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ABSTRACT In this study, we propose novel approaches for generating adversarial examples targeting
machine learning-based image cropping systems. Image cropping is crucial for meeting display space
restrictions and highlighting content’s interest areas. However, existing image cropping systems often miss
user-intended areas, have necessities to remove inherent biases in light of Al fairness, or might expose
users to legal risks. To address these issues, our paper introduces approaches for effectively creating
adversarial examples in both black-box and white-box settings. In the white-box approach, we utilize
gradient-based perturbations focusing on the model’s blurring layer and targeting effective areas. For the
black-box approach, even for models where gradient information is unavailable, we levered pixel attacks
with Bayesian optimization and patch attacks to effectively narrow the search space. We also introduce a
novel quantitative evaluation method for image cropping by measuring shifts in gaze saliency map peak
values, reflecting a typical scenario with social network services. Our results suggest that our approaches
not only outperform existing methods but also exhibit the potential to be an effective solution to the problems
even with models on actual platforms.

INDEX TERMS Adversarial examples, image cropping, object detection, saliency map, Twitter.

I. INTRODUCTION

Image cropping plays an important role in maximizing
limited display space and emphasizing specific regions of
interest within an image. Machine Learning (ML) models
have become a staple in automating this process to efficiently
highlight the most engaging parts of an image. For instance,
Twitter (currently X),! for example, has announced that when
displaying user posts, it uses ML models to automatically
generate thumbnails for user posts by cropping images to fit

The associate editor coordinating the review of this manuscript and

approving it for publication was Yudong Zhang
1 https://twitter.com/

appropriately within display areas. Similarly, Netflix employs
an ML model to select and crop meaningful scenes from
movies for thumbnail creation.?

However, these ML models often contain biases that need
to be addressed and expose users to legal risks. The practice of
automatically generating thumbnails through image cropping
can sometimes distort the original meaning or identity of
the image. In Japan, controversy arose following a Supreme
Court decision concerning Twitter’s (currently X) cropping
function, which led to issues with image attribution and
potentially infringed upon photographers’ rights [1]. This

2https://netﬂixtechblog.com/a442f 163af6
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FIGURE 1. Overview of the proposed method.? In the original image (upper), the copyright notice on the bottom is not
displayed. However, the proposed method (lower) adds perturbations that lead to cropping functions to show the desirable

area.

controversy highlights the challenges of balancing automatic
cropping with maintaining image integrity and avoiding legal
risks. Thus, ML models need to be refined to ensure they
respect user intentions and eliminate biases as much as
possible while cropping images.

On the other hand, the research of adversarial examples
for machine learning (ML) models has been actively con-
ducted [2], [3], [4], [5], [6]. This includes not only white-box
attacks, which have full access to internal model information,
including gradients or model architecture but also black-box
attacks, which operate without access to the target model’s
internal information.

In this paper, we propose a novel approach to generating
adversarial examples to shift the cropping area of images
(Figure 1). Unlike previous methods [2], [3], [4], [5],
[7] focusing on adversarial attacks against classifiers or
detectors, our method aims to perturb input images, leading
the cropping model to change the intended cropping regions.
First, as a white-box attack, we propose an attack that shifts
the cropped area by generating gradient-based adversarial
examples targeting a model that predicts gaze saliency
maps. Next, considering broader model applicability, our
proposed method generates adversarial examples as a black-
box attack, utilizing optimization methods that reduce the
search space. These two approaches introduce a fundamental
approach to attacking ML models for image cropping, effec-
tively executing attacks against the target image cropping
models.

3The image is for illustration purposes only (not included in the dataset).
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The contributions of this work are as follows:

1) Adversarial Example for Image Cropping: We gen-
erated adversarial examples for Deep Neural Network
models for image cropping, a field with very little prior
research, considering models used in an actual social
networking service. In the black-box approach, we pro-
pose an iterative perturbation generation algorithm that
advances FGSM. We propose an optimized method to
create effective adversarial examples in the white-box
approach.

2) Reducing Attack Area / Search Space: When attack-
ing image cropping models, it’s crucial to narrow
down the necessary areas and search space for gener-
ating effective adversarial examples. In the white-box
approach, we narrowed the scope of perturbation using
Grad-CAM, and in the black-box approach, we reduced
the search space using Bayesian optimization methods.

3) Development of a Quantitative Evaluation Metric
for Image Cropping: Previously, a formalized evalu-
ation framework for image cropping has been absent.
In this work, we propose a new quantitative metric that
assesses the extent of shift in the cropped image area,
thereby providing a means to gauge the performance of
our cropping technique.

Il. RELATED WORKS

This paper proposes techniques that utilize adversarial
examples to target ML models. Most of these models predict
gaze saliency maps to adjust the cropped area. This section
overviews existing research on adversarial examples in
computer vision and their real-world applications. We focus
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on white-box attacks in Section II-A, discuss saliency maps
in Section II-B, and finally address adversarial examples in
black-box attacks in Section II-C.

A. ADVERSARIAL EXAMPLES OVERVIEW

AND ITS APPLICATION
Adversarial examples are inputs that introduce minimal yet
impactful noise, known as perturbations, leading machine
learning models to unfavorable outcomes. While adversarial
examples have also been applied in NLP tasks, this section
narrows the focus to computer vision, relevant to this work.
Szegedy et al. [2] first introduced adversarial examples
by causing state-of-the-art DNN models to misclassify
through small perturbations. Goodfellow et al. [3] proposed
a fundamental technique, the Fast Gradient Sign Method
(FGSM), based on the gradient of the target models.
Szegedy’s method was effective against models with com-
plete access to internal information, such as architecture and
gradients, characterizing it as a white-box attack. Studies on
adversarial training, which incorporate adversarial examples
back into the target model’s training data to enhance the
model’s robustness and resistance to adversarial attacks, are
also prevalent.

Applications of adversarial examples in the real world
constitute an important research area [8]. Early research
on adversarial examples predominantly focused on attacks
against image classification and defense strategies. Typical
applications include inaudible voice commands [4], studies
leading to misrecognition of traffic signs [7], and adversarial
examples for facial recognition [3], [9], [10]. Additionally,
Ghorbani et al. [11] introduced adversarial examples that
manipulate maps representing the interpretability of ML
models. Our research is closely related to this study,
considering that gaze saliency maps, while not identical,
share similar characteristics with interpretability maps.

Other relevant techniques include universal adversarial
perturbations [12], thermometer encoding [13], defense
methods using generative models [14], Jacobian regulariza-
tion for robust learning [15], manipulation of low-frequency
components in 3D point clouds [16], and translation-invariant
attacks [17]. These techniques may be adapted to generate
effective and robust adversarial examples for image cropping
systems. However, to the best of our knowledge, there is very
little research on attacks on the cropping models, while many
of the previous researches have focused on classification and
detection, as shown above.

Section II-B clarifies the similarities and differences
between the gaze saliency maps we address and typical
saliency maps.

B. SALIENCY MAP

Many methods including ours utilize the term ‘“‘saliency
map” to generate adversarial attacks, which mainly has
two interpretations in computer vision. We classified these
two interpretations in Table 1. One is the extent of
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TABLE 1. Variations and differences in interpreting “Saliency Maps”
across studies.

Term Meaning Citation Instance

Saliency Map

L. extent of gaze concentration
(Computer Vision) g

[18], [19]

Saliency Map

(Machine Learning) map of feature importance [11]

Algorithm 1 Perturbations Created by the Proposed Method
(White-box approach)

Require: Original Image x, Target area (to be displayed) y,
parameter to adjust perturbation size «, # of iterations N
Ensure: Adversarial Image x’
x'=x
fork < 1toN do
xp =x’
n = ViJ@,x',y) //Calc. perturbation
7 = o-n'/|Inll2 // Adjust size of perturbation
x’ =x,+n // Add perturbation
end for
return x’

gaze concentration measured by eye-tracking or predicted
(calculated) gaze concentration. Many models including
Itti et al. [18] and Ardizzone et al. [19] are used in image
processing, segmentation, and object detection. Twitter,
mentioned above, published in their blog that they use DNN
models for gaze prediction to crop images uploaded by
users when displaying posts*, as based on the model called
DeepGaze II by Kiimmerer et al. [20].

Another role of the saliency map is to express feature
importance by the map representing which feature affects the
model’s output. Ghorbani et al. [11] referred to the term as
this meaning. Most previous studies other than Deep Gaze 11
made the saliency map (of feature importance) from the value
of the hidden layer (not the output layer).

C. BLACK-BOX APPROACH FOR ADVERSARIAL ATTACKS
In contrast to the white-box adversarial attacks discussed in
Section II-A, black-box attacks are executed without access
to the model’s internals, relying solely on the model’s output
to operate the attack [21], [22], [23], [24]. In practical scenar-
i0s, gaining access to a target model’s internal information,
such as gradient and architecture, identical to the original,
is rare. Utilizing black-box attacks, such as those employing
surrogate models or score-based approaches, leads to the
generation of more realistic adversarial examples.

Below are three primary black-box approaches. (1)
Transfer attacks involve creating a surrogate model instead
of directly accessing the target model and then applying
adversarial examples generated for the surrogate to the target

4https ://blog.twitter.com/engineering/en_us/topics/infrastructure/2018/
Smart-Auto-Cropping-of-Images.html
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model [22], [25]. This method allows query access to the
target model and, in some instances, access to the same
dataset as used by the target model. The community has
researched various methods to enhance transferability [26],
[27]. (2) Score-based attacks do not require the creation of
a surrogate model for the dataset and generate adversarial
examples using the confidence scores for each class output
by the target model. This category includes attacks that
solve optimization problems independent of gradients, such
as Zeroth Order Optimization (ZOO) [5], utilizing changes
in output scores. Various optimization methods including
Bayesian optimization [28] and evolutionary computa-
tion [29] are used in the optimization process. (3) Decision-
based attacks, classified as attacks that only utilize the output
labels without needing the output score vector [23], operate
under even more stringent constraints compared to score-
based attacks. These attacks generate adversarial examples
by probing along the model’s decision boundary and making
minor adjustments to the input around the boundary. This
category includes methods like the Boundary attack [30].

In this study, our black-box approach employs query-based
adversarial attacks. Our black-box approach is classified
under score-based attacks.

128 51216 32 2 1
reagoutfnetwork 1
poi

vise-conv)

FIGURE 2. Model architecture used in the white-box approach.

lll. PROPOSED METHOD

We propose white-box and black-box approaches. In Sec-
tion III-A, we describe the white-box approach that uses
gradients of the target model. In contrast, in Section III-B
we detail the black-box approach which doesn’t use gradient
information, and alternatively, we use Bayesian optimization.
Section III-C introduces our evaluation metric for image

cropping.

A. WHITE-BOX APPROACH

Our white-box approach utilizes the model employed by
Twitter [31], a typical neural network model designed
for image cropping. This approach generates perturbations
based on the model’s gradients, taking an original image
and a bounding box, which indicates the area an attacker
wishes to display instead of the intended area. The method
involves iterative calculation of perturbations using the
model’s gradient. This proposed method enhances traditional
approaches designed for image classification tasks, increas-
ing the effectiveness through repeated perturbations.
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FIGURE 3. Effect of the mask with Grad-CAM. Masking with Grad-CAM is
used in the white-box approach.

In Computer Vision, adversarial examples for DNNs are
commonly generated for classifier models using datasets like
ImageNet [32]. However, our study focuses on generating
adversarial examples for DNNs that produce gaze saliency
maps. We will explore the similarities and differences
between adversarial examples for classifiers and those for
gaze saliency maps predicting gaze concentration. As men-
tioned in related studies, while there is extensive research
on adversarial examples for image classification, generating
adversarial examples for the saliency maps derived from
these hidden layers marks a significant departure from related
work and bears unique challenges that need to be addressed,
especially in light of the controversial issues specific to this
task [1].

Our white-box approach combines methods that control
the model’s interpretation with a gaze prediction model based
on the model’s feature importance map. The goal of this
approach is to introduce perturbations into an image to
change the cropping area determined by the target model.
This method calculates perturbations based on the Fast
Gradient Method (FGM), a generalized form of the Fast
Gradient Sign Method (FGSM) without using the sign
function. The FGSM-based adversarial attack is known for
its subtlety in perturbations, as represented by the following
equation:

n =€ -sign(VyJ (0, x,y)), ey
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FIGURE 5. Procedure of the evaluation (Mainly used in white-box approach). In step 1, we prepare the image to be evaluated.
Next, based on the image we create gaze saliency map. In step 3, we sum vertically the value of saliency map created in step 2.

Finally, we measure the distance of the peak shifted.

where sign(-) is the sign function, @ represents the model
parameters, x the input image, € is a parameter to adjust
the size of the perturbation, and J(-) represents the loss
function. In this study, y represents the target area of the
input image, that is, the area that the user intends to display.
However, as our targeted model involves blur operations, the
effectiveness of FGSM is reduced [33], leading us to employ
FGM, represented by the following equation, which removes
the sign function:

”=6'VXJ(0’x’y)’ (2)

This modification allows for a more nuanced manipulation
of the image, potentially overcoming the limitations imposed
by blur operations in the target model.

VOLUME 12, 2024

Furthermore, we use the Momentum Iterative Fast Gra-
dient Sign Method (MI-FGSM) [34] as a comparative
method to generate transferable adversarial examples. MI-
FGSM integrates the concept of momentum into the iterative
process to stabilize update directions and escape from poor
local maxima. The iterative process of MI-FGSM can be
represented by the following equation:

Vi J(0,x",y)
gt_H =M 'gt + x—t,
[VxJ (0, x", y)li
xl+1 =xl +€ . Sign(gt—H), (3)

where p is the decay parameter, and g’ is the accumulated
gradient at iteration ¢.
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However, considering that our proposed method removes
the sign function to allow for better peak shift, we also
introduce a variant of MI-FGSM called Momentum Iterative
Fast Gradient Method (MI-FGM) to ensure a more equitable
comparison. The iterative process of MI-FGM can be
formulated as:

Vi J(0,x",y)
gt =pn-g+ o
VeJ (@, x", )i
xl+l le +€ .g1+1’ (4)

By utilizing the accumulated gradients (momentum), both
MI-FGSM and MI-FGM can stabilize the update directions
and escape from suboptimal local maxima more easily. This
allows for the generation of adversarial examples that are
potentially effective against other models. In this study,
we adopt MI-FGSM as one of the comparative methods to
evaluate the performance of our proposed methods and verify
its effectiveness.

In our white-box approach, we compare several methods to
demonstrate the effectiveness of our proposed approach. Our
method applies the operation in Equation 2 several times with
a smaller perturbation size. In order to generate more effective
adversarial examples under the constraints of perturbation
size, we employ a technique that applies perturbations only to
significant areas. Specifically, we apply the output of Grad-
CAM as a mask to the output of FGM. Figure 3 shows the
procedure of applying Grad-CAM as a mask. As an example,
we prepared images with Gaussian noise as a comparative
method. As shown in the upper row, noise for the target
region is prepared. Then, by applying the output of Grad-
CAM as a mask, it is possible to realize the shaded noise
as shown in the third row. The image with the mask applied
is shown in the lower row. Detailed settings are described in
Section I'V-B. In our approach, perturbations are generated in
three iterations, and € is calculated to match the perturbation
size specified in the experimental settings. The process of
generating perturbations is shown in Algorithm 1.

One of the challenges faced by our approach, as indicated
in Equation 2, is the need for gradient information from the
target model. However, due to the inclusion of a random
search in the target model for selecting the layer of the
feature map, obtaining weights in the desired form was not
possible. Therefore, we created a surrogate model by fixing
the output of the hidden layer preceding the readout network
(as illustrated in Figure 2) and retrained the model.

The method proposed in this paper differs from existing
studies in two main aspects:

1) Our method generates adversarial examples for models
that predict gaze by shifting the output of the final layer
(output layer), whereas many previous studies focusing
on saliency maps typically derive them from hidden
layers (not the output layer).

2) The model used in our method includes a blur
layer before the output layer. Brama and Grinshpoun
[33] demonstrated that the performance of adversarial
examples diminishes if the model contains strong blur

86546

effects prior to the final layer. As most previous studies

use too small perturbations, their effectiveness is

reduced when the model incorporates blurring effects.

As outlined above, our white-box approach introduces a

new method for generating adversarial examples that shift the

cropped area of images predicted by DNNs for gaze saliency

maps. This task has its unique challenges and difficulties,

contributing to contributions that differ from the previous

research on adversarial examples for DNNs in Computer
Vision.

B. BLACK-BOX APPROACH

We also generated adversarial examples for black-box
models. To extend our method for a broader range of real-
world models and make it applicable in various scenarios, it is
beneficial to construct a black-box approach that does not rely
on gradient information. In this experiment, we employed
Bayesian optimization techniques to effectively target smaller
regions.

The Tree-structured Parzen Estimator (TPE), introduced
by Bergstra et al. [35], is a Bayesian optimization method
known for its efficiency in optimizing black-box functions,
often used in hyperparameter optimization within machine
learning contexts.

We assume x represents the hyperparameter values and
y the loss, with y* being a threshold determined by a
constant y. First, the threshold y* bifurcates the probability
density function into two distinct sections: P(x|y > )
for less favorable outcomes and P(x|y < y) for more
favorable outcomes. This division is then utilized to calculate
the Expected Improvement (EI) metric, which assesses the
potential of hyperparameter values. The goal is to find
the hyperparameter x’ that minimizes the loss function,
by maximizing the following equation:

P(x|y > y%)
P(x]y < y*)

TPE is especially effective in scenarios with limited eval-
uations, often outperforming methods based on evolutionary
computation.

The workflow of our black-box approach is summarized
in Figure 4. Initially, an input image is prepared and a
gaze saliency map is created, similar to the white-box
approach. Then, using the Optuna library, TPE is utilized
to select pixel coordinates that alter the saliency based
on the peak height, as illustrated in Figure 6. Unlike
the gradient-based perturbations applied in the white-box
approach, this method involves selecting individual pixel
coordinates and placing white pixels. While the white-box
approach allows for the calculation of multiple perturbation
pixels in bulk, the black-box approach is challenging
due to its computational demands. However, TPE reduces
computation load, suggesting that our method can alter
gaze peaks with minimal image modification. The loss
function in this approach is based on the difference in peak
heights.

&)

VOLUME 12, 2024



M. Yoshida et al.: Adversarial Examples for Image Cropping

IEEE Access

1 I Distance to target [B]
L »!200px
1 1

Dis{ance shifted [C]

[A] Before attack
(Original)

Target(2nd highest
local maximum)

Peak (max)

[B] After attack

1
1
1
1
1
7?{
(Case 1: success) :
1
*
I

—— e e e (o e

iy o WL N

[C] After attack
(Case 2: failure)

€ Image width >

600px
Case study: metrics in case 2
Measure 1
Distance of peak shifted _ 120 = 60.0%
Distance to the target 200
Measure 2
i i 120
Distance of peak shifted _ = 20.0%
Image width 600

FIGURE 6. lllustration of two distance metrics, comparing successful and
unsuccessful cases.

750
800 (37.5%)
) (29.7%)
S 600 (27.2%)
£
G 400
)
2 100
3 200 (5 0%) 12
(0.6%)
0

>4
Number of peak( )
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C. EVALUATION METHOD

To the best of our knowledge, the research field focusing
on shifting the cropped area of an image is relatively
unexplored, and thus, a standard evaluation method does not
yet exist for this task. Herein, we introduce a novel method
to quantitatively assess the extent to which the cropped
area of an image has been shifted, utilizing the saliency
map generated from gaze prediction, which contains critical
information for guiding image cropping.

We evaluate the effectiveness of our algorithm objectively
by analyzing the change in the saliency map before and
after the perturbation. Pixels of the saliency map are added
vertically to form a one-dimensional sequence, and we
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TABLE 2. Averaged Measure 1 Myayget(i) for proposed and baseline
methods.

Perturbation size (L2 norm) 10 20 30

M Gaussian Noise only 4.2% 9.6% 12.5%
Grad-CAM x Gaussian Noise 5.5% 9.5% 11.2%
Grad-CAM x Gradient MI-FGM)  42.1%  60.7%  71.1%
Grad-CAM x Gradient (FGM) 409%  619%  69.2%

M Proposed Method 50.0% 65.8% 74.4%

refer to its maximum value as a ‘““peak.” In each image,
our objective is to shift the focus to the second highest
local maximum of the saliency map. The success of our
perturbation is quantified by the movement of this peak
within the saliency map.

The evaluation process, as illustrated in Figure 5, begins
with generating a gaze saliency map for the images both
before and after perturbation application. We quantify how
the peak of the saliency map aligns with our targeted area,
thus assessing the method’s impact based on the peak’s
displacement.

In our study, we evaluate the effects of adversarial attacks
on the saliency maps by utilizing two specific metrics for
each image labeled as i. Initially, we introduce a measure
to gauge the effectiveness of the perturbation. This measure,
referred to as Measure 1 Mige(i), is calculated based on how
much the peak of the saliency map has moved. A greater
Measure 1 value indicates a perturbation that successfully
moves the peak closer to our predetermined target, signifying
a significant change in the saliency area. Following this,
we present another metric, Measure 2 Myiqm(i), which
standardizes the distance moved by the saliency peak
across images of different widths, allowing for a consistent
comparison across various image sizes.

shifted i

Measure 11 Miarger(i) = , ©)
Dtarget i

Measure 2:  Myign (i) = —Shlfted =, @)
Wlmage i

where Dqpified,; Tepresents the distance the saliency peak has
moved for image i, Diarget,i 1S the distance from the original
peak position to the target for image i, and Wipgage,; denotes
the width of image i.

IV. EXPERIMENT

A. SETTING AND DATASET

We used the images from the CAT2000 dataset [36], which
is known for its diverse range of images and original saliency
maps created from actual human gaze data. This dataset is
ideal for our experiments as it includes images with varying
numbers of local maxima in saliency, which is crucial for
testing the effectiveness of our proposed method in shifting
predicted gaze concentration peaks. To focus our study,
we selected images with 2 to 4 local maxima, excluding those
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TABLE 3. Averaged results of Measure 2 M4, (/) for proposed and
baseline methods.

Perturbation size (L2 norm) 10 20 30

M Gaussian Noise only 1.2% 2.7% 3.6%
Grad-CAM x Gaussian Noise 1.6% 2.7% 3.2%
Grad-CAM x Gradient (MI-FGM) 10.9% 15.7% 18.6%
Grad-CAM x Gradient (FGM) 10.9% 16.2% 18.6%

M Proposed Method 129% 172% 19.0%

TABLE 4. Aggregated minimum size of perturbations needed to shift the
peak to the target in each method.

Perturbation Baseline
size (L2) 10 20 30 N/S | Total
5 10 18 18 14 184
2 20 4 2 1 55 62
& 30 1 1 27 29
~ NS 60 60
Total | 22 21 16 276 | 335

*N/S = Not Shifted to the target.
**When calculating, minimum size in proposed/baseline methods was used.

with a single or more than four peaks, to ensure suitability for
the task measurement (Figure 7).

Other major restrictions applied to exclude images that are
inappropriate for the experiments are as follows (if an image
meets at least one of these restrictions, it is excluded).

1) Vertical photos’: photos in which the filled pixels are
more than 25% (which corresponds to the aspect ratio
of 4:3). 0% corresponds to 16:9. We should note that
this method is applied only to horizontal images in the
experiments, but it can be applied to images of any
aspect ratio.

SNote the difference with Figure 1 (vertical photo). As 67% of the dataset
are horizontal photos, we used horizontal photos in the experiment.
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2) distance of the x-axis between the peak and the target is
more than 15%, compared to the width of the images.
3) distance of the y-axis (height) between the summed
value of the peak and that of the target is more than
40%, compared to the summed value of the peak.
After all, we used 335 images in this experiment and resized
them to 640 pixels in width.

B. EXPERIMENT 1: WHITE-BOX APPROACH

In this experiment, we assessed the impact of applying
perturbations guided by the Grad-CAM output, a tech-
nique that highlights regions of interest, thereby optimizing
the perturbation process. Grad-CAM, proposed by Sel-
varaju et al. [37], helps in identifying significant areas for
applying perturbations, reducing the likelihood of applying
on ineffective areas.

In our white-box experiments, we used a model based on
the VGG19 architecture [38] pre-trained on the SALICON
dataset [39] and fine-tuned on the MIT1003 dataset [40].
The model’s hidden layer output preceding the readout
network was fixed during the fine-tuning process. For
generating perturbations, we employed the Fast Gradient
Method (FGM), which removes the sign function from
the Fast Gradient Sign Method (FGSM) to enhance the
effectiveness to the image cropping model. The perturbations
were applied iteratively with a smaller size (¢) in each
iteration, calculated to match the total perturbation size
specified in the experimental settings (10, 20, 30 in L, norm).
Because the gradient is re-calculated in every step in our
method, € is 1.77 times smaller than that for FGM. We used
the Momentum Iterative Fast Gradient Method (MI-FGM),
a variant of MI-FGSM [34] without the sign function, as a
comparative method. In both the proposed method and MI-
FGM, the decay factor w is set to 1.0, and the number of
iterations N is set to 3.

The Grad-CAM output was normalized to a 0-1 scale
and used as a mask to focus our method’s perturbations on
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areas with higher importance scores. This approach aims to
enhance the effectiveness of perturbations by concentrating
on regions more likely to influence the model’s gaze
prediction. The effectiveness of each method was evaluated
by measuring the saliency peak’s movement using the
DeepGaze II model [20], which closely mirrors Twitter’s
image cropping system.

We compared our proposed method with four baseline
methods: (1) Gaussian noise only, (2) Gaussian noise
combined with Grad-CAM, (3) the gradient-based method
using FGM for saliency transfer, and (4) the gradient-based
method using MI-FGM. For Gaussian noise applications,
we targeted a specific area around the intended peak shift,
with a width set at 100 pixels (15.6% of the image width) and
height set at matching the image’s one.

Proposed Method Grad-CAM x Gradient (FGM) | Grad-CAM x Gaussian Noise Gaussian Noise only

Original
Image

FIGURE 9. Experimental Results: Area surrounded by a square indicates
the cropped area.: (upper row) original image, (bottom row) adversarial
examples created by several methods.
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FIGURE 10. Comparison among original, proposed, and baseline
methods. The step numbers (Step n) correspond to the numbers in
Figure 5.

C. EXPERIMENT2: BLACK-BOX APPROACH

In Experiment 2, we extend the scope of our adversarial
example generation to encompass black-box models, thereby
broadening the applicability of our methodology across a
diverse scenarios where direct access to model gradients
is not feasible. To this end, we leveraged the capabilities
of Bayesian optimization for optimizing objective functions
without requiring gradient information. We utilized the same
image dataset as in Experiment 1. The optimization was
performed using Optuna TPE (version 3.3.0). The code was
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TABLE 5. Result of pixel attacks (1 x 1).

# Attacked Pixels ~ Success Rate  PSNR (dB) Loss  Time (sec)
5 0.18 51.74 0.19 76.77
15 0.24 46.66 0.16 144.61
30 0.30 43.56 0.14 243.99
40 0.35 42.24 0.12 311.13
50 0.36 41.31 0.11 380.88

executed on a workstation equipped with an AMD EPYC
7232P (8-Core) CPU and 4 x NVIDIA RTX A4000 GPUs,
and measured the metrics. We investigated 4 metrics such as
Success Rate, PSNR, loss function value, and process time.
We evaluated these metrics across five different numbers of
attacked pixels: 5, 15, 30, 40, and 50. The loss function was
set as the difference between the peak value and the value
of the second maxima. The number of trials for pixel attacks
was set at 100. Additionally, to select pixels more efficiently,
we considered attacking multiple pixels in patches. The
patches were compared in sizes of 1 x 1 and 3 x 3. Regarding
the peak, as in Experiment 1, we measured the movement
distance of the peak in a graph that represented the gaze
saliency map in one dimension.

D. RESULTS

The results of Experiment 1 are summarized in Tables 2 to 4
and Figures 8 to 10. Table 2 shows the Measure 1 Myargei(7),
with percentages indicating the normalized distance relative
to the target. The proposed method outperformed the
baseline for all perturbation sizes. Gaussian Noise with
Grad-CAM outperformed Gaussian Noise only in a small
perturbation. In contrast, Gaussian noise only (without Grad-
CAM) outperformed in a large perturbation. The gradient-
based baseline method (FGM) outperformed the other three
baseline methods including MI-FGM in all perturbation
sizes. For reference, we also implemented the evaluation by
the Measure 2 My,iqn(i) replacing the divisor Dyyrger,i With
Wimage,i (Table 3) and obtained similar results. Figure 8
displays the distribution of peak shifts, revealing a binary
pattern of shifts clustering at 0% or 100%. This pattern
seems to be due to the task’s requirement that the cropping
area only changes when one peak takes over another as the
maximum value. Unlike other tasks involving adversarial
attacks, where the impact often gradually increases as the size
of perturbations expands, this task shows a unique behavior
not seen in other contexts.

We also conducted cross-tabulation analysis between the
baseline and proposed methods to examine the instances
where the peak shifted towards the target. Upon closer
examination of the images in which the peak shifted to
the target for both the proposed and baseline methods,
it was found that, among comparable instances, the average
minimum size (L2) of perturbation required for the peak
shift was 11.9 for the proposed method and 19.0 for the
baseline method. Consequently, the minimum perturbation
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FIGURE 11. Results among different patch sizes.

TABLE 6. Result of pixel attacks in various patch sizes.

Patch Size  # Attacked Patches ~ Success Rate  PSNR (dB)
5 0.18 51.74
1x1
10 0.22 48.38
%2 5 0.27 44.79
10 0.32 42.03
33 5 0.36 41.39
10 0.39 38.50

size required by the proposed method was 62.5% smaller
than that required by the baseline method on average among
comparable instances (Table 4). This result implies that, when
considering non-comparable instances (shown as “N/S” in
the table), the proposed method likely exceeds the baseline
method in terms of effectiveness, indicating that the proposed
method can generate perturbations that are more challenging
to detect (smaller) than those created by the baseline method
under identical constraints. Experimental results are shown
in Figure 9. Figure 10 shows the comparison of the proposed
and baseline methods in each step. As shown in the image,
it contains specific patterns rather than the baseline method,
but they are still less perceivable.

The results of Experiment 2 are presented in Figure 11
and Table 5. Table 5 details the outcomes of attacks with
1 x 1 pixel perturbations over scenarios with 5 to 50 pixels,
covering success rates, PSNR, loss values, and processing
time. As the pixel count increased from 5 to 30, success
rates, calculated by the instances the loss function (the gap
between the top peak value and the subsequent peak) dropped
below zero, enhanced. Yet, with more than 30 pixels, these
improvements did not extend. Conversely, the time required
for processing escalated, especially for scenarios involving
over 30 pixels, where increased time did not correlate with
higher success rates. This suggests a diminishing return
on success rate beyond 30 pixels, necessitating additional
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strategies for further improvement. Figure 11 represents
examples from the experiment, illustrating the visual impact
of 3 x 3 versus 2 x 2 patches accompanied with the original
image. The visual analysis of the perturbations highlights
the balance between detectability and the stealthiness of the
attack. While 3 x 3 patches result in perturbations that are
visually more noticeable and potentially more disruptive,
the subtler 2 x 2 patches suggest a preferable shift in
saliency for scenarios where a less perceptible attack is
required.

V. CONCLUSION AND FUTURE WORKS

In our study, we developed novel approaches for gener-
ating adversarial examples that address three main chal-
lenges: accurately cropping user-intended areas, eliminating
biases in the context of Al fairness, and reducing legal
risks associated with image cropping systems on social
network services. Through our approaches, we crafted
adversarial examples aimed at challenging the machine
learning-based image cropping systems, assuming real-world
platforms.

The core aspects of our approach include leveraging the
baseline method to adversarial examples to effectively apply
to new ones targeting the saliency detection model, thereby
aligning with addressing issues of the task. We demonstrate
the efficacy of our method against models even including a
blur layer, a condition previously identified as challenging.
Our white-box approach highlights substantial efficiency,
achieving a 62.5% reduction in the L2 norm compared to
baseline methods under identical constraints. Furthermore,
our black-box strategy not only further reduces computational
demands but also verifies its applicability across a broader
range of models.

Below are the limitations and future works of this study:

o To confirm the effectiveness of our approach,
we excluded some images that are not suitable for
experiments and obtained stable results. However, future
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research may require validation on a larger set of images
to ensure the robustness of the proposed method.

Many existing adversarial example generation methods
have been proposed for models without blur layers.
When applying existing methods to the model in this
study, the same level of perturbation may be insufficient,
necessitating the further development of approaches.
Generating less perceptible perturbations is also a
crucial aspect to be addressed in future work.

While our proposed method applies perturbations only
to the target region, it can be applied to other regions as
well. Investigating the application on other areas, such as
image edges (boundaries), is also included in the future
research [41], [42].

In the black-box approach, attacking a large number of
pixels proved to be time-consuming without yielding
significant improvements. Future research should focus
on developing effective attacks that can target a large
number of pixels efficiently.
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