOLUTION: BASELINE
In the analytical solution, to calculate the four phases for the
signal controller, first, the cycle length is defined as the total
time when all phases are completed for one cycle. The lost
time is the time not being completely utilized during the cycle
length. The total lost time is

tL = tsl + tcl (11)

where tL is the overall lost time in seconds, tsl is the lost time
in start-up in seconds, and tcl is the lost time for clearance
in seconds. Webster’s optimum cycle length is estimated as
in [7]:

Copt =
1.5 ∗ L + 5

1.0−
∑n

i=1(v/s)ci
(12)

where Copt is the optimal cycle length to reduce the average
delay, L is the total lost time for cycle, and (v/S)ci represents
a flow ratio for a critical lane group i, where S describes the
saturation flow rate and is approximated depending on the
geometry of the intersection as 1900 veh/hr per intersection’s
entry, and n represents the count of critical lane groups.
To find the critical lane group, each leg of the intersection

has two lane groups, (left-turn) and (head and right-turn).
For simplicity, the two lane-groups are assumed to have
the same percentage of the routing decisions. The critical
lane-group will be the one with the maximum flow rate of the
two lane-groups per phase, which will be 0.5 ∗ Vi/S. After
computing the optimal cycle length, the allocation of green
times in the cycle is considered as follows:

gi =
(v
s

)
ci

(
C
Xi

)
(13)

where, gi represents the effective green time for phase i,
Xi represents the ratio for lane group i, and C represents
the cycle length in seconds. By using Equations (11-13), the
analytical optimal cycle length is computed and then, the
green times are computed.

B. VEHICLE-CONTROL LAYER
In this layer, the CAVs dynamical behaviors such as longi-
tudinal or lane-change behaviors are controlled to achieve
the minimum vehicle average delay and fuel consumption.
A low-level platform, shown in Figure 6, is deployed
for running an adaptive speed control algorithm besides a
car-following model that manages the vehicle to reach the
intersection within the green signal period.

1) ADAPTIVE SPEED CONTROL ALGORITHM
The adaptive-speed control algorithm is proposed to find the
optimal desired speed passed to the car-following model.
The car-following model should provide the driving behavior

FIGURE 6. The low-level platform is connected with the simulation
environment.

of each vehicle in terms of the given desired speed in a
longitudinal direction with respect to the leading vehicle in
the same lane. The objective is to make the distance from the
CAV to the signal head zero when the signal state is green.

The distance to the signal head of the intersection in terms
of the position in the current lane can be found by:

d =

{
Li−Pj(t) Li ≥ Pj(t)
0 Li < Pj(t)

(14)

where Li is the location of the signal head on lane i, and Pj(t)
is the current position of the vehicleCAVj. If there is no signal
on the current lane or the vehicle passed already the signal, the
distance is 0. To calculate the time until the next green phase,
tg+0 should start taking into account cycle length CL , current
cycle-time C(t), Green start-time tg0 , and Green end-time tgf .

tg+0 =


CL − (C(t)− tg0 ) tg0 ≤ C(t) ≤ t

g
f

CL − C(t)+ t
g
0 C(t) ≥ tgf

tg0 − C(t) Otherwise

(15)

To calculate the time until the next red phase starts, the cycle
length CL , current cycle-time C(t), Green start-time tg0 , and
Green end-time tgf should be taken into account.

tr+0 =


tgf − C(t) C(t) < tg0
CL − (C(t)− tgf ) C(t) ≥ tgf
tgf − C(t) Otherwise

(16)

The maximum velocity to arrive at the next green start is
found by:

Vmax =
d

tg+0
(17)

If the vehicle drives faster, it would arrive at the signal head
before the next green signal time. The minimum velocity to
arrive at the next green end-time is found by:

Vmin =
d

tr+0
(18)

If the vehicle drives slower, it would not catch the next green
end-time.

The optimal speed in this scenario is bounded by the
maximum or minimum speed limits related to the urban road
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TABLE 4. Performance comparison among tested machine learning algorithms.

guidelines. The overall adaptive speed control algorithm used
to find the optimal desired speed is described in Algorithm 2.

Algorithm 2 Adaptive Speed Control Algorithm
Function OptimalSpeedMin(minSpeed , desSpeed):

if minSpeed < desSpeed then
optimalSpeed = desSpeed

end
else

optimalSpeed = -1
end
return optimalSpeed

Function OptimalSpeedMax(maxSpeed , desSpeed):
if maxSpeed > desSpeed then

optimalSpeed = desSpeed
end
else

optimalSpeed = maxSpeed
end
return optimalSpeed

∀CAVi ∈ {CAVs},∀δt ∈ t
for CAVi in CAVs do

Vmin = getVminRedEnd( CAVi)
Vmax = getVmaxGreenStart(CAVi)
DesSpeed = getDesSpeed( CAVi )
minSpeed = getRoadMinSpeed ()
if Vmin > Vmax then

optimalSpeed = OptimalSpeedMin( Vmin, DesSpeed)
if optimalSpeed == -1 then

optimalSpeed = OptimalSpeedMax( Vmax , DesSpeed)
end

end
else

optimalSpeed = max(min( Vmax , DesSpeed), minSpeed)
end

end
setVehiclesSpeed(optimalSpeed)

2) THE CAR-FOLLOWING MODELS
In [35], the authors compared the state-of-the-art car-
following models in microscopic simulations and their
applications which helped in developing the car-following
model in this paper. For a mixed-traffic environment, it is
necessary to define two behaviors for the two types of
vehicles (HDVs and CAVs). For HDVs, Wiedemann-74 car-
following model [36] is utilized as in [37]. For CAVs,
a modified version of Wiedemann-74 model is proposed and
used.

3) THE WIEDEMANN-74 CAR-FOLLOWING MODEL
The Wiedemann-74 model is also called the psychophysical
model that utilizes perceptual thresholds in terms of relative
distance and speed between leader-follower pairs of vehicles.
The driver reacts only when the thresholds are reached.
An example scenario for Wiedemann-74 model is illustrated

in Figure 7. The blue line represents the decision path of
an oncoming vehicle with a higher speed than the leader.
As a result, it is getting closer until passing the point (P1)
at which a deceleration perceptual threshold θv is activated
as the driver realizes that the vehicle’s speed is greater than
the leader. However, a natural human behavior is the inability
to follow the leader’s speed precisely. This leads to increasing
the spacing between the two vehicles until passing the point
(P2) at which an acceleration perceptual threshold σv is
activated. The driver again tries to follow the leader’s speed
by acceleration. This process is resumed as shown in Figure 7
at the unconscious reaction region.

FIGURE 7. The parameters and thresholds utilized in this paper for the
Wiedemann-74 car-following model illustrative graph [36], [38].

In Wiedemann-74, the threshold of the desired standstill
distance αx is defined in [35] and [36] as follows:

αx = Ln−1 + αxadd + Rn1αxmult (19)

where (n) refers to the ego vehicle and (n − 1) for the front
vehicle. Ln−1 is the length of the front vehicle, and αxadd
and αxmult describe additive and multiplicative components
of the safety distance respectively. Rn1 is a random variable
with a normal distribution to describe that a part of the
desired standstill distance relies on the preferred safety
requirement of the driver. The desired minimum following
distance threshold η is calculated as follows:

η = αx + βx (20)

βx = (βxadd + βxmultRn1)
√
v (21)

where βxadd and βxmult are additive and multiplicative
components and they are calibration parameters. The follower
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vehicle’s speed v in the threshold’s equation (21) at lower
speed differences is found as:

v =

{
vn−1 vn > vn−1
vn vn ≤ vn−1

(22)

where vn−1 is the front vehicle’s speed.
The threshold θx is used for the maximum following

distance. The event occurs when the spacing between
the follower-leader pair is increasing. Then, an action of
acceleration is taken. The range of the threshold distance is
in [1.5 : 2.5] of βx, which is denoted by:

θx = αx + βx ∗ γ x (23)

γ x = γ xadd + γ xmult (RD − R2) (24)

where γ xadd and γ xmult are calibration parameters. RD, and
R1 are random variables. The perception threshold θv is
activated when there is a difference in speeds as mentioned
in the earlier scenario. θv is defined as follows:

θv =
(

1x − Ln−1 − αx
ζx

)2

(25)

ζx = ζxconst (ζxadd + ζxmult ∗ (R1+ R2)) (26)

where ζxconst , ζxadd , and ζxmult are calibration parameters.
The θv∗ is a threshold that is similar to the θv but it recognizes
the over-decaying in speed difference. On the other hand,
if the speed difference increases, the threshold of σv is
activated as the driver’s speed is less than the leader’s.

σv = θv∗ (−σvadd − σmult ∗ NR3) (27)

TABLE 5. The calibrated ranges and values for utilized parameters of
Wiedemann-74 model [35], [36], [37].

The typical values of all mentioned calibration parameters are
found in Table 5.

4) THE MODIFIED WIEDEMANN-74 MODEL
In our proposal, the CAVs adopted the Wiedemann-74 model
with the same calibrated parameters mentioned in Table 5
but thanks to the high speed of computations in CAVs, some
parameters are modified as shown in Table 6.

TABLE 6. The configured parameters for HDVs and CAVs.

5) LANE-CHANGE MODEL
The lane-change decision plays a crucial role in the driver’s
behavior. VISSIM utilizes Sparmann’s lane-change model as
considered in [39]. The model is categorized into two classes
of decisions: 1) necessary lane-change decision and 2) free-
lane change decision. In the first class, it is a must for the
drivers to change their lanes based on their routing plan. In the
second class, the decision is taken based on some criteria
that improve the vehicle’s performance such as increasing
the speed and keeping the standstill distance at the same
time [37]. In the micro-simulation software PTV-VISSIM,
the vehicle that wants to take the lane-change decision is
called an ‘‘own vehicle’’ and the vehicle in the other lane,
which will be turned into a follower after the process of
lane-change is complete, is called a ‘‘trailing vehicle’’. The
maximum acceptable deceleration that is achieved by the
follower vehicle is controlled as a parameter by the software
tool. Tables 7 and 8 show the parameters and their values
utilized in this paper.

TABLE 7. Simulation parameters for necessary lane-change decision.

III. SIMULATION AND EXPERIMENTS
The methodology used for representing the environment
is a multimodal microscopic traffic simulation. The PTV-
VISSIM, a commercial simulation platform used in many
real-world projects [37], is utilized. The software tool
provides a traffic flow model, which moves each participant
according to a sophisticated movement model.
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TABLE 8. Other simulation parameters for lane-change.

A. IMPLEMENTATION OF ISOLATED SIGNALIZED
INTERSECTION
A signalized intersection with four legs for each direction
is introduced. Each leg contains two links and two lanes
per link as shown in Figure 8. Two types of vehicles into
the traffic network with two different driver behaviors are
defined as shown in Figure 9. For the HDVs, the traditional
Wiedemann-74 psychophysical driver behavior with the
calibrated parameters in Table 5 is used. On the other hand,
for CAVs, the modified version of Wiedemann-74 is used
with the parameters in Table 6.

FIGURE 8. The traffic intersection in 2D-layout in PTV-VISSIM.

FIGURE 9. The mixed-traffic environment inside the intersection in
3D-layout where blue refers to CAVs, and black refers to HDVs.

B. EXPERIMENTS SETUP FOR TESTING THE ML MODEL
First, nine scenarios are set as shown in Table 9 to test
the performance of the ANN model against the analytical
solution by Webster’s formula. There are two metrics to
assess the performance of traffic networks, 1) Traffic level,

which is the total traffic flows for the intersection and,
2) traffic imbalance, which represents how much the traffic
flows of each approach in the intersection are similar to each
other. Regarding the MPR of the CAVs, two comparisons are
conducted: 1) when MPR of CAVs is 0% for a comparison
purpose of evaluating the performance of the ANN model
against the analytical solution that deals only with 0% of
MPR of CAVs. The second comparison is for testing the
performance of the model against the analytical solution by
Webster’s formulae while increasing the MPR of the CAVs
from 0% to 100%.

TABLE 9. Scenario settings.

The signal control program is essential for managing the
traffic signals at each signal head within an intersection. This
program adheres to a specific sequence of signal phases,
which include: {All-red, Red/Amber, Green, Amber, and
All-red} in a complete cycle. To establish a signal control
program, the sequence initiates from the green phase times as
determined by the proposed ANN model. These green phase
times are crucial for defining the onset of green signals within
the total cycle length.

Given are the start time of the green phase for each
approach GSi, the duration of the All-red phase x1, the
Red/Amber phase duration x2, the duration of the green
phase Gi, and the Amber phase duration x3. The start times
GSi for the green phases are computed using the following
equations:

GS1 = x1 + x2 (28)

GS2 = GS1 + G1 + x3 + x1 (29)

GS3 = GS2 + G2 + x3 + x1 (30)

GS4 = GS3 + G3 + x3 + x1 (31)

Upon establishing these start times, the model is set
to facilitate a comparative study through simulation.
Algorithm 3 represents of the approach used to calculate the
start times for each signal phase, reflecting the logical flow
described by the equations above.

This structured algorithm ensures the calculated start
times for the green signals effectively manage the transition
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Algorithm 3 Calculate Signal Start Times
1: Input: Green times G[1..4], All-red time x1,

Red/Amber time x2, Amber time x3
2: Output: Green start times GS[1..4]
3: GS[1]← x1 + x2 for i = 2to4 do
4: GS[i]← GS[i− 1]+ G[i− 1]+ x3 + x1

end

between traffic signal phases, optimizing the flow of traffic
through the intersection.

IV. RESULTS
In this section, the results are shown for both theML approach
for developing optimal signal control and the adaptive speed
control algorithm for the CAVs.

A. RESULTS OF OPTIMAL SIGNAL TIMING: (GLOBAL
IMPACTS)
The first comparison is represented in both Figure 10 and
Figure 11, which shows the average delay and the total fuel
consumption with an MPR of 0% of CAVs respectively. The
bar charts show that the ANN model is working properly and
similarly to the analytical solution with a slight improvement
in all scenarios when all vehicles in the traffic network
are HDVs. The means of the nine scenarios in terms of
average delay are shown in Figure 10 and fuel consumption
are shown in Figure 11 and it also shows that the ANN
model performance is better than or equal to the optimal
analytical solution when MPR of CAVs is 0%. However,
when they are compared together in the case of increasing the
MPR of CAVs, the ANN model outperformed the analytical
solution significantly. The charts in Figure 12 and Figure 13
demonstrate the same previously mentioned 9 scenarios
but in each scenario the MPR of CAVs is increased
from 0% to 100%.

Interestingly, it is clear that while Webster’s solution
(analytical one) is constant in every scenario. The pro-
posed framework (the ANN model and the adaptive speed
algorithm) improves the traffic network metrics when
exposed to the various values of MPR of CAVs. It should
be noticed that the proposed solution is valid for a mixed-
traffic environment, and it would reach its maximum benefit
and exploitation when the MPR of CAVs is 100%.

Furthermore, to deduct the quantity of improvements
for the proposed solution against the traditional analytical
solution. a comparison is carried on in terms of the mean of
the earlier proposed nine scenarios with the various values
of MPR. As shown in Tables 10, 11, the most common
assessments of traffic networks are considered. These tables
represent the percentages of improvement for the proposed
framework.

B. RESULTS OF THE CAVS LONGITUDINAL CONTROL
The adaptive speed control algorithm is used to enable the
CAVs to change their speeds depending on the received

FIGURE 10. The average delay in seconds for 0% MPR of CAVs.

FIGURE 11. The fuel consumption in gallons results for 0% MPR of CAVs.

FIGURE 12. The average delay in seconds for [0-100%] MPR of CAVs.

information such as the signal phase and timing (SPaT)
information. The algorithm also considers the speed limits
of the road where the CAVs drive through. To illustrate the
performance of the algorithm, an experiment is conducted
by recording the travel times of the first 100 CAVs entering
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TABLE 10. Results of the proposed eco-driving framework against the baseline. A: The proposed Eco-driving framework, W: baseline framework based on
Webster’s formulas, I: the percentage of improvements (reduction).

TABLE 11. Results of the proposed eco-driving framework against the baseline. A: The proposed Eco-driving framework, W: baseline framework based on
Webster’s formulas, I: the percentage of improvements (reduction).

FIGURE 13. The fuel consumption in gallons for [0-100%] MPR of CAVs.

the intersection control area from all intersection entries
(e.g., south, east, west, and north) as shown in Figure 14.
The red circle in the graph represents the moment that a CAV
enters the intersection track while the green circle shows the
moment that the arrival of a CAV to the intersection signal
head. The signal display for each entry is fixed above the
plot to show the current state of the traffic signal for every
CAV. It should be noted that the proposed framework could
guarantee that all CAVs are able to clear the intersection at

the starting time of a green signal or within the green signal
period.

By analyzing this figure, it is concluded that two main
cases occur with the CAVs while crossing the intersection.
The two cases are 1) when it is feasible for the CAV to
catch the nearest green signal, and 2) when it is infeasible to
catch the nearest green signal. To illustrate these two cases,
two different CAVs are selected from the set of the CAVs and
their speed profiles are shown in Figures 15 and 16.

It is worth mentioning that the advised speed from the
proposed algorithm is presented as the desired speed in
graphs. The speed limit in the urban area is set to 60km/h.
However, the proposed algorithm caps the desired speed at
50km/h for safety and allows tolerance to any error that
comes from measurements or the nonlinear dynamics of the
vehicle’s trajectory in real-life. A comparison of both cases is
demonstrated in Table 12.

It is clear from the speed graph in Case 2 that the desired
speed, obtained through the algorithm, is reduced from
50km/h to 20km/h to optimize the vehicle performance in
terms of fuel consumption, vehicle delays, and vehicle stops.
The optimal speed advised by the algorithm enhances the
engine performance by not stopping a long time waiting for
the green signal and being in the idling state without avail.

V. CONCLUSION
Signalized intersections play a crucial role in affecting traffic
networks’ efficiency and safety. The proposed framework
provides a comprehensive study that considers a data-driven
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FIGURE 14. The travel time of 100 CAVs entered the intersection from
four directions. The x-axis is the time in seconds and y-axis is the vehicle
ID. The red circle is the entrance moment, the green circle is the arrival
moment.

FIGURE 15. Speed profile for case 1: Feasible to catch the nearest green
signal.

approach for signal timing control, and an adaptive speed
algorithm for connected autonomous vehicles control. Data-
driven approaches are suitable and more adaptive to address
multiple variations of traffic scenarios such as varying values

FIGURE 16. Speed profile for case 2: Infeasible to catch the nearest green
signal.

TABLE 12. A comparison of the two cases of CAVs utilizing the
vehicle-control layer.

of the MPR. The proposed technique can be customized
in a real-time traffic network with its own geometrical
conditions and traffic levels. The ANN model proved its
efficiency against the traditional analytical solution provided
by Webster’s formulae. With the MPR of 0% of CAVs, the
proposed solution could achieve similar or slightly better
performance than the analytical solution (e.g., a reduction
in the average delay is 4%). However, when the MPR is
increased to its maximum 100%, there was a significant
improvement in the traffic network behavior in terms of
average delay (73%), average fuel consumption (42%), stops
per vehicle (86%), stops delay (95%), emissions (42%), and
average queue length (85%).

Future research directions include expanding the dataset
to incorporate vulnerable road users, such as pedestrians
and cyclists, thus broadening the model’s applicability.
Additionally, the adaptive speed control algorithm presents
opportunities for further refinement through the exploration
of more sophisticated control action tuning methods. These
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advancements promise to further optimize traffic network
performance, underscoring the potential of our proposed
framework to significantly contribute to the field of intelli-
gent transportation systems.
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