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ABSTRACT Automatic cranial implant design aims to design a patient-specific implant where various
machine-learning-based skull reconstruction techniques have been introduced to predict the implant.
Despite the significant progress made in the previous research, the existing techniques often struggle to
generalize to diverse clinical cases and may not fully leverage the latest advancements in deep learning
architectures. Moreover, the limited availability of large-scale clinical datasets hinders the development
of the models. In this paper, we represent a novel skull reconstruction model, CraNeXt, which utilizes a
ConvNeXt backbone to achieve a 5.8x reduction in size when compared to 3DUNetCNNwithout sacrificing
reconstruction quality. In addition, we introduce a novel method, skull categorization, to classify unlabeled
skulls and determine the location of defects and the distribution of skull areas. We expand the training dataset
by incorporating a larger collection of 328 in-house clinical cases, enabling the model to better capture the
diversity of real-world cranial defects. CraNeXt demonstrates superior results with the skull categorization
technique, achieving a dice score of 0.7969±0.13 on both public and in-house data. We perform a qualitative
assessment of the predicted implants and discuss potential improvements to the skull reconstruction toward
clinical use cases.

INDEX TERMS Skull reconstruction, deep learning, skull categorization, autoimplant, volumetric shape
completion.

I. INTRODUCTION
Skull reconstruction, or autoimplant, the process of gen-
erating 3D data of the cranial structure, has garnered
significant attention due to its role in neurosurgery [1].
Traditional methods for skull reconstruction often rely on
manual intervention, human expertise, and computationally
expensive applications [2]. However, these methods are
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frequently time-consuming and sensitive to image quality [3],
patient demographics [4], and pathological conditions [5],
highlighting the necessity for modern and efficient method-
ologies.

Deep learning techniques for medical images, such as
convolutional neural networks (CNNs) [6] andUNet architec-
tures [7], have emerged as powerful tools for automating and
enhancing skull reconstruction. By exploiting the hierarchical
representations within neural networks, deep learning models
learn complex patterns and features from large datasets.
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This ability is especially advantageous for the complex and
variable structures of the human skull. One common use
case for deep learning models is to generate a complete skull
from defected skulls, known as volumetric shape completion,
and then subtract them to obtain a generated implant. The
utilization of deep learning in skull reconstruction offers
several potential benefits, including increased accuracy,
reduced processing time, and enhanced adaptability to
diverse clinical scenarios [1]. Most current state-of-the-art
skull reconstruction models, as proposed in AutoImplant
Challenges [5], [8], use conventional CNNs as a backbone.
Recent developments in transformer architectures such as
vision transformers (ViT) [9] and improved CNNs such as
ConvNeXt [10] show the potential to improve performance
and generalization in various computer vision tasks [11].
ConvNeXt incorporates key designs from ViT, such as
larger kernel sizes, inverted bottlenecks, and improved
normalization techniques, while maintaining the simplic-
ity and efficiency of traditional convolutional networks.
ConvNeXt has demonstrated outstanding performance on
image classification [10], object detection, and semantic
segmentation benchmarks, often outperforming CNNs and
ViT. We hypothesize that improving the architecture of the
model can lead to improvements in the skull reconstruction.

An additional difficulty in implant generation is the work
toward clinical translation [1]. Addressing these challenges
is essential to ensuring the clinical reliability of deep
learning-based skull reconstruction methods. To improve on
this, there is a need for large and well-curated clinical skull
datasets [12], robustness to anatomical variations [5], and
the interpretability of results [1]. The present issues include
data heterogeneity [13], generalization [1], limitations of
the model’s interpretability [1], and the model’s robust-
ness [1]. While numerous methods have been proposed to
generate synthetic defected skull datasets in the AutoImplant
challenges [1], [5], [8], the lack of comprehensive and
diverse datasets derived from actual patient cases hinders
the refinement and validation of existing methodologies,
impeding the clinical translation of skull reconstruction. This
matter is complicated as certain organizations may have
internal data; these datasets frequently lack standardization
and fail to offer complete information on various defect areas.
Here, we believe that incorporating real clinical datasets
and publicly available datasets can improve the model and
its usage in real clinical applications. In addition, adding
information about defect areas may help understand the
distribution of defects and improve clinical applications.

Within the scope of this paper, we incorporate recent
developments in computer vision models to enhance the
autoimplant models. Specifically, we use ConvNeXt back-
bones to improve skull reconstruction and make the skull
reconstruction model more efficient. Below are the primary
contributions of our research:
• We propose CraNeXt, a novel UNet-based architec-
ture for skull reconstruction, inspired by the success
of ConvNeXt [10], which was constructed entirely

from standard ConvNet modules [6] without using
any specialized attention-based blocks like in vision
transformers.

• We apply a skull categorization to label each part of the
skull bymatching the unlabeled input skull to a template.
We then utilize the categorization technique to calculate
the distribution of defect areas and incorporate catego-
rization features during the model training, improving
implant generation.

• We introduce the Surface Hausdorff distance (SdH)
metric, which measures the surface distance between the
predicted and actual implant and can be used in actual
clinical and 3D printing setups.

• We incorporate 570 skulls from the public synthetic
dataset and 328 skulls from the in-house clinical
dataset. Our proposed models demonstrate the ability to
generalize and exhibit compatibility with synthetic and
clinical data, indicating their potential applicability in
clinical settings.

• We evaluate the performance of the proposed model on
both public and in-house datasets. The proposed model
with the skull categorization technique achieves superior
dice scores of 0.7969±0.13.

Our paper is structured as follows: In Section II, we present
the skull reconstruction task and review related works.
In Section III, we provide a thorough explanation of the
entire pipeline and the proposed methods. We provide the
evaluation criteria and experimental settings in Sections IV
and V. The results of the experiment are detailed in
Section VI. The discussion and conclusion are covered in
Sections VII and VIII.

II. RELATED WORK
A. OVERVIEW OF SKULL RECONSTRUCTION
Skull reconstruction, or autoimplant, encompasses a range
of methods and techniques aimed at rebuilding or restoring
the skull (Fig. 1). The process begins with data acquisition,
where we acquire an image of a defective skull from the
patient using CT imaging [14]. Skull segmentation extracts
the skull from a CT image [15]. It is registered in the desired
format, including orientation, position, space dimensions,
and size [16]. Skull categorization can also be applied to
the input skull to categorize the skull parts based on their
location (Section III-C). Then, skull reconstruction aims to
predict implants using a technique such as volumetric shape
completion [17]. A volumetric shape completion predicts
the complete skull to fill in missing portions of 3D skull
data in voxel-space [1] or point cloud space [18], [19]
using conventional machine learning [8] or deep-learning
approaches [19], [20], [21], [22], [23], [24]. A reconstructed
or predicted-complete skull is subtracted from the defective
skull to get an implant. Afterward, some post-processing can
be involved to clean an implant, such as manual removal [13]
or automatic removal of remaining voxels [22]. Ultimately,
the implant can be converted into a 3D shape format for
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FIGURE 1. Overall procedures for the proposed skull reconstruction. In (b), different colors represent different skull regions. The colors in (c) and
(d) represent the predicted implant and final titanium implant, respectively.

patient-specific implant design and then 3D printed for
surgical procedures [2].

B. AUTOMATIC CRANIAL IMPLANT DESIGN:
AUTOIMPLANT CHALLENGES
The automatic skull reconstruction has been brought to the
attention of the biomedical deep learning community by the
AutoImplant challenges [1], [5], [8]. Deep learning models
have demonstrated their efficacy in reconstructing the initial
shape of the skull. The AutoImplant I challenge (2020)
formulated cranial implant design as a shape completion
problem [1]. Both conventional and deep learning models
are proposed for the challenge, which play roles as baseline
approaches for skull reconstruction tasks. Ellis et al. [20],
[21] proposed 3DUNetCNN, the U-Net-style convolutional
neural network with residual connection [25], inspired by the
AutoEncoder model for 3D tumor segmentation [26], [27],
has an increased input size from 128 × 128 × 128 voxels to
176 × 224 × 144 voxels. The model consists of 2 blocks of
ResNet [25] with a base width of 32 channels and a depth of
5 layers. The output of the final decoding layer went through
a 1 × 1 × 1 convolution and sigmoid activation (Fig. 3(a)).
This paper also uses the data augmentation technique to
increase the dataset from 100 training sets of images to 9,900
additional training images using Advanced Normalization
Tools (ANTs) [28] to calculate non-linear symmetric image
normalization (SyN), warping transformations between orig-
inal dataset pairs. Yu et al. [13] proposed PCA-skull,
a data-driven approach using principal components analysis
(PCA) to describe the shape of healthy human skulls. With
the assumption that defective skulls and healthy skulls have
similar shape distributions in a common principal component
(PC) space, a defect would not alter the shape distribution of
a human skull significantly in a compact PC space. Applying
inverse PCA to the defective skull should result in a healthy
version of the skull. To obtain the final implants, a subtraction
operation between the reconstructed healthy cranium and the
defect skulls is performed. The AutoImplant II challenge
(2021) includes a more diverse synthetic dataset and focuses
mainly on the clinical applicability of deep learning models.
In the evaluation phase, submissions were quantitatively
and qualitatively evaluated by experts using real clinically

defective skulls. Wodzinski et al. [22] proposed two-step
U-Net-like networks with 3D convolutional residual blocks.
The first reconstruction network utilizes the preprocessed
defective skull as input and generates the predicted defect as
output. Then the second Variational AutoEncoder (VAE) net-
work will perform the refinement process by smoothing the
predicted defect and recovering the fine details. The Wodzin-
ski U-Net model outperformed 3DUNetCNN with a smaller
model architecture. In addition to the methods proposed
in AutoImplant challenges, Friedrich et al. [19] proposed
a point-cloud diffusion model for skull reconstruction in
point-cloud space, which requires additional computational
steps to convert from point-cloud to voxel space.

C. MODERN CNN ARCHITECTURES
Islam et al. [23] proposed a 3D attention-based U-Net
architecture for brain tumor segmentation and survival pre-
diction from MRI scans. They integrate channel and spatial
attention mechanisms into the decoder blocks of the 3D
U-Net to enhance segmentation performance. The attention
module consists of parallel channel and spatial attention
branches, along with a skip connection to reduce feature
redundancy and sparsity. Their experiments demonstrate
improved segmentation accuracy compared to the standard
3D U-Net. This work highlights the potential of integrating
attention mechanisms into 3D U-Net. Liu et al. [10] proposed
the ConvNeXt. It is a convolutional neural network (CNN)
architecture designed to compete favorably with hierarchi-
cal vision transformers across multiple computer vision
benchmarks while retaining the simplicity and efficiency
of standard CNNs. Across multiple tasks like ImageNet
classification, object detection, and semantic segmentation,
ConvNeXt achieves competitive or even better performance
than similarly-sized hierarchical vision transformers [9] like
swin transformers [29]. The primary differences between
the ResNet and ConvNeXt blocks are the elimination of
batch normalization in favor of layer normalization and the
widening of the convolutional stride. Lastly, Woo et al. [30]
proposed the ConvNeXt predecessor, ConvNeXtV2, and
introduced new normalization techniques by replacing layer
scaling before the skip connection with Global Response
Normalization (GRN) to enhance inter-channel feature

VOLUME 12, 2024 84909



T. Kesornsri et al.: CraNeXt: Automatic Reconstruction of Skull Implants

competition. In essence, ConvNeXt demonstrates that a CNN
architecture, when designed properly, can be as powerful
and scalable as hierarchical vision transformers, challenging
the notion that attention-based architectures are naturally
superior for vision tasks.

By synthesizing these related works, our proposed
approach attempts to address the complexities of skull
reconstruction with a larger quantity of clinical data and
explore modern CNN architectures to improve skull recon-
struction. We consider 3DUNetCNN [21], PCA-skull [13],
and Wodzinski UNet [22] as baselines and utilize ConvNeXt
architecture [10] with GRN [30] for the proposed backbone.

III. METHODOLOGY
Here, we discuss our process for skull reconstruction. The
process starts with acquiring data and standardizing data
configurations from open and in-house clinical data sources.
Data preprocessing includes skull registration (Fig. 2a),
ensuring that the data for training are consistent regardless
of the original configurations of the skulls. Additional data
preprocessing (Fig. 2b) consists of proposed skull catego-
rization, normalizing space dimensions between datasets, and
resizing. The purpose of skull categorization is to register
the skull template containing classified anatomical location
with the input skull, providing explicit contextual information
to the model. This distribution can be used to improve
the explainability and analysis of defect distributions. Input
resizing and foreground cropping ensure computational
efficiency and the limitations of GPU memory. We train our
proposed deep learning model, CraNeXt, using categorized
skulls from data preprocessing to predict complete skulls
(Fig. 2c). We then substitute a complete skull with a
defective skull to get a predicted implant. Then, we apply
post-processing techniques, including noise removal using
erosion and dilation to remove small voxels, and select the
largest connected components to remove irrelevant voxels
after subtraction. The post-processing can improve the
anatomical accuracy, smoothness, and compatibility of the
predicted skull, improving the raw output of the model to
a clinically usable implant. We evaluate output implants
using dice coefficient similarity and Hausdorff distance.
Lastly, implants are integrated into an existing clinical
workflow for visualization and utilization of predicted skulls
to manufacture patient-specific titanium implants (Fig. 2d).

A. DATASET
Our study uses two primary datasets for the development and
evaluation of automated cranial implant design: (1) Skull-
Break, which is a synthetic dataset, and (2) an in-house
clinical dataset. Using a combination of these datasets enables
a detailed evaluation of the proposed methods.

SkullBreak is a synthetically defective skull dataset
generated from the CQ500 head CT collection originated
by Kodym et al. [16]. The CQ500 collection [31] was
created by the Centre for Advanced Research in Imaging,
Neurosciences, and Genomics (CARING) in New Delhi,

India, licensed under CC BY-NC-SA 4.0. SkullBreak is
the primary dataset for skull reconstruction tasks in Med-
ShapeNet [32], which proposes a large collection of 3D
anatomical shapes such as bones, organs, and skulls, suggest-
ing the importance of exploring tasks such as reconstruction
in a larger and more diverse corpus.

SkullBreak consists of 570 training samples of 114 unique
skulls, each with a defective skull, a corresponding complete
skull, and the associated implant. The SkullBreak dataset
has 512 × 512 × 512 voxels with a space dimension of
0.4 × 0.4 × 0.4 mm. Skulls were extracted and aligned to
the Frankfort horizontal plane using a rigid transformation
based on four anatomical landmarks. Finally, artificial defects
were injected into the entire skull by subtracting randomly
generated shapes, providing five types of defects: unilateral
parieto-temporal, unilateral fronto-orbital, bilateral, and two
random defects. The defect borders were smoothed with mor-
phological operations to simulate current bone remodeling
processes. The SkullBreak dataset provides a diverse range
of synthetic skull defects across various defect shapes, sizes,
and locations.

An ‘‘in-house’’ clinical dataset consists of 328 pairs of
binary volumetric skulls and implants, acquired from patients
who underwent implant modeling before cranioplasty pro-
cedures at Meticuly Co., Ltd. [33] under patient consent.
Since this is a retrospective study, it does not require approval
from an Institutional Review Board (IRB). All datasets are
anonymized and renumbered to ensure the non-specification
of patient information. The dataset was collected and
anonymized to protect patient privacy, ensuring compliance
with ethical guidelines for the use of medical data in research.
The CT dataset has a fixed size of 500 × 530 × 465 voxels
with a space dimension of 0.5×0.5×0.625 mm. The dataset
includes a diverse range of cranial defects resulting from
various etiologies, such as craniotomies due to brain tumors,
traumatic brain injuries, and decompressive craniotomies.
The binary skulls were preprocessed bymanually segmenting
the CT scans of patients, aligning to the skull template using
rigid transformation, resampling the skull data into a 0.4 ×
0.4× 0.4 mm space dimension, and creating patient-specific
implants under the supervision of experienced biomedical
engineers.

To further standardize the alignment across both datasets,
we perform additional affine registration and cropping on our
in-house dataset to match the alignment of the SkullBreak
dataset, ensuring alignment consistency between datasets.
By integrating SkullBreak and in-house datasets, we have
created a rich and diverse dataset that combines the strengths
of both synthetic and clinical data and ensures that the two
datasets are consistent and compatible.

Table 1 presents the distinctions and dissimilarities
between the two datasets, including the file format, the
process to label implants either by directly subtracting an
implant from a healthy skull or by manually designing
an implant from an actual defective skull, and dimensions
obtained from CT imaging data. We measure the voxel
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FIGURE 2. Overall diagram for proposed methods.

occupancy rate (VOR), the ratio of implants to complete
skulls, which can be used as an approximation of the average
volume to be filled by the model. The average VOR for
complete skulls in the SkullBreak dataset is 5.21%, which is
higher than the average VOR of 4.08% for complete skulls
in the in-house dataset. However, the SkullBreak dataset
has an average implant to complete skull VOR of 0.09%,
while the in-house dataset has a higher average implant to
complete skull VOR of 0.18%. This difference suggests that
the implants in the in-house dataset tend to occupy a larger
proportion of the skull volume compared to the implants in
the SkullBreak dataset, indicating a higher implant volume
to be predicted in clinical datasets.

B. CRANEXT: A PROPOSED MODEL
Deep learning models’ efficiency and practicality are critical
in the field of medical image processing, especially for

tasks like skull reconstruction. Despite their promising
results, advanced topologies like 3D U-Net have high
computing costs and many parameters, which may limit their
use in resource-constrained clinical situations. Furthermore,
models with a large number of parameters are more likely
to overfit, especially when working with small medical
datasets. Therefore, there is a growing need for efficient
and lightweight models that can achieve comparable or even
better performance than their more complex counterparts.

In this section, we propose CraNeXt, a skull reconstruc-
tion model with fewer parameters and greater efficiency.
As illustrated in Fig. 3, the CraNeXt model maintains the
same architecture as 3DUNetCNN but with a modified stage
compute ratio. The motivation behind changing the encoder
stage ratio is introduced by the macro design of ConvNeXt,
which aims to allocate more computational resources and
representation power to the deeper stages of the encoder.
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FIGURE 3. (a) The 3DUNetCNN architecture; and (b) Our proposed CraNeXt architecture, replacing residual block 3D with ConvNeXt block 3D and
adjusting encoder stage ratios.

By reducing the number of ConvNeXt blocks in the earlier
stages and increasing the number of blocks in the fourth
stage (Fig. 3b), we allow the network to learn more complex
and discriminative features at higher resolutions. We also
introduce the stem layer to the model architecture. The stem
layer consists of a convolutional layer with a kernel size
and a stride equal to the patch size, designed to efficiently
process and downsample the input data before passing it
to the subsequent encoder stages. For the backbone part,
we adapt the core backbone of 3DUNetCNN [21] from
a modified 3D residual block of ResNet [25] to a 3D

ConvNeXt block [10], [30] (Fig. 4). By leveraging the
parameter-efficient design of ConvNeXt, we aim to create
a more lightweight and computationally efficient model for
skull reconstruction. The integration of ConvNeXt blocks
into the 3D U-Net architecture allows us to benefit from
the advantages of both the U-Net’s hierarchical structure
for capturing multi-scale features and ConvNeXt’s efficient
feature extraction capabilities. We replace the original con-
volution with a depthwise convolution with a bigger kernel
size, resulting in a bigger receptive field and more contextual
information. We apply the Global Response Normalization

84912 VOLUME 12, 2024



T. Kesornsri et al.: CraNeXt: Automatic Reconstruction of Skull Implants

TABLE 1. Dataset specification and format.

FIGURE 4. (a) Block Design for Residual Block 3D (b) Block design for
ConvNeXt block 3D. And parameter comparison of 3D input of size
32 × 32 × 32. The ConvNeXt block 3D differs from the residual block 3D by
employing depthwise convolutions with a larger receptive field and
inverted bottleneck structure, a normalization layer, and a GeLU
activation layer.

(GRN) layer [30] after the GELU activation layer to perform
global aggregation of features. Additionally, we incorporate
DropPath regularization within the ConvNeXt block to
randomly drop out entire paths within the block during
training, forcing the network to learn redundant and diverse
features. The output of the ConvNeXt block is then added to

FIGURE 5. Categorized skull template.

the input through a residual connection, similar to the original
residual block. Furthermore, we also compare CraNeXt
to the traditional 3D attention U-Net architecture [23] in
the experiment section to assess the performance between
attention-based and convolutional architectures.

C. SKULL CATEGORIZATION
The skull categorization approach aims to provide the skull
data with additional semantic information, enabling it to learn
more precise and context-aware reconstructions. We hypoth-
esize that the model can learn to handle defects depending
on their locations, e.g., by applying different strategies for
reconstructing defects in the frontal bone versus the parietal
bones. Here, we propose a skull categorization technique to
label the binary skull with the different anatomical regions of
the skull. We transform it into multi-label skull data before
inputting it into the CraNeXt model.

We first create the categorized skull template using
3DSlicer software [34] by manually segmenting the healthy
skull into 8 regions (Maxilla & Mandible, Temporal,
Occipital, Lower Parietal, Middle Parietal, Upper Parietal,
Lower Frontal, and Upper Frontal) based on cranial bone
anatomy and directly assigning label values into the skull,
converting skull data from binary to multi-label values
ranging from 1 to 8, as shown in Fig. 5. Secondly, we apply
the ANTs [28] 3D affine registration function to the binary
input skull as a fixed voxel and the template skull as a
moving voxel. The registration method will align the skull
template to match the input skull’s scale and offset. However,
the affine registration is robust in terms of accuracy, but it
is insufficient to ensure that the registered skull template
completely covers the area of the fixed input skull, resulting
in an undefined label (value 9) in the registered skull. We use
scikit-image’s dilation morphology [35] to enlarge registered
skulls, minimizing the non-coverage area before final label
mapping. This conventional dilation technique was chosen as
the dilated template skull significantly fills the entire binary
skull and makes efficient computation. Lastly, we categorize
the binary skull input by performing a dot-product operation,

VOLUME 12, 2024 84913



T. Kesornsri et al.: CraNeXt: Automatic Reconstruction of Skull Implants

mapping non-zero values of the input voxel to the value of the
skull template.

In summary, categorized skull data can facilitate the
design of modular or multi-part implants, where each part is
optimized separately based on its anatomical characteristics.
Incorporating categorized skull part input can provide
additional anatomical context, improve defect localization,
and facilitate more precise and anatomically accurate recon-
structions.

IV. EVALUATIONS
A. EVALUATION METRICS
To assess the binary 3D implants generated by skull recon-
struction techniques, we leverage quantitative evaluation
metrics including the dice similarity coefficient (DSC), the
95th percentile Hausdorff distance (dH95), proposed surface
Hausdorff (SdH), and the border DSC (bDSC) [1]. We also
incorporate the false positive rate (FPR) and the false negative
rate (FNR) into the metrics. More DSC and bDSC mean
better-generated implants compared to the ground truth.
In contrast, a lower dH95, FPR, and FNR indicate that the
generated implant closely matches the ground truth.

The voxel-by-voxel binary analysis of the complete or
labeled implant (y) and predicted implant (ŷ) is mainly used
for the evaluation, including

TP = y ∧ ŷ (1)

FP = (y ∨ ŷ) ∧ ¬y (2)

TN = ¬y ∧ ¬ŷ (3)

FN = (y ∨ ŷ) ∧ ¬ŷ (4)

where conjunction (∧), disjunction (∨), and negation (¬) are
boolean algebra operations.

The dice similarity coefficient (DSC)measures the similar-
ity between two 3D volumes. It assesses the overlap between
the predicted and ground-truth implant volumes and ranges
from 0 to 1, where 1 indicates perfect overlap. DSC can be
calculated as,

DSC =
2TP

2TP+ FP+ FN
. (5)

The boundary dice coefficient (bDSC) (6) measures the
DSC between the borders of the implants [1] where

IB =

{
I , dt ⩽ d
0, otherwise

(6)

represents the implant border. dt = EDT (D) is the Euclidean
distance transform (EDT) of the defective skull D, I is
the implant, and d is a distance parameter. We follow the
AutoImplant challenge [1] by setting a distance parameter d
equal to 10.

False positive rate (FPR) and false negative rate (FNR)
are used to evaluate the performance of binary classification
models. We utilize FPR to measure additional predicted
voxels and FNR to measure missing regions. FPR and FNR

can be calculated as

FPR =
FP

FP+ TN
and FNR =

FN
FN + TP

. (7)

The Hausdorff distance (dH) [36] metric calculates the
maximum distance between the predicted and ground truth
points, providing insight into the model’s ability to capture
surface differences between predicted and labeled implants
on an actual millimeter scale. Given two finite point sets from
a predicted implant A and a ground truth implant B,

A = {a1, . . . , ap} and B = {b1, . . . , bq}, (8)

the Hausdorff distance is defined as

dH (A,B) = max{h(A,B), h(B,A)} (9)

where

h(A,B) = max
a∈A

min
b∈B
∥a− b∥. (10)

However, Hausdorff distance (dH) alone may provide the
most clinical assessment as it applies to the entire surface
of predicted implants. To address this limitation, we propose
the surface Hausdorff distance (SdH), which calculates the
Hausdorff distance exclusively on the surface of the ground
truth and predicted implant. By focusing on the surface
area, SdH provides a meaningful assessment aligned with
the actual printing and evaluation process of the implant.
To compute SdH, we employ a parallel projection algorithm
that extracts the 3D implant surface from five directions:
superior to inferior, left to right, right to left, anterior
to posterior, and posterior to anterior [37] and calculate
dH based on these extracted surfaces instead. The surface
extraction method is defined in Algorithm 1 in the Appendix.

SdH (A,B) = max{h(SA, SB), h(SB, SA)} (11)

where h is (10) and SA, SB are the projected surfaces of the
predicted implant A and ground truth implant B, respectively.

B. QUALITATIVE EVALUATION
Performing the qualitative analysis is crucial for clinical
implant generation by offering insights beyond quantita-
tive metrics, especially concerning implant morphologies.
To conduct the evaluation, we utilize 3D Slicer software [34]
to compare the 3D shape of predicted and generated implants.
We use 5 qualitative criteria adapted from prior research [38]
to evaluate the predicted implant, including completeness,
no false positive area, restored skull shape, smooth transition
with the skull, and minimal thickness (Table 2). The first row
of Figure 7 presents the graphical examples for each criterion.
Additionally, we explore errors based on the characteristics of
skulls to further understand the potential clinical variability of
the dataset.
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TABLE 2. Implant prediction qualitative criteria.

V. EXPERIMENTAL SETTINGS
We conducted 3 experiments to address our contributions,
as follows:
• Experiment 1 aims to assess the enhanced back-
bone architecture compared to previous models.
We compare the performances of the proposed back-
bone architecture with other state-of-the-art methods,
including PCA-skull [13], a machine learning-based
3DUNetCNN [21] (baseline), and Wodzinski et al. [22]
UNet. Furthermore, we apply the attention-based
mechanism [23] to the baseline for better comparison
to ConvNeXt approaches. All methods are trained with
the same experimental configurations on the SkullBreak
dataset and evaluated on the combined SkullBreak and
in-house datasets (Table 3).

• Experiment 2 aims to assess the generalizability of the
model by comparing synthetic data with actual clinical
data. To evaluate our proposed model’s generalizability
and find optimal utilization for different datasets,
we conduct four distinct assessments utilizing both
SkullBreak and in-house datasets (Table 4).

• Experiment 3 aims to improve CraNeXt’s performance
and investigate the impact of proposed skull catego-
rization (Table 5). We categorized 730 defective skulls
from both the Skullbreak public and in-house datasets,
creating a new dataset called the categorized dataset.
We then train CraNeXt on both the original dataset and
the categorized dataset and compare their performance
on the combined Skullbreak and in-house test datasets.

The top-performing model from experiment 1 compared
to the baseline will serve as the base model for experiments
2-3, while the optimal dataset configuration from experiment
2 will be utilized in experiment 3. Furthermore, across
3 experiments, the results are analyzed with a one-sided
paired t-test to measure the differences of DSC, bDSC, dH95,
and SdH on the test set between major approaches (Table 6).
Section VI(A-C) will cover the results of experiments 1-3,
accordingly.

For the implementation of the proposed experiments,
we use TorchIO [39] to load and format datasets. The
datasets are registered to a common reference space via rigid
transformation (translation and rotation) using MONAI [40]
built-in transform functions. The model training is done

using the MONAI framework [40]. Then, the SkullBreak and
in-house clinical datasets are randomly split into training, val-
idation, and test sets with ratios of 470:50:50 and 260:34:34,
respectively. We use the input voxel size of 176× 224× 144,
which is the same as in 3DUNetCNN [21]. After autoimplant
prediction, we utilize scikit-image’s erosion dilation [35] and
largest component selection to eliminate small artifacts from
the predicted output. We subtract the predicted output from
the defective input skull to obtain the volumetric implant data.

We use NVIDIA A100 GPUs during training. The pre-
processing and data loader transformations use Pytorch [41]
and the MONAI framework [40]. The data preprocessing is
performed once and cached using the MONAI persistent data
loader to store it in the system storage. The training consists
of 300 epochs with an initial learning rate of 10-4 utilizing
Adam optimizer. We choose the best-validated epoch as the
final model. We use this configuration in all experiments.

VI. RESULTS
A. EXPERIMENT 1: MODEL ARCHITECTURE
PERFORMANCE
In Table 3, we observe similar dice scores even after
increasing the model size after incorporating the attention
mechanism into the 3DUNetCNN decoder. Meanwhile, after
replacing the backbone of 3DUNetCNN andWodzinski UNet
with the ConvNeXt backbone (CraNeXt) while keeping the
stage ratio, the results from 3DUNetCNNwith ConvNeXt 3D
show a similar performance with a slight decrease in DSC
when compared to the baseline. CraNeXt with a proposed
stage ratio outperforms baseline 3DUNetCNN by improving
DSC from 0.7389±0.17 to 0.7753±0.14 while reducing the
model size from 262M to 43M (5.8x smaller). After replacing
the CraNeXt backbone, the model size reduces from 262M
to 69M in 3DUNetCNN and 69M to 34M in Wodzinski
UNet, respectively. Wodzinski UNet and 3DUNetCNN with
ConvNeXt 3D outperform the original backbones. CraNeXt
outperforms most of the metrics, including DSC, dH95,
and SdH, while Wodzinski UNet with ConvNeXt slightly
outperforms in bDSC and FNR.

In statistical analysis, the CraNeXt model significantly
outperformed the 3DUNetCNN baseline in all metrics,
including DSC, bDSC, dH95, and SdH (p-value < 0.05,
3rd row in Table 6). This implies that the choice of
backbone architecture has a significant impact on the model’s
overall performance. Replacing the 3D ConvNeXt block
with the 3D residual block in 3DUNetCNN improves skull
reconstruction performance over the baseline. Meanwhile,
we found no significant differences betweenWodzinski UNet
and ConvNeXt 3D addition to Wodzinski UNet (pDSC =
0.2341, 4th row in Table 6).

B. EXPERIMENT 2: PERFORMANCE COMPARISON OF
CRANEXT ON SKULLBREAK AND IN-HOUSE DATASETS
In the first assessment (Table 4), we train CraNeXt exclu-
sively on the SkullBreak dataset. While this approach yields
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TABLE 3. Performance comparison of the proposed method with state-of-the-art methods trained on the SkullBreak dataset. The best value for each
metric is highlighted in boldface. A gray background highlights the method that performs best overall.

TABLE 4. Comparison of CraNeXt’s performance on SkullBreak and in-house datasets. The best value for each model and dataset is shown in boldface,
and the second-best value is shown in italic. The best-performing model on the in-house dataset is highlighted with a gray background.

TABLE 5. Comparison of CraNeXt’s performance on the original binary dataset and the categorized dataset. The best value for each metric is shown in
boldface.

the best results on the SkullBreak test dataset, it performs
poorly on the in-house test dataset. This indicates a limited
generalization to the specific characteristics of our in-house
data.

In the second assessment, we train CraNeXt solely on
the in-house dataset. Surprisingly, this results in suboptimal
performance on both the SkullBreak and in-house test
datasets, suggesting that the in-house dataset alone might not
provide sufficient diversity and coverage for effective model
training.

For the third assessment, we employ a transfer learning
approach by pre-training CraNeXt on the SkullBreak and
fine-tuning it with the in-house dataset. Despite the potential
benefits of transfer learning, the results for both test datasets
remain unsatisfactory, indicating that the pre-trained features
from the SkullBreak dataset might not align well with the
specific requirements of our in-house data.

Finally, in the fourth assessment, we combine both
the SkullBreak and in-house datasets for training. This
approach yields the best performance on the in-house test
dataset, with a dice score of 0.7217±0.16. Furthermore,
CraNeXt’s performance on the SkullBreak test dataset is the
second-best, with a lower dice score from 0.8552±0.06 to
0.8435±0.07, suggesting a slight trade-off in generalizability
when incorporating in-house data.

For the clinical in-house dataset, we found that using
the combined dataset differs significantly from using only

SkullBreak or the in-house dataset alone, with the exception
of the p-value for dH95 (pdH95 = 0.0539, 12th row
in Table 6). However, we discovered that fine-tuning and
combined data approaches make no significant difference
for the in-house dataset. Our results suggest that selecting
training strategies, consolidating datasets, and fine-tuning
with clinical dataset can affect CraNeXt’s performance
and generalization, especially when dealing with diverse
characteristics of in-house data. We find that training the
model by combining both synthetic and clinical datasets
offers the best-performing metrics on an in-house dataset.

C. EXPERIMENT 3: PERFORMANCE COMPARISON OF
CRANEXT ON ORIGINAL AND CATEGORIZED DATASETS
The results shown in Table 5 demonstrate that the model
trained on the categorized dataset performs slightly better
in all metrics than the model trained on the original binary
dataset. The CraNeXt model, trained with a categorized
dataset, achieved the highest dice score (0.7969±0.13),
making it the best-performing model overall. Our results
suggest that adding semantic information during training can
slightly improve reconstruction performance. However, there
are no significant differences in statistical analysis between
original and categorized skulls in terms of DSC, bDSC, and
dH95 (pDSC = 0.2109, pbDSC = 0.0863, and pdH95 =

0.3987, 14th row in Table 6). Despite this limitation, the
model trained with the categorized dataset outperforms the
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FIGURE 6. Comparison of predicted and labeled implant surfaces using
the 95th percentile Hausdorff distance (dH95) and our proposed Surface
Hausdorff distance (SdH). SdH outperforms in detecting surface errors,
especially in case (b), where the predicted implant surface is smoother
than (c). Despite the smoother surfaces, the dH95 values are higher than
the SdH values, indicating that the surface Hausdorff distance is a better
representative of contour errors.

uncategorized model, demonstrating the potential for skull
categorization to improve model effectiveness in clinical
applications.

D. EFFECTIVE MEASURING OF CONTOUR ERRORS USING
SURFACE HAUSDORFF
We evaluate if the proposed SdH can be used as an additional
metric for autoimplant. Fig. 6 presents a comparison between
the predicted implant surfaces and the corresponding implant
label surfaces for four different cases (a–d). The Surface
Hausdorff distance (SdH) is introduced as a more effective
measure of contour errors compared to the 95th percentile
Hausdorff distance (dH95). This is highlighted in cases
(Fig. 6b,c), where the predicted implant surfaces appear
smoother. Despite the smoother surfaces, the dH95 values
in these cases (2.8284 and 5.7271, respectively) are higher
than what would be expected given the visual similarity
between the predicted and actual surfaces. In contrast, the

corresponding SdH values (6.7646 and 1.7889) provide a
more accurate representation of the contour errors. This
suggests that dH95 fails to capture the true nature of contour
errors for smoother surfaces, while SdH offers a more
reliable assessment. In conclusion, SdH can be used as an
additional metric for autoimplant tasks in which the clinical
application only uses the predicted implant surface for the
patient-specific titanium implant designs.

E. QUALITATIVE EVALUATION
We investigate 50 and 34 predicted implants from SkullBreak
and the in-house test dataset with CraNeXt by examining
both 2D planes (coronal, sagittal, and axial planes) and 3D,
then summarize them into 5 error categories based on the
generated implant (Section IV-B). The most common error
is the lack of completeness in the 42 predicting implants,
meaning that half of them were unable to fully encompass
the defective area, where they are mostly formed as tiny
holes in the skull (Fig. 7a). The second most common error
was related to the smoothness of the transition area between
the skull and the implant (Fig. 7d), where error is found in
36 predicted implants. It may not give a smooth transition
due to different defect edges. Another issue is found in
21 implants that create false positive areas, indicating that the
model may over-predict some implants on the given skulls.
However, we found that 63 predicted implants have the ability
to cover the defective space with no additional prediction on
skulls, while the rest are commonly found in the defects at
the eye socket region (Fig. 7b). Additionally, we observed
that 14 skulls contain improper curves, which generally occur
when the segmented skull has curvature around the edges,
leading to the non-restored skull shape causing the incorrect
curvature from the model prediction (Fig. 7c). Lastly, 13 out
of 84 dataset skulls are described as not passing the criteria
of minimal thickness since they have either a too thick or too
thin reconstructed implant (Fig. 7e).

In addition, we explore the error of an implant that
may be influenced by the clinical variability of the skull
itself into 4 main categories, including non-break-through
skulls, bone artifacts, complexed defective areas, and defect
edges (Table 7). For non-break-through skulls, they are
characterized by a defect edge that is either completely or
nearly fully connected to the skull, making it challenging
for algorithms to estimate the boundary of the defective
areas (Fig. 8a). In some cases, bone artifacts are present in
defective skulls, causing the models to predict incorrectly.
The predicted areas may still contain bone growth occurring
due to calcification, alloplastic, and autograft, which is
considered the most difficult artifact closing off a defective
area with a patient’s bone observing in those patients with
prior implants during CT scan (Fig. 8b). The complexity of
defective areas is also found in specific defective regions
such as the frontal, temporal, and occipital areas, depending
on the variety of patients’ skull morphology (Fig. 8c).
These complex defects may not be well represented in the
training set and require high prediction accuracy to create the
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TABLE 6. One-sided paired t-test between the approaches across 3 experiments, compared regarding DSC, bDSC, dH95, and SdH, with the assumption
that approaches B on the right outperform those A on the left. The p-values smaller than 0.05 are highlighted in boldface.

FIGURE 7. Qualitative evaluation of skull reconstruction results on 84 test cases, with ‘‘yes’’ indicating compliance with the criteria and ‘‘no’’ indicating
non-compliance with the criteria. The top row shows representative cases that meet the criteria. The bottom row shows examples of predicted error
cases. (a) The incomplete implant observed in 3D shows the hole displayed between the predicted implant (yellow area) and defective skull (bone area).
(b) The false positive area (red area) is observed in the coronal plane where the predicted implant exceeds the defective area. (c) The predicted implant
with a non-restored skull shape can be observed due to its small curve compared to the labeled implant (orange area). (d) The predicted skull with a
non-smooth transition is shown between the boundaries of the implant and the defective skull. (e) The predicted skull is thin when compared to the
defective thickness.

proper curves. Finally, defect edges, which are rounded cross
sections transitioned between the skull and the defect area,
create a large defect and may pose difficulties in generating
the implant that entirely covers the surface area (Fig. 8d). This
results in the implant protruding through the inner side of
the outer surface that contracts to the brain for titanium mesh
regeneration.

VII. DISCUSSION
In this paper, we have proposed CraNeXt, a novel
convnext-based 3D skull reconstruction model. We use
categorized skulls to both improve the reconstruction and
help analyze the statistics of themissing skull.We incorporate
a large number of 328 in-house clinical dataset with a
public SkullBreak dataset for autoimplant. We found that our
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FIGURE 8. Examples of defective skull errors. (a) Not-break-through
skulls arise from bone surface fractures (red area) that do not create open
wounds. This is an example case from a patient with large brain tumors
that visibly pushed the skull outward. (b) Bone artifacts (red area) are the
result of calcification. (c) The complexity of the defective area is depicted
in the frontal area. (d) A defect edge arises from the slope edges.

proposed model gained accuracy on the skull reconstruction
while using 5.8x fewer parameters. We explore the errors
made by the model on clinical and SkullBreak datasets and
discuss challenges in clinical translation.

The size of the 3D backbones for skull reconstruction
is significantly larger compared to their 2D counterparts,
presenting challenges in terms of computational resources
and efficiency. By optimizing the model’s backbone archi-
tecture with ConvNeXt block designs [10], we have reduced
the model size while simultaneously improving the gener-
alizability of the skull reconstruction. The reduced model
size also improves computational efficiency, leading to faster
execution times for clinical applications. Future research
may explore the development of architecture backbones and
optimization methods to create more compact and expressive
models capable of representing complex skull data [22].
To our knowledge, our collected data is one of the largest

clinical defective skull datasets [1]. We found that combining
synthetic datasets with clinical datasets can improve the
generalizability of the model. Synthetic data often have more
controlled and standardized defect patterns while lacking
the variations that are found in clinical data. Meanwhile,
clinical data have different characteristics, allowing models
to learn complex defective areas. However, they may contain
complex skull shapes and complexity, which makes the
model learning step more challenging. One approach to
improving the model is to increase the availability of real
clinical data to cover the variability of defects. Another
approach is to explore clinically relevant synthetic generation

TABLE 7. Type of error based on characteristics of skulls.

of defective skulls [16]. Nevertheless, there is another
challenge relating to the labeling process when using clinical
datasets. As the data were collected from subjects with
pre-existing complications, they usually lack actual healthy
skull information. During data preparation, design engineers
should standardize the labeling process across all data and
ensure that the designed implant label closely matches the
missing part of the skull. We think that adding more clinical
data and translating these clinical defects for synthetic data
generation with a greater diversity of cranial anomalies could
help improve the generalizability of the model.

In our research, we propose SdH to measure the surface
distance between the predicted and actual implant since
most patient-specific titanium implants only consider implant
contour for 3D printing. Although SdH has a close correlation
with dH, we believe that using SdH to consider surface
distance can be used for additional interpretation. While the
metrics used in previous research [1] are useful for evaluating
the overall performance of the skull reconstruction, they may
not fully capture the clinical relevance of the reconstructed
implant. In practice, the contour of the reconstructed skull is
critical to achieving a satisfactory aesthetic outcome while
also ensuring a proper fit with the surrounding anatomical
structures. As a result, we believe that incorporating a
more meaningful metric designed specifically to assess the
accuracy of the skull contour will provide a more clinically
relevant assessment of reconstruction quality.

Qualitative evaluation of the generated implants using
CraNeXt reveals several areas for improvement, including
practical-generated implants and variability in clinical pat-
terns. We believe that pre- and post-processing of clinical
skulls, including clinical-related loss functions, may improve
generation tasks. For example, smoothness issues at the
transition area between the skull and the implant can
be mitigated by exploring post-processing techniques or
incorporating smoothness constraints into the loss function
during training. To improve the completeness of the implants
and complex defective regions, future work could investigate
the use of shape priors or topology-aware loss functions
to ensure that the predicted implants fully encompass the
defective areas [42], [43].

Our study demonstrates the potential for enhancing
the clinical applicability and usability of modern deep
learning architectures in skull reconstruction. It addresses
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Algorithm 1 Implant Surface Extraction Method
Input : 3D voxel of skull and implant I with

W × H × D shape, where value of
background = 0, original skull = 1, and
implant = 2.

Output: Binary 3D voxel of implant surface ISurface
with the same input shape, where value of
background = 0 and implant surface = 1.

W ,H ,D← shape(I)
ISurface(w, h, d)← 0,∀w ∈ W ,∀h ∈ H ,∀d ∈ D
// projection paths
P← array[]
// Left←→Right
for h ∈ H , d ∈ D do

Append P with path(w, h, d)forw = 0, . . . ,W
Append P with path(w, h, d)forw = W , . . . , 0

end
// Anterior←→Posterior
for w ∈ W , h ∈ H do

Append P with path(w, h, d)ford = 0, . . . ,D
Append P with path(w, h, d)ford = D, . . . , 0

end
// Superior→Inferior
for w ∈ W , d ∈ D do

Append P with path(w, h, d)forh = H , . . . , 0
continue

end
for path ∈ P do

for w, h, d in path do
// hit skull
if I (w, h, d) = 1 then break
// hit implant
if I (w, h, d) = 2 then

ISurface(w, h, d)← 1
break

end
end

end
return ISurface

the challenges in craniofacial reconstruction and paves the
way for the increased translation of skull reconstruction
techniques into broader clinical practice. Future research
can focus on further refining models and validating their
performance in larger and more diverse patient populations.

VIII. CONCLUSION
We introduced CraNeXt, a novel model designed for skull
reconstruction that combines the ConvNeXt backbone with a
3D U-Net AutoEncoder architecture. Our model outperforms
the previous model architecture in autoimplant while using
5.8x fewer model parameters, with an improved dice score
from 0.7389 to 0.7753. Our model’s efficiency was improved
by combining synthetic defects and real clinical datasets,

elevating the dice score to 0.7942. We also developed a novel
method of skull categorization that helps label different parts
of the skull, enhances explainability, and improves model
performance. We demonstrated that using categorized data
leads to an improvement in model performance, with a final
dice score of 0.7969. This paper translates autoimplant into
practical clinical application.

APPENDIX
The surface Hausdorff distance (SdH) is a metric used to
quantify the distance between two surfaces. The implant
surface extraction method is outlined in Algorithm 1.
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