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ABSTRACT Traditional 2D Simultaneous Localization and Mapping (SLAM) algorithms commonly
use occupancy grid map models, which are susceptible to Gaussian noise. The constraint information in
the backend optimization process is limited. Sensor data utilization at various stages is also incomplete.
To address these issues, this paper proposes amulti-sensor deep fusion SLAMmethod based on the Truncated
Signed Distance Function (TSDF) map. Firstly, the inertial sensing unit (IMU) is pre-integrated, and then
the distortion correction of the laser point cloud is corrected by using the posture obtained after pre-
integration. In the front-end, the Unscented Kalman Filter (UKF) method is used to fuse odometry, IMU
data, and LiDAR scan matching results to obtain the pose information of the robot. The backend uses
IMU pre-integration factor, loopback detection, and laser point cloud registration to enhance constraints
for global map pose optimization and achieve deep fusion of multi-sensor data. The map model uses a TSDF
map, which constructs obstacle edges through weighted fusion and linear interpolation, and it truncates
the grid cells around obstacles, thereby reducing the influence of Gaussian noise. The performance of
Karto-SLAM, Cartographer, and the proposed algorithm is verified by comparing the public dataset and the
dataset collected in the real environment. The results show that the proposed method effectively avoids the
ghosting phenomenon of traditionally occupied raster maps and reduces Gaussian noise in terms of mapping.
In terms of positioning accuracy, the effect of back-end optimization is enhanced by a multi-constraint
relationship, which reduces the relative and absolute pose errors of the real trajectory. Our method improves
localization accuracy by an average of 9% compared to Cartographer and by an average of 34% compared to
Karto-SLAM.

INDEX TERMS Truncate signed distance function map, multi-sensor fusion, simultaneous location and
mapping, inertial measurement unit pre-integrated.

I. INTRODUCTION
In recent years, with the advancement of hardware and
improvements in computer technology, the application
scope of mobile robots has expanded significantly. Among
these applications, Simultaneous Localization and Mapping
(SLAM) serve as the foundation for achieving autonomous
navigation in mobile robots [1], [2], [3]. Common SLAM
systems are generally divided into five parts: sensor data
acquisition and processing, front-end odometry, back-end
optimization, loop closure detection, and map construction.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

LiDAR and other auxiliary sensors collect data, which
is then processed and analyzed by the front-end odom-
etry. Using scan matching algorithms, the relative pose
transformation between consecutive LiDAR data frames is
quickly estimated. However, the computed pose contains
cumulative errors and is not accurate enough. The back-end
optimization is responsible for global trajectory optimization
to obtain precise poses and build a globally consistent
map. Throughout this process, loop closure detection is
continuously executed to recognize revisited scenes, achieve
loop closure, and eliminate cumulative errors.

During the SLAM process, the inherent characteristics of
a single sensor impose limitations on the perception of the
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surrounding environment and the estimation of the robot’s
pose [4]. This limitation raises concerns about the accuracy
and robustness of SLAM algorithms. For instance, common
single-line lidars, due to their lower sampling frequency,
are prone to motion distortion during robot movement.
Additionally, their reliance on data association between
consecutive frames can affect the matching efficiency of lidar
point clouds in environments with similar features and limited
measurement ranges. Inertial Measurement Units (IMUs)
exhibit drawbacks such as zero-offset, susceptibility to tem-
perature influences, and cumulative errors. Wheel encoders,
commonly used as odometry sensors, may introduce sig-
nificant errors in dead reckoning due to wheel slippage or
uneven road surfaces. The adoption of a multi-sensor fusion
approach allows for the integration of inertial and odometric
data, providing prior information for lidar point cloud
matching, correcting lidar data distortion, and mitigating
accumulated errors. Simultaneously, the long-term stable
distance information from lidar data can reduce cumulative
errors. Therefore, the effective fusion of multi-sensor data,
achieving complementarity and the integration of non-
homogeneous data, remains a focal point in current research
on SLAM algorithms for mobile robots [5], [6], [7], [8].

Scan matching technology, which aligns consecutive
frames of laser point clouds to estimate pose transformations,
was initially implemented using the Iterative Closest Point
(ICP) algorithm [9]. This method searches for corresponding
matching points between frames based on the nearest neigh-
bor principle and constructs a cost function for optimization.
However, this approach suffers from drawbacks such as
high computational complexity and dependence on initial
values. Point-to-Line ICP (PL-ICP) is an optimized version
of ICP that differs in its use of the minimum point-to-line
distance for ICP computation, ensuring faster convergence
speed and higher accuracy [10]. Wei et al. [11] utilized the
PL-ICP algorithm in the early stages of Hector-SLAM to
adjust its orientation and position, achieving a certain degree
of correction for trajectory and pose. However, due to the
absence of a loop closure detection process, this method still
cannot eliminate trajectory deviation caused by accumulated
errors. Several scholars have proposed the fusion of IMU
observation information with lidar, odometry, and camera
data at the front end of SLAM. However, most of these
approaches achieve fusion at a specific stage and do not
fully leverage the IMU’s observation data [12], [13], [14].
Literature [15] introduced Ultra Wide Band (UWB) as prior
information into point cloud registration, effectively ensuring
the point cloud matching process. However, this information
was not integrated into backend optimization, leading to
insufficient fusion of sensor data. The Cartographer algo-
rithm, developed by Google, is a laser SLAM algorithm
based on a graph optimization framework. It employs
filtering methods during data preprocessing to fuse IMU
and odometry data. Subsequently, during frontend frame-to-
frame matching, lidar data interpolation corrects distortions

in lidar point cloud data, followed by the construction
of a series of sub-maps [16]. However, its backend only
achieves loop closure constraints through frame-to-submap
and submap-to-submap matching relationships. As a result,
this method fails to fully utilize IMU and odometry data for
multi-sensor depth fusion, overly relying on lidar data and
leading to inaccurate or failed loop closures in environments
such as long corridors. This paper not only fuses odometry
data, IMU data, and LiDAR scan matching results in the
front-end to output higher precision pose information of the
robot, but also enhances constraints for global map pose
optimization in the back-end through IMU pre-integration
factors, loop closure detection, and inter-frame matching.
By fully utilizing data from IMU and other sensors, the
approach achieves deep multi-sensor fusion.

In the realm of data fusion, existing fusion methods
include weighted averaging, filter-based methods, Bayesian
estimation, and neural networks, among others [17], [18],
[19], [20]. The use of filtering methods allows for the
clever fusion of observation and estimation data, effectively
managing errors and constraining themwithin a certain range.
Filtering methods are currently widely used in multi-sensor
data fusion. Common filtering techniques include Kalman
Filtering (KF) [21], Extended Kalman Filtering (EKF),
and Unscented Kalman Filtering (UKF) [22]. EKF is an
extension of Kalman Filtering designed to handle nonlinear
systems. UKF, in contrast to EKF, avoids the computation
of Jacobian matrices by using a set of poses containing
mean and covariance, enhancing system robustness and real-
time performance.This paper effectively enhances the overall
system performance by using the Unscented Kalman Filter
(UKF) to fuse IMU data, odometry data, and LiDAR scan
matching results.

In the selection of map representation models, grid maps
and point clouds are the mainstream approaches for 2D laser
SLAM map representation, as seen in algorithms such as
Hector SLAM [23], Gmapping [24], Karto-SLAM [25], and
the Cartographer algorithm. Probability grid maps use prob-
ability values to represent subgrids in a static environment.
Their state updates involve simple addition and subtraction
operations, making them easy to construct. However, their
resolution cannot be changed, and real-time storage of prob-
ability values for all subgrids in the environmental map leads
to a sharp increase in memory consumption. Additionally,
the fixed resolution in the configuration file can result in
jagged and overlapping surfaces of constructed obstacles,
leading to suboptimal mapping results. Truncated Signed
Distance Function (TSDF) provides an implicit computation
method for establishing the surface of obstacles, allowing
for memory savings and smoother boundary processing.
Fossel et al. [26] introduced the 2D Signed Distance Function
(SDF) map into laser SLAM algorithms for the first time,
but the SDF map update strategy was not well-developed.
Subsequent work by Daun et al. [27], Fu et al. [28], and
others proposed new SLAM algorithms based on the TSDF
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mapmodel and improved the map update strategy. This paper
selects TSDF as the map model, effectively addressing issues
such as susceptibility to Gaussian noise and poor mapping
performance associated with probabilistic grid maps.

In summary, addressing the challenges in 2D laser SLAM,
there is practical value in the algorithmic research on
multi-sensor fusion for handling multi-sensor data and
closing the loop with backend constraints. Building upon the
foundation of the Cartographer algorithm, map modeling,
and graph optimization research, this paper proposes a
method for deep fusion based on sensors such as IMU and
Lidar. The backend is augmented with additional constraints,
and the map model selection involves real-time localization
and mapping using a Truncated Signed Distance Function
(TSDF) to ensure the comprehensive utilization of multiple
data sources.

II. ALGORITHM OVERVIEW
A. ALGORITHM PROCESS
The proposed algorithm takes IMU data, odometry data, and
2D laser data as input and outputs the pose information of the
carrier robot while continuously constructing a more refined
Truncated Signed Distance Function (TSDF) map. The
algorithm can be divided into the following five components:

1) Data Preprocessing: Data preprocessing involves syn-
chronizing timestamps between IMU data and lidar
point cloud data. Subsequently, preintegration process-
ing is applied to the IMU data to obtain the relative
pose transformation matrix of the robot. Based on this,
distortion correction is performed on the lidar point
cloud data to address low-frequency distortions.

2) Data Fusion: Utilizing Unscented Kalman Filter
(UKF), the algorithm combines odometry, IMU infor-
mation, and the results of lidar point cloud scan
matching. This process outputs more accurate pose
information for the carrier robot while providing a
good initial value for subsequent optimization and loop
closure processes.

3) Scan Matching: The algorithm employs the Point-
to-Line Iterative Closest Point (PL-ICP) algorithm
for inter-frame matching computations. This involves
registering laser point clouds with the map to update
the map through point clouds and map alignment.

4) TSDF Map Construction: Using Truncated Signed
Distance Function (TSDF) as the map model, the
algorithm employs a weighted approach to update a
grid with multiple observed values.

5) Loop Closure Detection andMulti-Constraint Backend
Optimization: Around the carrier robot, a windowW is
constructed to search for the best match between laser
points and the TSDF map.If no matching constraint
within the window results in an error smaller than
a threshold, loop closure is considered unsuccessful.
If successful, the loop closure constraint is added to
the backend optimization. Frame-to-frame matching

FIGURE 1. Block diagram of the system.

constraints, IMU preintegration factor constraints, and
loop closure constraints are inserted into the backend to
construct the target error function for optimization. The
algorithm iteratively solves this function, achieving
correction of the current submap pose node and
optimization of the global map.

B. THE UNIQUENESS AND SUPERIORITY OF THE
ALGORITHM
As shown in Table 1, the superiority of this algorithm mainly
lies in the integrated multi-sensor data and the use of TSDF
map, which is embodied in the following three points:

• Deep Fusion of Multi-Sensor Data: The method pro-
posed in this paper uses the Unscented Kalman Filter
(UKF) in the front-end to fuse odometry, IMU data,
and LiDAR scan matching results to obtain the robot’s
pose information. In the back-end, IMU pre-integration
factors, loop closure detection, and LiDAR point cloud
matching are used to enhance the constraints for global
map pose optimization, achieving deep fusion of multi-
sensor data.

• Utilization of TSDF Maps: The paper employs Trun-
cated Signed Distance Function (TSDF) maps, which
enable the construction of obstacle edges through
weighted fusion and linear interpolation. Additionally,
around obstacles, grid cells are truncated, reducing the
impact of Gaussian noise and avoiding the occurrence
of map ghosting commonly associated with traditional
occupancy grid maps. This approach effectively miti-
gates the influence of Gaussian noise.

• Improved Localization Accuracy: Through the fusion of
multi-sensor data in the front-end, the algorithm outputs
pose information with higher precision. Additionally,
the enhancement of back-end optimization through
multiple constraint relationships significantly reduces
both relative and absolute position errors in the actual
trajectory.

III. ALGORITHM DESIGN
In the experimental process, we define the global world
coordinate system as 6M, and the coordinate system of
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TABLE 1. Comparison of the characteristics of the algorithm in this paper with cartographer and Karto-SLAM.

the carrier robot as 6M. The coordinate systems of the
lidar and wheel odometry can be kept consistent with the
robot coordinate system 6M through a stable coordinate
transformation relationship. As for the IMU, since it is rigidly
attached to the carrier robot, its measurement data can be
considered as data in the carrier robot coordinate system
6M. Assuming that within the sampling period [tk−1, tk]
of the lidar, the collected lidar point cloud is represented
as Sk , and the dataset collected by the IMU is denoted as
�(k−1,k). �(k−1,k) consists of N sets of accelerations and
angular increments in the 6M coordinate system [aWkn , ω

W
kn ],

where n = 1,2,3. . .N. If the global pose node of the system
at time tk is represented as X =[xWk , yWk , θWk ], indicating the
robot’s pose in the 6W coordinate system at time tk , where
θWk is the yaw angle. If vWk represents the linear velocity of
the robot in the 6W coordinate system at time tk , the system
model from pose node Xk−1 to Xk at time tk can be expressed
as shown in equation 1:

Xk =

x
W
k

yWk
θWk

 =

x
W
k−1 − vWk 1tsin(ωW

k 1t)
yWk−11tcos(ω

W
k 1t)

θWk−1 + ωW
k 1t

 (1)

A. DATA PREPROCESSING
1) IMU PREINTEGRATION
The observation equation for an Inertial Measurement Unit
(IMU) sensor can be expressed as follows:{

aWkn = RWMkn aMkn + bakn + ηa

ω∗W
kn = ωW

kn + bgkn + ηg
(2)

In equation 2, bakn and b
g
kn represent the static biases (zero

biases) of the accelerometer and gyroscope, respectively. ηa

and ηg denote the observation noise of the accelerometer and
gyroscope, while ω∗W

kn represents the raw angular velocity
observation. Here, bakn and bgkn are both two-dimensional
vectors, and RWMkn signifies the rotation matrix from the 6M
coordinate system to the 6M coordinate system. During a
single frame scan period of the lidar, the IMU data output
frequency is much higher than the lidar scan data output
frequency. Therefore, processing the IMU observation data
through preintegration within the lidar single-frame data
period can form inter-frame pose constraints. The relevant
formulas are as follows: vWkn+δ

= vWkn +

(
RWMtn+δ

aMtn + batn + ηa
)

× 1t

θWkn+δ
= θWkn +

(
ωM
kn + bgkn + ηg

)
× 1t

(3)

From equation 3, we can obtain themotion control quantity
uk+δ =

[
vW
k̇n+δ

, θWkn+δ

]
, If the static biases in the IMU remain

constant over the time interval 1t , then the preintegration
observation model can be obtained by calculating uk+δ .

2) LIDAR POINT CLOUD DISTORTION CORRECTION
In the process of sampling a single-frame point cloud data
with a lidar, there is a time delay. If the pose of the
mobile robot changes within the lidar sampling period, the
coordinates of the lidar in the 6W frame will also undergo
corresponding changes. To ensure the accuracy of the laser
input data and the precision of localization and mapping
algorithms, it is necessary to perform distortion correction on
the lidar point cloud.
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FIGURE 2. Correction effect of single-frame point cloud distortion.

The IMU data acquisition frequency can reach approx-
imately 100-200 Hz, allowing for high-precision acquisi-
tion of the mobile robot’s pose transformation during the
scanning process in the short term. Therefore, IMU can
be used to assist in the distortion correction of lidar point
clouds. Before performing correction, it is necessary to
synchronize the timestamps of the two sensors. Within
the lidar single-frame sampling period [tk−1, tk ], the IMU
can compute the relative pose transformation T tktk−1

through
preintegration. Assuming that the mobile robot undergoes
constant linear motion during the time interval t ∈ [tk−1, tk],
on this basis, linear interpolation is used to calculate the pose
transformation of any lidar point relative to the first lidar
point. Subsequently, the current lidar point is transformed
into the coordinate system corresponding to the first lidar
point. The relevant computational formula (equation 4) is as
follows: T i =

tk − ti
tk − tk−1

T tktk−1

h∗
i = T ihi

(4)

In the equation, ti represents the timestamp of the i-th
lidar point in a single-frame point cloud, Ti is the pose
transformation matrix of that lidar point relative to the first
lidar point in the frame, hi denotes the position of the lidar
point without distortion correction, and h∗

i represents the
position obtained after correction. The distortion correction
of the lidar point cloud is accomplished by utilizing
equation 4 to transform the pose of all lidar points in a
single frame, the distortion correction of the lidar point
cloud is accomplished. Experimental results indicate that the
distortion correction effect of a single-frame lidar point cloud
is illustrated in Figure 2.

B. UNSCENTED KALMAN FILTER (UKF) DATA FUSION
The Unscented Kalman Filter (UKF) utilizes the unscented
transform to reconstruct the statistical characteristics of the
state vector through Sigma points. It employs a nonlinear
system model for updating the state of the robot system.
In comparison to the Extended Kalman Filter (EKF),
UKF is more adept at reducing computational complexity
and linearization errors [19]. The fusion of the Inertial
Measurement Unit (IMU) preintegration factors and the pose
obtained from local lidar scan matching based on UKF
results in a higher-precision pose state quantity. Notably, due
to the relatively low precision of the linear accelerometer
measurements in the IMU, the angular velocity increments
measured by the gyroscope are more accurate. Therefore,
the IMU data is directly combined with wheel odometry.
The spatial state model for the mobile robot is expressed as
Formula 5. {

Xk = f (Xk−1,uk ) +W k−1

Zk = h(Xk ) + V k
(5)

In the equation 5, Wk−1 represents the noise sequence of
themotionmodel at time tk−1,Vk represents themeasurement
noise sequence at time tk , and uk denotes the motion
transformationmatrix obtained by IMUpreintegration at time
tk . The process of data fusion using UKF involves several key
steps, including initialization, computation of Sigma points,
updating the state through the input observation equation,
calculating the Kalman filter gain Kk , and updating the mean
and covariance of the robot’s pose.

1) The initialization of data requires setting the augmented
state vector xα

0 and the augmented matrix 6α
k−1 as

follows:

xα
0 =

[
x0, 0, 0

]
,

α∑
k−1

=

∣∣∣∣∣∣
∑

k−1 0 0
0 Q 0
0 0 R

∣∣∣∣∣∣ (6)

The term x0 represents the initial state vector of the
mobile robot, Q denotes the covariance of the motion
model noise, and R represents the covariance of the
observation model noise, specifically the observation
noise covariance of the lidar.

2) The sigma point set is sampled from the state vector
xk−1 of the mobile robot, as shown in Formula 7.
Utilizing the state vector of the mobile robot at time
tk−1 and the preintegration results from the IMU, the
state vector of the mobile robot at time tk is obtained.
Simultaneously, the meanµk and covariance matrix6k
are computed, as shown in Formula 8.

xα
k

=

[
xα
k−1, x

α
k−1+

√
(n+1)6α

k−1,x
α
k−1 −

√
(n+1)6α

k−1

]
(7)
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xk = f (xk−1, uk )

µk =

2N∑
i=0

ωm
i xk

6k =

2N∑
i=0

ωc
i
(
xk,j − µk

)(
xk,j − µk

)T (8)

In the equation 8,ωm
i represents the weight factor of the

IMU observation, and ωc
i represents the weight factor

of the observation obtained from laser point cloud
matching.

3) Performing state updates through the input observation
equation involves utilizing the observations obtained
from local lidar scan matching and calculating the
corresponding mean and covariance. The relevant
formulas are as follows, where Pk represents the
covariance of the observation, and 6

1,2
k represents the

cross-covariance between prediction and observation.

zk,i = h(xk )

zk|k−1 =

∑2N

i=0
ωm
i Zk,i

Pk =

∑2N

i=0
ωc
i
(
Zk,i − zk|k−1

)(
Zk,i − zk|k−1

)T
6

1,2
k =

∑2N

i=0
ωc
i
(
xk,i − µk

)(
Zk,i − zk|k−1

)T
(9)

4) Calculate the Kalman filter gain Kk , and update the
mean µk and covariance 6k . The calculation formulas
are as follows:

Kk = 6
1,2
k P−1

k

µ∗
k = µk + Kk (zk − zk|k−1)

6∗
k = 6k − KkPkKT

k

(10)

C. SCAN MATCHING
The ICP algorithm employs the point-to-point Euclidean
distance between adjacent frames as the error function,
leading to slow convergence and significant computational
resource consumption. PL-ICP improves upon this by using
the point-to-line Euclidean distance as the error function,
enhancing registration accuracy while also accelerating the
solution process. If we assume there are two adjacent frames
of laser point cloud data to be matched, where the target
point cloud sequence is represented as U={u1,u2 · · · un}
and the to-be-matched point cloud sequence is represented
as V = {v1, v2 · · · vn}, then their transformation relationship
satisfies: 

v∗ = Rv+ t

R =

[
cosθ −sinθ
sinθ cosθ

]
t = (1x 1y)T

(11)

where v∗ represents the point cloud v transformed by amatrix,
resulting in an approximate point cloud u. θ is the rotation
angle of point cloud U relative to point cloud V, and 1x and

FIGURE 3. TSDF map model.

1y represent the offsets in the x-axis and y-axis directions,
respectively. Based on this, the error function is constructed
as follows:

E(R,T ) =

∑(
nTi

[
R(θk+1)ui + tk+1 − vin

])
(12)

In the above equation, nTi represents the normal vector of
the nearest line, and k represents the number of iterations.
During the solution process, the pre-integration results from
the Inertial Measurement Unit (IMU) can be utilized as
initial values for the pre-matching process. To minimize
E(R,T ), the Levenberg-Marquardt (LM) algorithm can
be employed for solving. The convergence threshold and
maximum number of iterations can be set during the solution
process and added as constraint factors to the back-end
optimization.

D. MAP CONSTRUCTION
Traditional 2D navigation maps are often represented as
occupancy grid maps, while TSDF maps provide an alter-
native grid-based mapping model. The occupancy grid map
model is based on Bayesian theory, dividing the environment
into equally sized finite grids and assigning each grid one
of two states: free (Free, p = 0, no obstacle) or occupied
(Occupied, p= 1, obstacle present). When a laser scan passes
through the corresponding environment grid, the explored
area’s probability values are continuously updated based on
specific formulas, thereby completing the map construction.
The TSDF map model is an improvement over the Signed
Distance Function (SDF). SDF is a signed distance field,
while TSDF restricts its sdf values to be within −1 and
1 using a specific formula. The core idea of the TSDF map is
to establish a truncated signed distance functionmap based on
grids, where each grid’s function value represents its distance
to the obstacle surface. Figure 3 illustrates a TSDFmap based
on grids, with the obstacle represented as a curved line. It uses
laser scan points within the same (or multiple) grids to fit the
obstacle surface contour.
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The definitions of the sdf and tsdf functions are as follows: sdfi(x) = laseri(x) − disti(x)

tsdfi(x) = max
(

−1,min
(
1,
sdf (x)
t

))
(13)

In the above equation, laseri represents the distance
measured by the i-th laser beam, disti represents the distance
between the grid and the origin of the distance sensor, and
the sdf function is applied to all grids traversed by the i-th
laser. Starting from the laser origin, the sdf values of the grids
decrease, and when the sdf is 0, the grid corresponding to
the obstacle surface is assigned a value of 0. tsdf constrains
the sdf values within the range of −1 and 1. When multiple
observation lasers pass through the same grid, the update
method for tsdf (x) is as follows:

TSDFi(x) =
Wi−1(x)TSDFi−1(x) + wi(x)tsdf (x)

Wi−1(x) + wi(x)
(14)

Wi(x) = Wi−1(x) + wi(x) (15)

In the above equation, TSDFi(x) and TSDFi−1(x) represent
the values before and after fusion, respectively. tsdf (x)
represents the latest tsdf (x) value for the gridwi(x) represents
the weight calculated in the current iteration, and wi−1(x)
represents the sum of weights from previous iterations. The
essence of the update formula is an iterative form of a
weighted least squares solution.

E. LOOP DETECTION AND BACK-END OPTIMIZATION
1) LOOP DETECTION
Loop Detection is a crucial component in Simultaneous
Localization and Mapping (SLAM). By determining whether
the current position of the robotic platform corresponds
to a previously visited location, constraints are established
by associating the pose of historical frames with the
current frame. This process proves instrumental in correcting
accumulated errors in trajectory during the extensive map-
ping process. Common loop detection algorithms include
inter-frame loop detection, inter-frame, and submap loop
detection, as well as inter-submap loop detection. The
prevailing approach involves inter-frame and submap loop
detection, which not only avoids the occurrence of erroneous
closed loops between frames but also mitigates the compu-
tational burden associated with inter-submap loop detection.
Cartographer, by constructing pose graph constraints between
frames and sub-maps and accumulating them, performs
global optimization when a sufficient number of constraints
are available. This optimization effectively eliminates the
cumulative errors in the occupancy grid map. Moreover, Car-
tographer employs a branch-and-bound method to expedite
the computation of loop closure constraints. With suitable
adjustments, this method is also applicable to Truncated
Signed Distance Function (TSDF) maps. Due to the rotation
invariance property of laser data, the process of detecting loop
closure constraints between frames and sub-maps involves
finding the optimal match between the laser point cloud and

FIGURE 4. Back-end constraint diagram.

the TSDF values of the map. This necessitates determining
the best match ξ∗ within a windowW around the current pose
of the platform. Assuming the current laser frame is denoted
as H, and its laser point position at time k is denoted as hk ,
the following relationship needs to be satisfied:

ξ∗
= argmin

ξ∈W

K∑
k=1

|φN (Tξhk )|

s.t.
K∑
k=1

|φN (Tξhk )| < emax

(16)

In the equation,φN represents the nearest neighbor inter-
polation points modeling the boundaries of obstacles in the
Truncated Signed Distance Function (TSDF) map, and emax
is the set error threshold. If there is no matching relationship
within window W that aligns the laser point positions with
the submap, the incorporation of the current loop closure
constraint into the back end is abandoned. To mitigate the
computational burden introduced by brute-force searching for
the optimal registration ξ∗, the search process employs the
same branch-and-bound acceleration rules as Cartographer.

2) MULTI-CONSTRAINT BACK-END OPTIMIZATION
Back-end optimization involves utilizing constraint infor-
mation generated across various system components to
obtain the optimal state, adjust pose nodes, and correct the
global map. The prevalent method employed today is graph
optimization for pose graphs. The pose graph formed by
the constraints in this paper’s back-end can be abstracted as
shown in Figure 4.

The nodes in the graph represent the state of the robotic
platform. Assuming an initial error term for the robotic
platform as e0, nodes xm and xn correspond to the poses
constructed for the laser data of the m-th and n-th frames
in the world coordinate system, resulting in the relative
transformation Tm,n between the nodes. IMU preintegration
provides the initial pose transformation xm,n for the laser
radar. Considering the error between the observed and
expected values of Tm,n, the formula for calculating this error
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term can be expressed as:

Tm,n =

{
RTm(pn − pi)
θn − θm

(17)

RTm =

[
cos θm − sin θm
sin θm cos θm

]
(18)

e1 = emn(xm, xn) = xm,n − Tm,n (19)

In the above equation, pn represents the position of the
robot in the world coordinate system, RTm is the transpose of
the rotation matrix, and θm is the yaw angle. The information
matrix for the IMU constraint factor is defined as 6−1

1 ,
representing the weight assigned to the IMU constraint. The
error term described above, based on the graph optimization
model objective function, is formulated as follows:

F(x) =

∑
emn(xm, xn)T6−1

1 emn(xm, xn) (20)

The ultimate goal of back-end optimization is to find the
optimal pose x∗

1 that minimizes the aforementioned error
function. Therefore, it can be expressed as:

x∗

1 = argmin
∑

emn(xm, xn)T6−1
1 emn(xm, xn) (21)

Similarly, during the process of implementing laser
point cloud registration and loop closure detection, inter-
frame matching constraints are incorporated into the back-
end optimization. The error term for these constraints is
defined as e2, with an information matrix

∑
−1
2 . In the

case of loop closure detection, which involves matching
frames with sub-maps, the pose transformation relationship
resulting from their matching is also integrated into the
back-end optimization. The corresponding error term is
denoted as e3, with an information matrix

∑
−1
3 . Thus, we

have:

x∗

2 = argmin
∑

eT2 6−1
2 e2 (22)

x∗

3 = argmin
∑

e3T6−1
3 e3 (23)

Combining all error terms, the final residual for the state
of the robotic platform is represented in equation 23. This is
the target value to be solved through nonlinear least squares
iterations.

x∗
= argmin(∥e0∥2 + ∥e1∥2 + ∥e2∥2 + ∥e3∥2) (24)

IV. ANALYSIS OF EXPERIMENTAL RESULTS
To assess the algorithm’s performance, comparative exper-
iments were conducted using open-source datasets and
datasets recorded in real-world environments, focusing on
mapping quality and localization accuracy. The system ran
on the Ubuntu 20.04 and ROS (Robot Operating System)
platform, playing back data in the form of offline rosbags.
The recorded datasets ’11-7’ and ’11-9’ in a real environment
were collected from the teaching building corridor at
the School of Software, South China Normal University.
The robotic platform used was Turtlebot2, equipped with
Slamtec’s RPLidar A3, an inertial measurement unit (IMU),

and wheel encoders. The hardware configuration included
an AMD R5-5600H processor with a clock frequency of
3.30 GHz and 16 GB of RAM.The comparison algorithms
selected are Karto-SLAM and Cartographer. In terms of
multi-sensor data fusion, Karto-SLAM does not perform
multi-sensor data fusion, whereas Cartographer, although it
fuses IMU and other sensor data in the front-end to improve
localization accuracy, does not utilize IMU and other sensor
data in the back-end. In contrast, this paper uses the UKF in
the front-end to fuse odometry, IMU data, and LiDAR scan
matching results to obtain the pose information of the robot.
In the back-end, IMU pre-integration factors, loop closure
detection, and inter-frame matching of LiDAR point clouds
enhance the constraints for global map pose optimization,
achieving deep fusion of multi-sensor data. In terms of
mapping, both Karto-SLAMand Cartographer are algorithms
based on occupancy grid maps, which are susceptible to
Gaussian noise and other influences. However, the TSDFmap
selected by the algorithm in this paper can effectively avoid
map ghosting and the influence of Gaussian noise. Therefore,
these two algorithms are chosen as comparison algorithms
in this paper to experimentally validate the feasibility of the
proposed algorithm.

A. MAPPING EFFECT ANALYSIS
In terms of mapping effectiveness, experiments were
conducted using publicly available datasets, specifically
sequences 12-3 and 12-11. The tests involved running Karto-
SLAM, Cartographer, and the algorithm proposed in this
paper. The mapping results obtained for the respective
algorithms are illustrated in Figure 5. Dataset sequences
12-3 represent an outdoor environment with a large scope,
while dataset sequences 12-11 represent a common indoor
scenario with complex obstacles. From the mapping results,
it can be observed that, when processing the same dataset
sequence, Karto-SLAM is heavily affected by Gaussian
noise, leading to significant artifacts at the edges of obstacles.
Cartographer, while capable of producing good mapping
results, still show some influence fromGaussian noise. In our
method, we utilize a TSDF map where, during the update of
TSDF values, a weighted averaging method is employed to
fuse multiple observation values. This smoothing technique
helps mitigate the influence of noise, resulting in more
accurate and stable TSDF values. Additionally, with each
update, corresponding weights are adjusted. The increase
in weights enhances the reliability of results from multiple
observations, thereby reducing the impact of single Gaussian
noise on the final TSDF values. Moreover, within the TSDF,
only distance values within a certain range are considered,
and values beyond this range are truncated. This reduces
the influence of noise from distant sources and saves some
amount of memory consumption. As shown in Figure 5, in the
complex indoor environment of dataset sequences 12-11,
the proposed method successfully avoids significant artifacts
at the edges of obstacles and addresses the Gaussian noise
problem effectively.
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FIGURE 5. Comparison of algorithm mapping effects.

FIGURE 6. Comparison of absolute pose error curves.

B. MOTION TRAJECTORY AND LOCALIZATION ACCURACY
ANALYSIS
Due to the availability of ground truth data, the collected
datasets 11-7, 11-9, and the publicly available dataset 12-3
were used for localization accuracy analysis. Figure 7

illustrates the motion trajectories and ground truth com-
parisons of Karto-SLAM, Cartographer, and the algorithm
proposed in this paper for datasets 12-3 and 11-7. Further
calculations resulted in absolute pose error (APE) curves
and relative pose error (RPE) for the three algorithms in
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FIGURE 7. Comparison of motion trajectories.

TABLE 2. Comparison of RPE data.

comparison with the ground truth trajectory, as shown in
Figure 6 and Table 2. RPE is effective in evaluating trajectory
drift within fixed time intervals, while APE calculates
the difference between the ground truth trajectory and the
localization results, providing an intuitive representation of
algorithm performance.

From the APE error curves in Figure 6 and the RPE
evaluation metrics in Table 2, it can be observed that
Karto-SLAM exhibits the lowest localization accuracy,
particularly in outdoor scenarios where the error values
are more pronounced, leading to significant trajectory drift
and a lack of robust loop closure constraints. Cartographer,
which integrates IMU data through a pose extrapolator in the
front end, performs better in localization, leveraging prior
information from the IMU sensor. The algorithm proposed
in this paper incorporates depth fusion of sensor information
and integrates IMU preintegration constraints into the back-
end optimization. From the relative pose error and absolute
pose error shown in Figure 6 and Table 2, the algorithm
demonstrates the best localization performance, with a more
accurate fitting of the output motion trajectory to the ground
truth trajectory.

V. CONCLUSION
This paper analyzes the deficiencies of commonly used 2D
SLAM algorithms primarily based on laser data in complex
indoor environments. Considering aspects such as point
cloud registration, representation of map models, incomplete

utilization of sensor data, and back-end optimization, a multi-
sensor depth fusion SLAM method based on TSDF maps is
proposed. The method is evaluated and tested using data col-
lected from both open-source and real-world environments.
Experimental results demonstrate significant advantages in
mapping quality and localization accuracy. The proposed
approach leverages IMU preintegration-derived poses for
pre-matching in laser point cloud distortion correction and
registration. This improves the quality of the system’s
input data and provides a good initial value for laser
point cloud registration, accelerating the matching process.
In the back-end optimization process, the utilization of
multiple constraints effectively reduces localization errors.
Constrained by research conditions and time limitations, the
depth and breadth of this study await further enhancement.
While establishing 2D TSDF maps in outdoor and high
real-time scenarios can avoid Gaussian noise from traditional
occupancy grid maps and save some memory consumption,
the algorithm’s complexity in updating obstacle surfaces
requires a certain amount of computational resources, posing
a disadvantage in terms of real-time performance. Future
work aims to draw insights from other researchers in the field
and considers improving the strategy for TSDF map updates
to mitigate the substantial consumption of computational
resources during the mapping process.
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