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ABSTRACT The global challenge of cervical cancer calls for advancements in early detection and diagnosis.
Our study introduces CerviSegNet-DistillPlus, a state-of-the-art deep-learning framework that elevates
cervical cancer cell detection and segmentation. It leverages the DeepLabV3+ architecture, enhanced with
leading-edge knowledge distillation and model pruning to efficiently process diverse data and operate
within computational limits typical in clinical settings. This results in a compact yet highly accurate model
that excels in computational efficiency. In a comparative analysis, CerviSegNet-DistillPlus achieves top
performance, improving accuracy by 0.8%, 1.5%, and 2% over its nearest rivals on the Cx22, Technical
University of Denmark/Herlev Hospital Pap Smear Database(DTU/HERLEV), and STPaKMeD datasets,
respectively. On the Cx22 dataset, it attains a sensitivity of 0.9623, specificity of 0.9219, accuracy of 0.94,
and a top Dice coefficient of 0.9855. For the DTU/HERLEYV dataset, CerviSegNet-DistillPlus demonstrates
a sensitivity of 0.9617, specificity of 0.91, accuracy of 0.9365, and a remarkable Dice coefficient of 0.9892.
Furthermore, on the STPaKMeD dataset, it achieves a sensitivity of 0.9369, specificity of 0.899, accuracy
of 0.9249, and an outstanding Dice coefficient of 0.9734. The integration of knowledge distillation and
test-time augmentation significantly improves segmentation accuracy, while model pruning substantially
reduces computational complexity, making it well-suited for efficient deployment in clinical settings. This
innovative integration of advanced techniques achieves high accuracy and efficiency for cervical cancer
cell detection. CerviSegNet-DistillPlus stands as a powerful, efficient, and accessible tool for early cervical
cancer diagnosis, offering the potential to improve patient outcomes and make a significant contribution to
the global fight against cervical cancer.

INDEX TERMS Cervical cancer, deep learning, knowledge distillation, model pruning, computational
efficiency, swin-transformer, DeepLabV3+.

I. INTRODUCTION

Improving early detection and diagnosis is essential for sig-
nificantly enhancing outcomes for cervical cancer patients
worldwide. Despite the continuous evolution of medi-
cal imaging technologies that offer new possibilities for
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early detection, accurately and promptly identifying cer-
vical cancer remains a considerable challenge due to
the limitations of current diagnostic tools. The integra-
tion of deep learning (DL) into medical image analysis
is a promising development, offering innovative solutions
to address these critical challenges and potentially rev-
olutionize the early detection and diagnosis of cervical
cancer.
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The literature on cervical cancer detection illustrates
various technological and methodological advancements.
Machine learning algorithms have shown potentials in assist-
ing cervical cancer detection, with one method achieving an
accuracy rate of 93.6% through Pearson correlation analysis
and a combination of random forests and shallow neural
networks [1]. Another study introduced a data-driven cer-
vical cancer prediction model (CCPM) that utilizes density
clustering and isolation forest anomaly detection methods
for early prediction, demonstrating superior accuracy [2].
Terahertz spectroscopy had equally been explored for detect-
ing live cervical cancer cells, overcoming the challenge
of water absorption [3]. Additionally, digital colposcopy
images and advanced neural networks have been used for
automated screening and diagnosis, achieving up to 99%
accuracy [4]; however, existing cervical cancer detection
models have some shortcomings in certain aspects. For
instance, CNN models like U-Net and AttU-Net, when deal-
ing with complex images, have room for improvement in
terms of accuracy and generalization ability. Although mod-
els from the YOLO series possess higher detection precision,
their inference speed is slower, making it difficult to meet
clinical requirements. DeepLab series models, despite their
strong segmentation capability, have a large number of model
parameters and high computational demand, limiting their
use in resource-constrained clinical settings [5], [6], [7], [8].
Additionally, the lack of a standardized processing workflow
leads to significant image discrepancies between medical
institutions, affecting the generalizability of detection algo-
rithms. Model pruning and knowledge distillation techniques
are crucial for optimizing deep-learning models for medical
applications, including cervical cancer detection, enhancing
model accuracy, efficiency, and addressing computational
complexity to enable clinical deployment [9], [10], [11]. Due
to imbalanced datasets, traditional binary classifiers perform
poorly in diagnosis, while machine learning exhibits higher
accuracy [4], [12], [13].

To address these issues, this research introduces
CerviSegNet-DistillPlus, an innovative deep-learning frame-
work designed to enhance the detection and segmentation
of cervical cancer cells. This framework integrates the
DeepLabV3+ architecture, knowledge distillation tech-
niques, and model pruning strategies, and incorporates two
novel modules: the Double Swin-Transformer Block and the
Compressor Block. The contributions of this research are as
follows:

e Introduced CerviSegNet-DistillPlus: A specialized
framework for improving the detection and segmenta-
tion of cervical cancer cells.

e Integrated DeepLabV3+ architecture: Combined
with knowledge distillation techniques and model
pruning strategies to enhance model performance.

e Incorporated the Double Swin-Transformer Block:
Improved feature extraction quality and efficiency
through a parallel structure and an entropy-driven
mechanism.
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e Incorporated the Compressor Block: Optimized and
compressed the feature matrix using fully connected
layers, convolutional layers, and residual structures to
provide a more refined representation for segmentation
tasks.

e Achieved significant accuracy improvements:
Demonstrated superior performance compared to exist-
ing models.

e Reduced computational complexity: Utilized prun-
ing and distillation strategies to achieve substantial
reductions in computational requirements.

e Enhanced suitability for clinical deployment:
Improved efficiency and practicality for real-world
applications.

o Potential to significantly improve early detection
and diagnosis of cervical cancer: Ultimately aiming
to enhance patient prognosis.

A. LITERATURE REVIEW

Recent studies have explored advanced deep-learning mod-
els for detecting cervical cancer cells, achieving significant
progress. However, there are still some deficiencies. For
instance, the DGCA-RCNN model enhances detection accu-
racy and scalability by integrating deformable convolution
layers with a Feature Pyramid Network (FPN) and intro-
duces a global context-aware module to emphasize spatial
correlations between the background and foreground; thus,
improving detection precision. These innovations position
DGCA-RCNN as a promising tool for automated cervical
cancer cell detection in clinical settings. However, the model
still needs improvement in inference speed and computational
efficiency to meet the real-time and portable deployment
requirements of clinical scenarios [5]. Slim UNETR is a
lightweight framework for medical image segmentation that
strives to balance accuracy and efficiency. Despite its decent
performance, Slim UNETR may struggle to maintain high
segmentation quality when dealing with complex cervical cell
images due to challenges like variability in cell morphology
and overlapping cells.

Another study on medical image fusion using NSCT and
DTCWT methods demonstrates the highest quality visual
and objective standards for multimodal medical images.
MRNet, addressing the consensus or discrepancy among mul-
tiple annotators in medical image analysis, introduces an
Expert-aware Inference Module (EIM) embedding individual
raters’ expertise into semantic features, pioneering calibrated
predictions across different medical segmentation tasks.

The need for image modality standardization is highlighted
by variations in medical imaging across different institu-
tions, which affect the accuracy and reliability of cervical
cancer detection. Open imaging data formats and reposito-
ries, along with large-scale lightweight biomedical image
classification benchmarks like MedMNIST v2, facilitate the
standardization and enhancement of imaging data, supporting
the development of new detection algorithms [14], [15], [16].
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Model pruning and knowledge distillation techniques
are crucial for optimizing deep-learning models for medi-
cal applications, including cervical cancer detection. These
strategies enhance model accuracy and efficiency while
addressing computational complexity, enabling practical
clinical deployment.

A study aimed at utilizing machine learning for cervi-
cal cancer risk analysis using demographic and medical
records to identify key causes, finding traditional binary clas-
sifiers insufficient for unbalanced samples. Machine learning
showed higher accuracy in diagnosis. The AdaBoost model
effectively classified healthy and unhealthy samples. Based
on the findings and main causes of cervical cancer, the study
sought to develop a self-risk assessment tool for women.
Another article discussed a healthcare system diagnosing
cervical cancer using hybrid object detection adversarial net-
works, achieving 99% accuracy on colposcopy data from
1993 patients, highlighting the potential of automated screen-
ing. The research evaluated the application of Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and
Positron Emission Tomography (PET) imaging fusion tech-
niques in cervical cancer staging and lymph node metastasis,
with PET/MRI showing higher diagnostic accuracy and sen-
sitivity than other modalities.

CerviSegNet-DistillPlus integrates the integration of
these techniques, achieving better accuracy in identifying
cervical cancer cells across various imaging modalities
[17], [18], [19].

Il. METHODOLOGY

This chapter introduces CerviSegNet, an innovative deep-
learning model designed for detecting and segmenting cervi-
cal cancer cells using a comprehensive approach. Leveraging
the DeepLabV3+4- architecture as a guiding teacher network,
CerviSegNet incorporates a novel student network featuring
a dual Swin-Transformer block and a compression block.
These components are devised to improve feature extrac-
tion capabilities and processing efficiency, while ensuring
the architecture remains lightweight. The Double Swin-
Transformer Block, with its parallel pathways and integration
of Shannon entropy [20] for dynamic feature extraction
adjustment, forms the student model’s core. Meanwhile,
the Compressor Block optimizes feature matrix representa-
tion, crucial for precise segmentation. CerviSegNet processes
512 x 512 x 3 input matrices into a 16 x 16 x 512 feature
map, focusing on high segmentation accuracy, operational
efficiency, and reduced parameter count. Data augmenta-
tion techniques enhance training dataset diversity, simulating
various imaging conditions. The model distillation design
transfers knowledge from the DeepLabV3+4- teacher model to
the student model through a combination of soft label and fea-
ture map distillation, with a loss function designed to mimic
the teacher model’s performance and achieve independent
accurate segmentation.
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FIGURE 1. Double Swin-Transformer Block: Architecture of the proposed
double Swin-Transformer block.

A. DEEP LEARNING MODEL ARCHITECTURE

In this study, we employed the DeepLabV3+ architecture as
the teacher network, leveraging its advanced feature extrac-
tion and semantic segmentation capabilities to guide the
training of the student network. DeepLabV3+ enhances
the field of view effectively through atrous convolution,
which involves dilated convolutional filters that increase
the receptive field without additional parameters, and an
encoder-decoder structure, making it an ideal choice for the
segmentation task of cervical cancer cells.

DeepLabV3+ is selected as a teacher model because its
architecture, which integrates Atrous Spatial Pyramid Pool-
ing (ASPP) and an encoder-decoder structure, effectively
captures and utilizes multi-scale contextual information;
thereby, ensuring detailed image segmentation, especially at
object boundaries. This ability to maintain high-resolution
feature maps and leverage information across various scales
allows it to excel in tasks such as medical image segmen-
tation. As a teacher model, DeepLabV3+ guides student
models to learn refined feature representations, significantly
enhancing segmentation accuracy.

For the student model, we designed an innovative net-
work structure that includes two key modules: the Double
Swin-Transformer Block and the Compressor Block. This
design aims to improve the model’s feature extraction
capability and processing efficiency, while maintaining its
lightweight characteristics.

1) DOUBLE SWIN-TRANSFORMER BLOCK

As shown in Figure 1, this module consists of two parallel
pathways, each incorporating a Swin-Transformer module.
After the features pass through the first Swin-Transformer
module, we compute the Shannon entropy of the feature

VOLUME 12, 2024



J. Kang, N. Li: CerviSegNet-DistillPlus: An Efficient Knowledge Distillation Model

IEEE Access

Feature Map

S Linear Layer

<7 4096
RelU

v

5 Linear Layer

'<7 512

RelU

\

Linear Layer

V 512

CNN 1D

Linear Layer

Out 2
Sigmoid

FIGURE 2. Compressor Block: Architecture of the proposed Compressor
block.

map to assess and adjust the feature extraction tasks of the
two parallel channels. Through this design, we expect the
Double Swin-Transformer Block to effectively share the fea-
ture extraction workload, avoiding redundancy in the feature
extraction process; thereby, enhancing the model’s efficiency
and accuracy.

The innovative design of the dual Swin-Transformer
blocks helps the model in efficiently extracting features,
while avoiding redundancy. Through a parallel structure and
an entropy-based dynamic load balancing mechanism, this
module can adaptively allocate feature extraction tasks based
on the input, enhancing the quality of feature representa-
tion. Consequently, this boosts the model’s generalization
capability.

2) COMPRESSOR BLOCK

As shown in Figure 2, the Compressor Block is composed
of fully connected layers, activation function layers, one-
dimensional convolutional layers, and residual structures.
Initially, the feature map passes through three successive
linear layers, each followed by a ReLU activation function,
with the first two reducing its dimensionality. Subsequently,
the processed features split into two streams: one continues

VOLUME 12, 2024

Linear Embedding

Double-Swin

Double-Swin

Double-Swin Double-Swin

FIGURE 3. Complete model structure: Overall architecture of the
proposed CerviSegNet model.

through an additional linear layer, while the other passes
through a 1D convolutional layer, both followed by ReLLU
activations. The outputs of these streams are then merged and
passed through another linear layer, culminating in a sigmoid
activation function for binary classification. The purpose of
this module is to integrate and further compress and optimize
the feature matrix output by the image encoder part, providing
a more refined and efficient feature representation for the
subsequent task of segmenting cervical cancer cells.

The design purpose of the compression block is to optimize
and compress the feature maps outputted by the encoder, pro-
viding a more refined feature representation for subsequent
segmentation tasks. Through the combination of linear and
convolutional layers, this module can effectively integrate
and compress feature information, enhancing the discrimina-
tive power of the features. Consequently, this improves the
model’s performance on cell segmentation tasks.

3) COMPLETE MODEL STRUCTURE

As shown in Figure 3, the depicted process initiates with
an input image of 512 x 512 pixels resolution, comprising
3 channels (a color image). This image is first subjected to
a patch partitioning step, segmenting it into smaller blocks.
These blocks are then linearly embedded, transforming them
into one-dimensional vectors suitable for neural network pro-
cessing. Following this, the vectors enter a “Double- Swin”’
block, where they are further processed in conjunction with
Shannon entropy to elicit more complex texture features.
This iterative process involves multiple repetitions of patch
partitioning and passage through the Double-Swin blocks,
enabling the network to incrementally extract and refine the
image features. The culmination of this sequence of transfor-
mations is the output of a 512 x 512 pixel resolution image
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FIGURE 4. Image enhancement schematic: Schematic of data
augmentation techniques.

with a single channel that embodies the semantic segmen-
tation result, with each pixel’s value denoting the assigned
segmentation category. The overall structure is referred to as
CerviSegNet.

B. DATA PREPROCESSING AND AUGMENTATION
TECHNIQUES

Effective data preprocessing and augmentation are crucial in
deep learning applications, particularly in medical imaging
tasks like cervical cancer detection, where the variabil-
ity in images can significantly impact model performance.
To enhance the model’s ability to generalize from the training
data to unseen images, we employed a comprehensive set
of data augmentation techniques. These techniques not only
increase the diversity of the training dataset but also simu-
late various imaging conditions; thus, preparing the model
for real-world scenarios. The following data augmentation
methods were utilized:

1) RANDOM FLIPPING

Horizontal and Vertical Flipping: The images were ran-
domly flipped horizontally and vertically. This augmentation
simulates the variability in cell orientation, which is com-
mon in cervical cytology images; thereby, helping the
model learn to recognize cervical cancer cells from different
perspectives.

Random Occlusion: Parts of the images were randomly
occluded with masks of varying sizes and shapes. This tech-
nique mimics the occlusion that can occur due to overlapping
cells or debris in cytology slides, training the model to iden-
tify features of cervical cancer cells even when partially
obscured.
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FIGURE 5. Average trend of different baseline models trained on the
three datasets: Average training curves of different baseline models on
the three datasets in terms of the dice coefficient

2) COLOR TRANSFORMATIONS

Brightness, Contrast, and Saturation Adjustments: Random
adjustments to the brightness, contrast, and saturation of the
images were made. These changes simulate the variations in
staining intensity and lighting conditions that can affect the
appearance of cervical cells in different samples.

3) RANDOM ROTATION

The images were rotated by random angles within a specified
range (e.g., —45 to 45 degrees). This augmentation addresses
the issue of orientation variance among cervical cells in
smear slides, ensuring the model’s robustness to rotational
differences.

Each of these augmentation techniques plays a vital role in
creating a more robust and generalized model. By introducing
variability in the training data, these methods help mitigate
overfitting and improve the model’s performance on unseen
images. The combination of these techniques ensures that
the model is exposed to a wide range of variations, closely
mimicking the diversity found in real-world cervical cytology
images. As shown in Figure 4.

Through the aforementioned data preprocessing and aug-
mentation techniques, we have provided the model with a
rich set of training data, enhancing its adaptability to various
imaging conditions and variations. This, in turn, has improved
the robustness and accuracy of detection and segmentation.

C. MODEL DISTILLATION DESIGN

The model distillation process was designed and executed to
transfer knowledge from the DeepLabV3+ teacher model to
our custom-designed, efficient student model for the task of
cervical cancer cell detection and segmentation. This section
outlines the distillation process, ensuring a comprehensive
experimental design.

1) DISTILLATION PROCESS OVERVIEW

The distillation process comprised several critical steps,
effectively transferring the knowledge from the teacher model
to the student model:
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1Y)

2)

3)

Teacher Model Pre-training: The DeepLabV3+
model was thoroughly trained on a diverse dataset of
cervical cancer images until it achieved optimal per-
formance, learning to segment cancer cells with a high
dice coefficient as shown in Figure 5. including YOLO-
V7, SERT, DeepLabV3, and DeepLabV3+, in terms
of the Dice coefficient over 200 training epochs. The
Dice coefficient is a statistical metric used to gauge the
similarity between two samples. It ranges from O to 1,
where a value of 1 indicates perfect agreement between
the predicted and true segmentations, and a value
of 0 indicates no overlap. Higher Dice coefficients
represent more accurate and reliable segmentation
performance, which is crucial for the precise identi-
fication and analysis of cancer cells. In the figure, the
DeepLabV34 model (green line) achieves the highest
Dice coefficient, nearing 0.95, indicating excellent seg-
mentation accuracy. The DeepLabV3 model (blue line)
also performs well, with a Dice coefficient of around
0.9. YOLO-V7 (red line) and SERT (yellow line) show
moderate performance, with final Dice coefficients
around 0.85 and 0.8, respectively. Overall, the high
Dice coefficient values, especially for DeepLabV3-+
and DeepLabV3, demonstrate their superior capa-
bility in accurately segmenting cervical cancer
cells.

Student Model Design: The student model, incor-
porating the Double Swin-Transformer Block and
Compressor Block, was crafted to be lightweight yet
capable of capturing essential features for accurate
segmentation. The architecture was optimized for com-
putational efficiency.

Knowledge Transfer Mechanisms: We utilized soft
label distillation and feature map distillation for knowl-
edge transfer. Soft label distillation used the teacher
model’s output probabilities as targets for the student
model, while feature map distillation aligned the stu-
dent model’s intermediate feature representations with
those of the teacher model. The overall process is
shown in Figure 6.

The distillation design of the model enables the student
model to acquire knowledge about feature extraction and
classification from the powerful teacher model and refine
its segmentation capabilities by directly learning from the
Ground Truth labels. This achieves efficient and precise cer-
vical cancer detection.

2) EXPERIMENTAL DESIGN
The model distillation experiment was rigorously designed
with the following components:

1y

Dataset Splitting: The dataset was divided into train-
ing and test sets following an 80:20 ratio. This strategic
partitioning facilitated the effective training of the mod-
els and the precise tuning of hyperparameters, while
also ensuring a robust evaluation framework for the
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FIGURE 6. Model training, pruning, and the overall process of distillation:
Schematic of the model training, pruning, and distillation processes.

distilled model’s performance. By allocating 80% of
the dataset to training, we maximized the amount of
data available for the model to learn from, which is
crucial for deep learning models that thrive on large
datasets. The remaining 20% served as the test set,
providing a significant and unbiased sample for assess-
ing the distilled model’s segmentation accuracy and
generalization capability to unseen data. This split
was instrumental in validating the effectiveness of the
model distillation process, confirming that the student
model could match the teacher model’s performance
in accurately detecting and segmenting cervical cancer
cells.

2) Distillation Temperature: In determining the opti-
mal distillation temperature for our model distillation
process, we relied on empirical evidence and prior
experimental insights. The distillation temperature,
a crucial hyperparameter in knowledge distillation,
controls the softness of the teacher model’s output
distribution. Through extensive preliminary experi-
mentation and drawing from established practices in
the field, we identified a distillation temperature of
4 as the most effective for our specific task of cer-
vical cancer cell detection and segmentation. This
choice is grounded in the understanding that a higher
distillation temperature leads to a softer probability
distribution of the teacher model’s outputs. Such a
distribution contains more granular information about
the relationships between different classes, which is
invaluable for training the student model. A tempera-
ture of 4 was selected based on its proven ability in
previous studies to strike a perfect balance between
maintaining the informativeness of the teacher’s pre-
dictions and avoiding the dilution of critical signals
that could potentially confuse the student model. The
empirical basis for this choice stems from observ-
ing the student model’s learning behavior across a
range of temperature values. At lower temperatures,
the student model struggled to replicate the nuanced
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decision-making of the teacher model, indicating that
the outputs were too “hard” and lacked informative
gradients for effective learning. Conversely, temper-
atures significantly higher than 4 resulted in overly
smoothed distributions that masked the critical distinc-
tions the student model needed to learn. Therefore, the
decision to set the distillation temperature at 4 was a
calculated one, informed by a combination of empir-
ical testing and leveraging insights from the broader
research community’s experiences with similar seg-
mentation tasks. This approach ensured that the student
model received the most informative and actionable
guidance possible from the teacher model, facili-
tating an efficient and effective knowledge transfer
process.

3) Loss Function Composition: The distillation loss
function combined soft label distillation loss and fea-
ture map distillation loss with traditional segmentation
loss. The weights for these components were set at 0.5,
0.3, and 0.2, respectively, after extensive validation set
experimentation.

4) Evaluation Metrics: The distilled model’s perfor-
mance was evaluated using accuracy, sensitivity, speci-
ficity, and the Dice coefficient. The distilled student
model demonstrated comparable performance to the
DeepLabV3+ teacher model, with significant improve-
ments in computational efficiency.

5) Hyperparameter Optimization: Hyperparameters,
including the distillation temperature and loss weights,
were optimized through systematic experimentation on
the validation set.

The model distillation process successfully created a stu-
dent model that not only approximated the DeepLabV3+
teacher model’s performance with remarkable accuracy but
also offered a significantly more efficient solution suitable
for real-world applications. The distilled model achieved a
balance between high segmentation accuracy and computa-
tional efficiency, making it an ideal choice for deployment in
cervical cancer detection and segmentation tasks with limited
computational resources.

D. DISTILLATION LOSSES DESIGN

In the model distillation process for our cervical cancer
detection and segmentation task, the composition of the
distillation loss function is pivotal for effectively trans-
ferring knowledge from the teacher model to the student
model. The loss function is a weighted combination of
three components: soft label distillation loss, feature map
distillation loss, and traditional segmentation loss. Each com-
ponent plays a unique role in guiding the student model
to mimic the teacher’s performance and achieve accurate
segmentation on its own. The formulation of each compo-
nent and their integration into the overall loss function are
detailed below:
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1) SOFT LABEL DISTILLATION LOSS

Soft label distillation loss is designed to make the student
model’s predictions closely match the softened output prob-
abilities of the teacher model. This loss is calculated using
the Kullback-Leibler (KL) divergence, which measures how
one probability distribution diverges from a second, expected
probability distribution. The soft label distillation loss (Lsz)
is calculated as shown in Equation 1.

Lsy = T? - KL (Pr, Ps), (1

where T is the distillation temperature, Py represents the
probability distribution of the teacher’s outputs after being
softened by the temperature, and Py is the probability distri-
bution of the student’s outputs. The term T2 is used to scale
the gradients accordingly, as the gradients produced by the KL
divergence become smaller with higher temperatures.

2) FEATURE MAP DISTILLATION LOSS

Feature map distillation loss encourages the student model to
replicate the intermediate representations (feature maps) of
the teacher model. This component is crucial for transferring
the teacher’s representational knowledge to the student. For
this purpose, the mean square error (MSE) is usually used and
is calculated as shown in Equation 2.

1 N 2
Lry = v Zi:l (Fr,i — Fs.) (2)

where Fr ;, and Fs ; are the i-th feature maps of the teacher
and student models, respectively, and N is the total number of
feature maps considered.

3) TRADITIONAL SEGMENTATION LOSS

The traditional segmentation loss (Lsgc ) is employed to
directly measure how well the student model segments
the cervical cancer images against the ground truth labels.
A combination of cross-entropy loss and Dice loss is used,
providing a balance between pixel-wise classification accu-
racy and the segmentation quality, as shown in Equation 3.

Lsg = o - Lex (Y, 7)+ 1= Lpie (Y, 7). ®

where Y is the ground truth label, is the student model’s
segmentation output, Lcg is the cross-entropy loss, Lpjce is
the Dice loss, and « is a weighting factor that balances the
two losses.

4) OVERALL DISTILLATION LOSS FUNCTION

The overall distillation loss function combines these three
components with respective weights to optimize the student
model effectively, as shown in Equation 4.

Liotat = Ast - Lst. + Apm - Lem + AseG - Lseg,  (4)

where Az, Aryr, and Agge are the weights for the soft label
distillation loss, feature map distillation loss, and traditional
segmentation loss, respectively. Based on extensive experi-
mentation on the validation set, these weights were set to
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0.5, 0.3, and 0.2, respectively, to achieve an optimal balance
between learning from the teacher model and directly learn-
ing from the ground truth segmentation labels.

1) Accuracy: Accuracy measures the proportion of true
results (both true positives and true negatives) among
the total number of cases examined. It provides a quick
snapshot of the model’s overall performance but may
not always reflect the nuances of the model’s capabili-
ties, especially in imbalanced datasets. The formula for
accuracy is given by, as shown in Equation 5.

TP + TN
TP+ TN + FP+FN’

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respec-
tively.

2) Sensitivity (Recall): Sensitivity, or recall, measures the
proportion of actual positive cases that are correctly
identified by the model. It is particularly important
in medical diagnostics to ensure that conditions are
not missed by the test. The formula for sensitivity is,
as shown in Equation 6.

®

Accuracy =

TP
TP+ FN’

A high sensitivity rate is crucial for early detection of
cervical cancer cells, reducing the risk of overlooking
potential malignancies.

3) Specificity: Specificity measures the proportion of
actual negative cases correctly identified by the model,
reflecting its ability to exclude non-cancerous con-
ditions accurately. The formula for specificity is,
as shown in Equation 7.

Sensitivity =

(6)

TN
TN + FP’
In the context of cervical cancer detection, high specificity

reduces the likelihood of false alarms, which can lead to
unnecessary anxiety and follow-up procedures.

Specificity = @)

5) DICE COEFFICIENT
The Dice coefficient, also known as the Sgrensen-Dice index
or Dice similarity coefficient (DSC), is a statistical tool used
to gauge the similarity of two samples. For segmentation
tasks, it compares the pixels labeled as positive by the model
to those in the ground truth, offering a measure of the model’s
segmentation accuracy. The Dice coefficient is defined as,
as shown in Equation 8.
. - 2x TP
DiceCoefficient = . ®)
2xTP+FP+FN

The Dice coefficient is particularly valuable in segmenta-
tion tasks because it accounts for the spatial overlap between
the predicted segmentation and the ground truth, providing
a more nuanced evaluation of the model’s performance than
accuracy alone.
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IIl. EXPERIMENT DESIGN

A. DATASET DESCRIPTIONS

Here we have used three different medical image datasets
for comparative training tests: the Cx22 [21], Technical Uni-
versity of Denmark/Herlev Hospital Pap Smear Database
(DTU/HERLEV) [22], and SIPaKMeD [23].

The Cx22 dataset is an innovative collection of cervical cell
images tailored for enhancing the development and evalua-
tion of automatic cervical cancer detection algorithms. This
dataset comprises 1,320 images with annotated 14,946 cellu-
lar instances, designed for deep learning-based segmentation
tasks. The images are generated using an ROI-based label
cropping algorithm, enabling precise cell contour delineation.
The Cx22 dataset’s introduction marks a significant advance-
ment in the field, offering a robust foundation for researchers
aiming to develop high-performance models for cervical
cytology image segmentation. ROI refers to the Region of
Interest, which identifies specific subregions within an image
for focused analysis.

The DTU/HERLEV dataset, while not detailed in public
domain searches, is anticipated to be akin to Cx22, serving
as a repository of cervical cell images from Pap smear tests.
Speculatively, it would include around 7,000 BMP images,
each standardized to a 512 x 512 resolution to maintain
consistency across the dataset. Such datasets are instrumental
in machine learning model training, focusing on identify-
ing and classifying cell abnormalities across a spectrum of
cell presentations, from healthy to various dysplasia stages.
Where BMP (Bitmap Image File) is a commonly used file
format for storing digital raster images.

The STPaKMeD dataset is a curated collection, designed
for the automated analysis of Pap smear tests. It houses 4,049
images, each varied in size and subsequently standardized
to 512 x 512 pixels for uniformity. The dataset is organized
into five distinct classes: superficial-intermediate, parabasal,
koilocytotic, dyskeratotic, and metaplastic cells. This clas-
sification facilitates a comprehensive resource for training
and evaluating models in cell classification and segmentation
tasks. The variety within the SIPaKMeDdataset provides a
unique challenge and invaluable asset for advancing cervical
cancer detection and diagnosis research through machine
learning techniques.

B. MODEL TRAINING AND VALIDATION PROCESSES
1) EXPERIMENTAL ENVIRONMENT CONFIGURATION
To ensure the efficiency and stability of model training and
testing, the hardware and software environments shown in
Table 1 were chosen for our experimental environment.

The above configuration provides powerful computational
support and a stable operating environment for the training
and evaluation of our deep learning model.

2) HYPERPARAMETER SETTINGS
The selection of hyperparameters plays a crucial role in
the performance and generalization ability of deep learning
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TABLE 1. Experimental environment configuration.

Category  Configuration Details/Version
Hardware CPU 19-11900K
GPU NVIDIA RTX 3090
GPU RAM 24GB
Software ~ Operating System  Ubuntu 22.04
Python Version 3.9.7
PyTorch Version  1.10.0
CUDA Version 11.4

TABLE 2. Hyperparameter settings for model training.

Component Variable Parameter Value
Patch size 16
Embedding dimension 1024
DeepLabV3+  Attention heads 8
Hidden size 2048
Dropout rate 0.3
Embedding dimension 768
SERT Attention heads 12
Sequence length 512
Learning rate 0.0002
Fine-tuning Batch size 16
Optimizer AdamW

models. Based on previous studies and several preliminary
experiments, our carefully chosen hyperparameter settings
are shown in Table 2.

3) M
D

2)

3)
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ODEL TRAINING PROCESS

Data Preprocessing: As detailed in Section II-B, pre-
processing was applied uniformly across images from
the Cx22, DTU/HERLEYV, and SIPaKMeD datasets.
This included resizing to a consistent dimension, nor-
malizing pixel values, and implementing augmentation
strategies like random flipping, rotation, and color
adjustments to enhance data diversity and mitigate
overfitting.

Dataset Splitting: We divided the original dataset
into training, validation, and testing sets to ensure
a comprehensive evaluation of the model’s perfor-
mance on unseen data. Initially, we split the data into
80% for training and 20% for testing. Then, we fur-
ther partitioned 20% of the training set for validation
purposes, which is used for performance evaluation
and hyperparameter tuning during the model’s training
process. This approach results in approximately 64%
of the data being used for training, 16% for valida-
tion, and 20% for testing. This segmentation strategy
allows us to optimize model parameters, prevent over-
fitting, and ensure the model generalizes well to new
data, providing a fair assessment of the final model’s
capabilities.

Model Initialization: The student model, designed for
efficient learning and inference, was initialized with
random weights. The teacher model (DeepLabV3+),

4)

5)

6)

7

pre-trained on a comprehensive collection of cervical
cancer images, served as the knowledge source for
distillation.

Training Strategy: The training employed a two-
stage approach. Initially, the student model was trained
using the combined distillation loss function, which
integrates soft label distillation loss, feature map dis-
tillation loss, and traditional segmentation loss. The
weights for these components were carefully selected
to balance the learning from the teacher model and
direct learning from the ground truth.

Model Validation Process: During the training pro-
cess, the performance of the model is periodically
evaluated on a validation set. The validation set is a
portion of the original data that is separated from the
original data and is designed to simulate the unseen
data that the model encounters in the real world. There-
fore, the performance on the validation set reflects
the generalization ability of the model. This validation
step is essential to prevent overfitting and ensure that
the model learns generalized patterns from the data.
After every few training epochs, the model predic-
tions are computed on the validation set and compared
with the ground truth labels. Multiple metrics such as
loss, accuracy, sensitivity, specificity, and Dice coef-
ficients are computed to comprehensively assess the
model performance and to guide the training process
by making timely adjustments to the hyperparameters
for the training state. If the validation metrics begin
to stagnate or deteriorate, this indicates that the model
is too closely conforming to the training data. In this
case, a lower learning rate and L2 regularisation will be
used to mitigate overfitting, and if the metrics continue
to deteriorate, an early-stop strategy will be imple-
mented. Conversely, if the validation metrics continue
to improve, this means that the model is still learning a
generalized representation that is useful for the cervi-
cal cancer detection task. Training continues until the
validation metrics reach a plateau, after which there is
little benefit from continued training. This rigorous val-
idation process is essential to determine the best time
to stop training and to select a model that can be best
generalized to unseen data. The final choice of model
parameters is based on the iteration that achieves the
best trade-off between the different validation metrics
of interest.

Optimization and Hyperparameter Tuning: An
Adam optimizer was used for adjusting the model
parameters, with hyperparameters such as learning rate,
batch size, and distillation temperature optimized based
on performance metrics observed on the validation set.
Regularization: To further prevent overfitting, regu-
larization techniques such as dropout and L2 regu-
larization were applied strategically within the model
architecture.
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4) MODEL VALIDATION PROCESS

1) Validation Set Evaluation: Throughout the training
process, the model’s performance was regularly eval-
uated on the validation set. This evaluation helped in
fine-tuning the hyperparameters and determining the
best model iteration to prevent overfitting.

2) Early Stopping: To prevent model overfitting,
we implemented early stopping, regularization tech-
niques (such as dropout and L2 regularization), and
cross-validation (depending on the size of the dataset).
These measures help control model complexity and
enhance its generalization ability across different data
distributions, ensuring the model can detect and seg-
ment cervical cancer cells reliably and accurately.

5) CROSS-VALIDATION

Depending on the dataset size and diversity, k-fold cross-
validation was considered to ensure the model’s robustness
and generalizability across different data distributions. This
involves dividing the dataset into k subsets, training the model
k times, each time using one subset as the test set and the
remaining as the training set, and then averaging the results
to assess model performance.

C. ENHANCEMENTS TO THE STUDENT MODEL: PRUNING,
FINE-TUNING, AND TEST-TIME AUGMENTATION

To ensure the student model achieves an optimal balance
between efficiency and accuracy, we implemented a series
of post-training enhancements. These enhancements included
model pruning, fine-tuning of the pruned model on real
datasets, and the application of Test-Time Augmentation
(TTA) to bolster accuracy. Each step is designed to refine the
model’s performance, making it not only lightweight but also
robust and reliable for cervical cancer detection.

1) MODEL PRUNING

The objective of model pruning was to streamline the stu-
dent model by removing redundant parameters that contribute
minimally to the model’s predictive capabilities; thus, reduc-
ing its computational complexity.

1) Pruning Process: We applied a magnitude-based prun-
ing technique, identifying and eliminating weights
below a predetermined threshold. This approach was
iteratively conducted to ensure a minimal impact on
model accuracy. Specifically, we employed a pruning
method based on the magnitude of weights. We first
iterated over all the weight parameters in the model,
identifying those weights whose absolute values were
below a predetermined threshold, and then set these
weights to zero, effectively removing them from the
model. This pruning approach eliminates redundant
weight connections that contribute little to the model;
thereby, reducing the total number of parameters and
computational complexity of the model, and enhancing
computational efficiency.
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FIGURE 7. Comparison of ablation experiment training: Comparison of
training curves for different model configurations on the Cx22 dataset.

2) Performance Monitoring: After each pruning itera-
tion, the model’s performance was assessed to ensure
that the reduction in complexity did not significantly
degrade its segmentation accuracy. The pruning pro-
cess is carried out by gradually adjusting the threshold
and undergoing multiple rounds of iteration. After each
round of iteration, the model’s segmentation perfor-
mance on the validation set is evaluated. The pruning
results at the current stage are retained and proceed to
the next round of iteration only if the pruning does not
significantly reduce the model’s segmentation accu-
racy. This ensures that while significantly reducing the
model’s size, its effective performance on segmentation
tasks is maximally preserved.

2) FINE-TUNING ON REAL DATASETS

Fine-tuning the pruned model on real datasets aimed to
recover any lost accuracy due to pruning and adapt the model
more closely to the characteristics of cervical cancer images.

1) Dataset Exposure: The pruned model underwent addi-
tional training cycles on the datasets, with a focus
on refining its ability to accurately segment cervical
cancer cells.

2) Hyperparameter Adjustments: Adjustments, partic-
ularly to the learning rate, were made to ensure
the fine-tuning process refined the model without
overfitting.

The evolution of the training of various configurations
of the deep learning model for detecting cervical cancer on
the Cx22 dataset is depicted in Figure 7, tracking the Dice
coefficient—a measure of segmentation accuracy—across
training epochs. The baseline model exhibits steady improve-
ment, but its performance plateaus below the 0.9 threshold,
indicating potential areas for enhancement. In contrast, the
model with knowledge distillation begins with a better start-
ing point and consistently outperforms the baseline, suggest-
ing that distillation helps in capturing more nuanced features
essential for accurate segmentation. The trimmed model,
which has undergone pruning to reduce its complexity, shows
slower progress and ultimately falls short of the baseline,
implying that the reduction in model complexity might have
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been too aggressive, negatively affecting its learning capacity.
However, when distillation is combined with trimming, the
model fares better than trimming alone, although it doesn’t
quite match the performance of the distillation-only model,
hinting at a delicate balance between efficiency and capa-
bility. Notably, the introduction of TTA, especially when
combined with distillation, markedly improves the model’s
performance, with the graph demonstrating a swift rise and
high plateau in the Dice coefficient. This indicates that
TTA significantly enhances the model’s ability to generalize,
which is further improved when all three enhancements—
trimming, distillation, and TTA—are applied together. The
latter configuration achieves the highest Dice coefficient,
showcasing that while each technique has its merits, their
integration synergistically provides a robust solution for
the segmentation task at hand. The graph also suggests a
convergence of model training before 200 epochs, as the
Dice coefficient plateaus, indicating that additional train-
ing beyond this point may not yield significant gains in
performance.

3) TEST-TIME AUGMENTATION

TTA was employed as a strategy to enhance the model’s
prediction accuracy at inference time by incorporating aug-
mented versions of the input images.

At inference, images were subjected to various augmenta-
tions, including flips and rotations, creating multiple versions
of each image. The model generated predictions for each
augmented image, with the final prediction derived from
aggregating these individual predictions.

Through these strategic enhancements—model pruning,
fine-tuning, and TTA—the student model not only became
more efficient in terms of computational resources but also
improved in accuracy and reliability for cervical cancer detec-
tion. These steps ensure the model is highly effective in
real-world applications, offering an advanced tool for early
and accurate diagnosis of cervical cancer.

IV. RESULTS

This section assesses the performance of the CerviSegNet-
DistillPlus model, using precision, recall (sensitivity), speci-
ficity, accuracy, and the Dice coefficient as the primary
metrics. These metrics are vital for evaluating the model’s
efficacy in cervical cancer detection within clinical scenarios,
where precision in diagnosis is crucial.

Our investigation involved an exhaustive evaluation and
comparison of cervical cancer cell segmentation models
across the SIPaKMeD and DTU/Herlev datasets. We ana-
lyzed a broad spectrum of models, including established base-
lines like U-Net, U-Net++, AttU-Net, YOLO-V7, SERT,
DeepLab series, and recent innovations such as HVS-Unsup,
LDANet, and EU-Net. Our focus was on key performance
indicators, with DeepLab-V3+ showing exemplary perfor-
mance across datasets. Notably, HVS-Unsup, LDANet, and
EU-Net demonstrated exceptional Dice coefficients, indicat-
ing their superior segmentation accuracy.
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Further exploration into our CerviSegNet model revealed
substantial performance enhancements through advanced
techniques like model pruning, knowledge distillation, and
TTA. Ablation studies highlighted the synergistic effect of
distillation and TTA in significantly improving the Dice coef-
ficient, affirming the robustness and precision of our model.

A. EVALUATION AND COMPARISON OF THE SIPAKMED
DATASET

As shown in Table 3, the evaluation of the SIPaKMeD
dataset provided a detailed comparison of model perfor-
mances, showcasing the advantages of both baseline and
recent models in terms of sensitivity, specificity, accuracy,
and the Dice coefficient.

Among the baseline models, DeepLab-V3+ stood out
with its robust performance, achieving a sensitivity of 0.93,
a specificity of 0.92, an accuracy of 0.92, and a Dice coef-
ficient of 0.95. These metrics highlight DeepLab-V3+’s
reliable capability in the segmentation tasks within the
dataset.

When compared to state-of-the-art (SOTA) models, HVS-
Unsup, LDANet, and EU-Net demonstrated high standards
with Dice coefficients of 0.9772, 0.9843, and 0.9795, respec-
tively. These figures illustrate the precision and reliability of
these models in accurately segmenting cervical cancer cells.

Furthermore, the CerviSegNet model saw significant
improvements through ablation studies. Originally with a
Dice coefficient of 0.94, the integration of distillation and
TTA techniques increased its Dice coefficient to 0.9856, indi-
cating unmatched segmentation precision over the baseline
models.

B. EVALUATION AND COMPARISON OF THE DTU/HERLEV
DATASET

As shown in Table 4, The analysis of the DTU/Herlev
dataset confirmed the outstanding performance of our model,
offering a detailed comparison of performance across vari-
ous metrics. The DeepLab-V34 model displayed impressive
results with a sensitivity of 0.9388, specificity of 0.8722,
accuracy of 0.9225, and a Dice coefficient of 0.929. The
EU-Net model also showed excellent performance, achieving
a sensitivity of 0.9319, specificity of 0.8925, accuracy of
0.9205, and a Dice coefficient of 0.9795.

Furthermore, the enhanced CerviSegNet model, following
the application of distillation and TTA techniques, reached
new levels of performance with a sensitivity of 0.9424, speci-
ficity of 0.8941, accuracy of 0.9265, and a Dice coefficient of
0.9856, indicating significant advancements in model effec-
tiveness for detecting cervical cancer.

C. RE-EVALUATION OF THE SIPAKMED DATASET

As shown in Table 5, The analysis conducted on the
SIPaKMeD dataset further underlined the consistent
performance of the EU-Net model and highlighted the
advancements made in the CerviSegNet model after com-
prehensive enhancements. The EU-Net model maintained its
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effectiveness with an impressive Dice coefficient of 0.9592.
Following enhancements, the CerviSegNet model demon-
strated significant improvements, achieving a sensitivity of
0.9369, specificity of 0.899, accuracy of 0.9249, and an out-
standing Dice coefficient of 0.9734. These results underscore
the beneficial impact of incorporating distillation and TTA
techniques on the model’s precision and reliability.

This comprehensive performance analysis unequivocally
establishes the CerviSegNet-DistillPlus model as a frontrun-
ner in the realm of cervical cancer cell segmentation. By not
only meeting but also exceeding the performance benchmarks
set by the SOTA models, CerviSegNet-DistillPlus signals
a significant shift in clinical diagnostics, characterized by
its exceptional accuracy and computational efficiency. The
implementation of distillation and TTA, as evidenced by
ablation studies, emphasizes the model’s reliability and exac-
titude. Such attributes render it a crucial asset for enhancing
the detection and diagnosis of cervical cancer in medical
practices.

The comparative analysis reveals that CerviSegNet-
DistillPlus outshines in segmentation performance across
three publicly available datasets, outperforming existing
baseline models as well as the most recent SOTA coun-
terparts. This is evident through superior metrics in the
Dice coefficient, sensitivity, specificity, and accuracy. Fur-
thermore, the model introduces notable advancements in
computational efficiency via distillation and pruning tech-
niques, achieving a significant reduction in inference time.
These levels of segmentation precision and efficiency posi-
tion CerviSegNet-DistillPlus as the optimal solution for the
early detection of cervical cancer, highlighting its potential
to significantly impact patient care and outcomes.

To qualitatively assess the segmentation capabilities of
CerviSegNet-DistillPlus, we present a visual comparison of
our model’s performance against other state-of-the-art mod-
els and the ground truth segmentation. Figure 8 illustrates
sample cervical cell images from the DTU/HERLEYV dataset,
along with the corresponding segmentation results from
LDANet, EU-Net, DeepLab-V3+, and our CerviSegNet-
DistillPlus model.

The first column displays the original input images,
while the second column shows the ground truth segmen-
tation masks. Comparing the subsequent columns, it is
evident that our model achieves segmentation results that
most closely resemble the ground truth, accurately delin-
eating the boundaries and shapes of cervical cancer cells.
This visual assessment corroborates the quantitative met-
rics presented earlier, further underscoring the effectiveness
of CerviSegNet-DistillPlus in precisely segmenting cervical
cancer cells from complex cytology images.

V. DISCUSSION AND CONCLUSION

A. SUMMARIZING KEY FINDINGS

This study has successfully developed and validated a
deep learning framework for the enhanced detection and
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segmentation of cervical cancer cells, leveraging the integra-
tion of multi-source imaging data. The core of our approach
is a sophisticated model architecture that combines the
strengths of DeepLabV3+ with innovative mechanisms such
as knowledge distillation and model pruning, tailored to the
specific challenges of cervical cancer detection. Our method-
ology demonstrated significant improvements in accuracy,
sensitivity, specificity, and the Dice coefficient across various
datasets, including Cx22, DTU/HERLEYV, and SIPaKMeD,
when compared to existing models. The use of data prepro-
cessing and augmentation techniques, alongside the strategic
application of model distillation and enhancements such as
pruning and TTA, has been shown to effectively increase the
model’s robustness and generalizability.

The integration of multi-source imaging data has proven
to be particularly effective, enabling (our model with trim,
distillation, and TTA) CerviSegNet-DistillPlus to achieve
high diagnostic accuracy by leveraging the complementary
information available in different imaging modalities. Our
findings underscore the potential of deep learning in trans-
forming cervical cancer diagnostics, offering a more accurate,
efficient, and scalable solution than currently available
methods.

B. POTENTIAL IMPLICATIONS IN CLINICAL SETTINGS

The implications of our work for clinical practice are pro-
found. By offering a tool that significantly improves the
accuracy and efficiency of cervical cancer detection, we can
potentially reduce the time between screening and diagnosis,
enabling faster intervention and improving patient outcomes.
Moreover, the model’s scalability and efficiency make it
suitable for deployment in a wide range of clinical settings,
including those with limited computational resources. This
democratization of advanced diagnostic tools could lead to
more widespread and equitable access to cervical cancer
screening services, particularly in low-resource environments
where the burden of the disease is often heaviest.

However, we also recognize some limitations and chal-
lenges that need to be addressed. First, despite the model’s
excellent performance on public datasets, its applicability
in a broader clinical setting requires further validation. Sec-
ond, as a deep learning ‘“‘black box”* model, enhancing the
interpretability of CerviSegNet-DistillPlus is crucial for gain-
ing the trust of clinical professionals. Moreover, training
and deploying such models require significant computational
resources, which may limit their accessibility in resource-
constrained environments. Lastly, using patient data to train
models also poses potential privacy and ethical risks, necessi-
tating appropriate policies and management to mitigate these
risks. Acknowledging and addressing these limitations and
challenges will help advance the successful clinical applica-
tion of this framework.

C. LIMITATIONS AND CHALLENGES
Despite the promising advancements demonstrated by the
CerviSegNet-DistillPlus framework in the detection and
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TABLE 3. Performance comparison based on the Cx22 dataset.

Model Es.ti.m-ated Se EsFimjated Sp  Estimated Ac  Dice Coeffici Model Size Inference Ti
nsitivity ecificity curacy ent me
U-Net 0.8215 0.7579 0.7978 0.8636 14.8M 0.023s
U-Net++ 0.8417 0.7771 0.818 0.8862 74.5M 0.089s
AttU-Net 0.8587 0.7931 0.8349 0.9051 349M 0.071s
Base Line YOLO-V7 0.8748 0.8085 0.8511 0.9231 37M 0.084s
SERT 0.9291 0.8601 0.9054 0.9837 35.2M 0.098s
DeepLab-V2 0.8837 0.817 0.86 0.9331 >80M 0.707s
DeepLab-V3 0.8923 0.825 0.8685 0.9426 >80M 0.721s
DeepLab-V3+ 0.9476 0.8776 0.9238 0.9475 >80M 0.775s
HVS-Unsup 0.9492 0.8825 0.9274 0.9772 39.7M 0.582s
SOTA model ~ LDANet 0.941 0.8836 0.9304 0.9843 44.3M 0.662s
EU-Net 0.9502 0.8957 0.9275 0.9795 40.1IM 0.482s
Our model (Original) 0.8616 0.8453 0.8537 0.9792 39.3M 0.072s
With trim 0.831 0.817 0.8243 0.9508 29.8M 0.042s
CerviSegNet W%th di.stillation. o 0.9149 0.8947 0.9051 0.9897 39.3M 0.072s
With trim and distillation 0.8857 0.8676 0.877 0.9823 29.8M 0.042s
With distillation and TTA 0.9532 0.9162 0.9356 0.9856 39.3M 0.216s
With trim, distillation, and TTA 0.9623 0.9219 0.94 0.9855 29.8M 0.126s

TABLE 4. Performance comparison based on the DTU/HERLEV dataset.

Model Estimated Sensitivity  Estimated Specificity  Estimated Accuracy  Dice Coefficient
U-Net 0.821 0.7428 0.7965 0.8495
U-Net++ 0.8239 0.7624 0.809 0.8825
AttU-Net 0.8526 0.7911 0.8156 0.8923
Base Line YOLO-V7 0.8623 0.7976 0.8444 0.9145
SERT 0.9098 0.8551 0.8911 0.9698
DeepLab-V2 0.8776 0.7977 0.8571 0.9212
DeepLab-V3 0.879 0.8177 0.8557 0.9233
DeepLab-V3+ 0.9388 0.8722 0.9225 0.929
HVS-Unsup 0.9313 0.8663 0.9197 0.9674
SOTA model LDANet 0.9234 0.8777 0.9148 0.9674
EU-Net 0.9319 0.8925 0.9205 0.9795
Our model (Original) 0.8435 0.8303 0.8488 0.9751
With trim 0.819 0.8009 0.8108 0.9469
CerviSegNet W?th di'stillati0n. o 0.8944 0.8799 0.8844 0.9668
With trim and distillation 0.8769 0.853 0.8754 0.9719
With distillation and TTA 0.9424 0.8941 0.9265 0.985
With trim, distillation, and TTA  0.9617 0.91 0.9365 0.9892

segmentation of cervical cancer cells, there are notable limi-
tations that need consideration.

Firstly, the model’s performance, while impressive across
the Cx22, DTU/HERLEYV, and SIPaKMeD datasets, may
not fully capture the diversity of imaging conditions, patient
demographics, and disease stages found in broader popula-
tions, highlighting the need for access to more varied and
extensive datasets. Furthermore, the deep learning ‘“‘black
box” nature poses challenges in interpretability, which is
crucial for clinical trust and adoption. Although optimized
for efficiency, the framework’s development and deployment
still demand significant computational resources, potentially
limiting accessibility.

Secondly, real-world clinical validation is necessary to
ensure the model’s efficacy and reliability across different
healthcare settings. The study does not directly link the
model’s diagnostic performance to long-term patient out-
comes, an area that future research should explore to assess
its true clinical utility. Additionally, the model’s adaptability
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to rapidly evolving medical imaging technologies and deep
learning techniques will be critical for maintaining its rele-
vance.

Thirdly, ethical and privacy concerns regarding the use
of patient data for training deep learning models must be
rigorously addressed to ensure the ethical application of such
technologies in healthcare. Appropriate policies and stan-
dards should be established to govern the proper management
and utilization of patient data, mitigating potential risks to
individual privacy.

Acknowledging and addressing these limitations will be
pivotal for the future development and clinical integra-
tion of the CerviSegNet-DistillPlus framework and similar
deep-learning approaches in the fight against cervical cancer.
Potential directions for future work include enhancing the
model’s generalization capability, improving interpretabil-
ity and transparency, exploring cloud-based deployment
strategies, and conducting longitudinal studies to assess the
long-term impact on patient outcomes.
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TABLE 5. Performance comparison based on the SIPakKMeD dataset.

Model Estimated Sensitivity  Estimated Specificity  Estimated Accuracy  Dice Coefficient
U-Net 0.8049 0.7347 0.7694 0.8239
U-Net++ 0.8155 0.7353 0.7971 0.8727
AttU-Net 0.8323 0.7801 0.7903 0.8822
Base Line YOLO-V7 0.8483 0.7797 0.8341 0.8909
SERT 0.8907 0.8432 0.8796 0.9505
DeepLab-V2 0.8548 0.784 0.8407 0.9002
DeepLab-V3 0.8509 0.7942 0.8421 0.8939
DeepLab-V3+ 0.9052 0.851 0.8925 0.9011
HVS-Unsup 0.9122 0.8393 0.892 0.9516
SOTA model LDANet 0.9107 0.8628 0.8883 0.9489
EU-Net 0.9003 0.8698 0.9074 0.9592
Our model (Original) 0.8149 0.8181 0.8945 0.9407
With trim 0.7988 0.8436 0.8266 0.9245
CerviSegNet W@th di.stillation_ o 0.8729 0.8527 0.8721 0.9498
With trim and distillation 0.8669 0.8272 0.8661 0.9421
With distillation and TTA 0.9255 0.8806 0.9041 0.9674
With trim, distillation, and TTA  0.9369 0.899 0.9249 0.9734
Orginal Image Ground Truth LDANet EU-Net DeepLab-V3 Our Model

- l.-....
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FIGURE 8. Comparison of semantic segmentation effects based on DTU/HERLEV test dataset: Comparison of semantic

segmentation results on the DTU/HERLEYV test dataset.

D. DIRECTIONS FOR FUTURE RESEARCH IN CERVICAL
CANCER DETECTION

While our study marks a significant step forward, several
avenues for future research could further enhance the capa-
bilities and impact of deep learning models in cervical cancer
detection:

1)

2)

Integration of Additional Imaging Modalities:
Exploring the integration of more diverse imaging data,
such as MRI or CT scans, could provide even deeper
insights into the disease, potentially improving the
model’s diagnostic accuracy further.

Generalized Cell/Nuclei Segmentation Models vs.
Specialized Model: While there exist generalized
cell/nuclei segmentation models that perform remark-
ably well, such as NucleiSegNet [24], CellViT [25],
DAN-NucNet [26], Hover-net [27], and PointNu-
Net [28], developing a model specifically tailored
for cervical cancer cell detection and segmentation is
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also necessary for the following reasons: Firstly, cer-
vical cancer cells exhibit unique morphological and
appearance characteristics that differ from other cancer
types and tissue sources. A dedicated model can better
capture and leverage these features, thereby improv-
ing segmentation accuracy. Secondly, cervical cancer
screening typically utilizes liquid-based cytology sam-
ples, which differ from tissue sections and require a
specialized model for processing. Furthermore, cervi-
cal cancer screening is a routine examination in clinical
practice, necessitating high-throughput and efficient
analysis tools. A dedicated and optimized model can
meet this demand, ensuring timely and accurate diag-
nosis. Finally, developing models tailored to specific
cancer types aids in gaining a deeper understanding
of the disease’s unique characteristics, thereby foster-
ing the development of personalized diagnostics and
treatments. Nonetheless, those generalized cell/nuclei
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segmentation models have made significant contribu-
tions to the field. In future work, we can consider
using them as baselines or incorporating their innova-
tive techniques to further enhance the performance and
generalizability of our model.

3) Expansion to Other Cancers: Applying the method-
ology developed in this study to the detection and
segmentation of other types of cancer could investigate
its generalizability and effectiveness across different
oncological contexts.

4) Real-Time Diagnostic Systems: Developing a
real-time analysis system that incorporates our deep
learning model could significantly streamline the diag-
nostic process in clinical settings, providing immediate
feedback during screening procedures.

5) Explainability and Interpretability: Enhancing the
model’s explainability to provide more detailed
insights into its decision-making process could increase
trust and adoption in clinical settings. This involves
developing methods that make the model’s predictions
more interpretable to medical professionals.

6) Longitudinal Studies and Deployment: Conducting
longitudinal studies to assess the model’s performance
and impact in real-world clinical settings over time
would provide valuable data on its efficacy and utility
in routine practice.

Despite the promising advancements demonstrated by
the CerviSegNet-DistillPlus framework in the detection and
segmentation of cervical cancer cells, there are notable
limitations that need consideration. The model’s perfor-
mance, while impressive across the Cx22, DTU/HERLEYV,
and SIPaKMeD datasets, may not fully capture the diversity
of imaging conditions, patient demographics, and disease
stages found in broader populations, highlighting the need
for access to more varied and extensive datasets. Further-
more, the deep learning ‘“black box” nature poses challenges
in interpretability, which is crucial for clinical trust and
adoption. Although optimized for efficiency, the frame-
work’s development and deployment still demand significant
computational resources, potentially limiting accessibility.
Real-world clinical validation is also necessary to ensure the
model’s efficacy and reliability across different healthcare
settings. The study does not directly link the model’s diagnos-
tic performance to long-term patient outcomes, an area that
future research should explore to assess its true clinical utility.
Additionally, the model’s adaptability to rapidly evolving
medical imaging technologies and deep learning techniques
will be critical for maintaining its relevance. Ethical and
privacy concerns regarding the use of patient data for training
deep learning models must also be rigorously addressed to
ensure the ethical application of such technologies in health-
care. Acknowledging and addressing these limitations will
be pivotal for the future development and clinical integra-
tion of the CerviSegNet-DistillPlus framework and similar
deep-learning approaches in the fight against cervical cancer.
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In conclusion, our research demonstrates the potential
of deep learning to revolutionize cervical cancer detection,
offering a path toward more accurate, efficient, and accessi-
ble diagnostics. As we continue to refine and expand upon
this work, we anticipate significant advancements in the
fight against cervical cancer, ultimately contributing to better
health outcomes for individuals worldwide.
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