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ABSTRACT Birds pose a serious threat to the safe operation of aircrafts. Existing object detection methods
have achieved good results for big andmedium instances; however, for small flying bird instances, drawbacks
such as slow speed, low accuracy, and large model size are still present. Therefore, to overcome these
shortcomings, we propose the SMB-YOLOv5 model to detect birds near airports. First, we introduce a
self-supervised predictive convolution attention block to enable YOLOv5s6 to focus on critical information,
thereby enhancing detection performance. Second, we introduce a multi-branch block (MBB) that enhances
the expressive capability of the network by incorporating branches with different receptive fields. Third,
to enhance the feature fusion capability of the model and detection mAP@50 for small-bird instances,
drawing inspiration from the bidirectional feature pyramid network, we reutilize the shallow-level features
of the feature extraction network. We also remove some modules to ensure an increased accuracy without
excessively inflating the model size. Finally, to increase the convergence speed of the network, we modify
its loss function by replacing complete IoU (CIoU) with efficient IoU (EIoU), which improves the detection
mAP@50 of the network. Compared to the YOLOv5s6 model, the proposed SMB-YOLOv5 model achieves
a 2.6% increase in mAP@50 on the test dataset. The detection speed has reached 24 fps. We find that the
SMB-YOLOv5 has a higher mAP@50 than the other algorithms in the test dataset and the lowest number of
parameters, and it can be applied in airport bird detection systems to provide more precise bird orientation
information for airport bird detection tasks.

INDEX TERMS Bird detection, airport bird strike, YOLOv5s6, attention mechanism, feature fusion,
efficient IoU loss.

I. INTRODUCTION
Bird strikes, also known as bird collisions, refer to instances
in which aircrafts collide with birds during take-off, landing,
or flight, leading to aviation safety concerns or accidents [1].
According to the Federal Aviation Administration (FAA)
Wildlife Strike Database, which records wildlife strikes with
aircrafts, birds are the primary wildlife involved in these
strikes. Between 1990 and 2022, the database received reports
of 276,846 bird strike incidents, with 272,016 of these
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occurring in the United States. The database also reveals
a yearly increase in bird strike events. Bird strikes can
have various negative impacts on flights, including potential
engine damage, structural damage to the aircraft surface,
wing deformation owing to substantial contact forces, and
damage to cockpit windshields and sensors on the aircraft
surface. Therefore, the accurate monitoring of birds near
airport runways is crucial. Such monitoring can support
decision-making in bird control at airports and ensure the
safety of civil aviation operations.

Airport bird control methods usually include auditory
deterrence, visual deterrence, killing, chemical bird control,
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radar bird control, drone-based bird control, and environmen-
tal and scientific bird control [2]. Recognizing bird targets
and their locations before deploying bird control techniques
is vital. Currently, two major approaches for detecting birds
exist: radar-based and manual. However, computer vision
technologies have recently provided fresh insights into bird
recognition using visible light images or videos.

Object detection in computer vision involves the identi-
fication and classification of various objects present in an
image [3]. Object detection methods can be categorized into
traditional and deep learning-basedmethods.With technolog-
ical advancements, traditional object detection techniques are
insufficient to support current data processing and applica-
tion requirements. Therefore, deep learning object detection
methodologies have emerged as a trending subject of interest
within the domain of object detection. Deep learning object
detection algorithms can be divided into two- and single-stage
methods. Two-stage methods involve generating candidate
boxes that potentially contain objects using a region proposal
network (RPN), and thereafter classifying and regressing box
coordinates using a convolutional neural network (CNN).
Representative algorithms include the Region-CNN series.
Unlike two-stage methods, single-stage methods do not rely
on an RPN; they use a CNN directly to extract image features
and offer an end-to-end detection approach. One-stage deep
learning object detection methods include the single-shot
multibox detector (SSD) [4] and the you only look once
(YOLO) series [5], [6], [7], [8], [9], [10], particularly the
ultralytics version of YOLO [11], [12].
In recent years, there has been a relative scarcity of research

papers utilizing deep learning methods for detecting birds
near airports. The published papers mostly employ attention
mechanisms, feature fusion techniques, and improved loss
functions to enhance the detection accuracy of small birds by
deep neural networks, achieving significant results. However,
these studies still have certain limitations. In reference [13],
for instance, the authors directly utilized bird images from the
COCO dataset to train models for detecting foreign objects
on airport runways. Yet, since these images differ greatly
from real airport scenarios, applying the trained models to
actual airports may lead to a decrease in detection accuracy.
Similarly, in reference [14], the authors utilized bird data from
publicly available datasets of wild birds in a wind farm; in
reference [15], they used the BIRDS450 dataset. In refer-
ence [16], the authors employed the Drone vs. Bird Detection
Challenge dataset to investigate intrusions of drones and birds
into airports. Moreover, existing research exhibits relatively
low detection accuracy in detecting airport birds. For exam-
ple, in reference [16], by replacing the detection algorithm’s
backbone with SqeezeNet, a detection accuracy of 77% was
achieved; in reference [17], the authors improved the detec-
tion transformer model using attention mechanisms, resulting
in a detection accuracy of 75.2%; in reference [18], YOLOv4
algorithm was utilized for detecting airport bird targets, with
a final detection accuracy of 71.89%. We can conclude from

the above information that the use of deep learning methods
to detect airport birds is still a relatively new field, and it
is necessary to continue to improve the accuracy of airport
bird detection algorithms. In this study, real airport bird
images were utilized to study the airport bird detection task,
which ultimately improved the detection accuracy to 77.1%.
The motivation behind this study lies in the ability of deep
learning bird detection methods to overcome the drawbacks
of high radar detection costs, low accuracy and slow speed
of manual observation. Such methods are well-suited for
application in small- and medium-sized airports with lim-
ited budgets. By employing this approach, these airports can
effectively detect birds near runways, thereby providing deci-
sion support for air traffic controllers and pilots, ultimately
ensuring the safe operation of aircraft.

As shown in Figure 1, in bird detection, bird targets typ-
ically occupy fewer pixels, and the size of the instances is
much smaller. This implies that bird features in the images are
not prominent and are susceptible to background interference,
making it challenging for the algorithm to extract feature
information and resulting in poor detection performance.

Attention mechanisms emulate the perceptual and cog-
nitive faculties inherent in the human sensory apparatus,
enabling neural networks to concentrate their focus on
pertinent aspects while processing the input images [19].
By leveraging the attention mechanism, neural networks can
actively and selectively acquire crucial information from
the input data, leading to enhanced model performance and
improved generalization capabilities. This attention method
enables the network to focus its attention on important fea-
tures, thereby facilitating more effective learning and better
adaptation to diverse datasets. Reference [20] embedded a
channel and spatial attention block in YOLOv5’s Backbone
after the SPP block, which enables the network to capture the
location information of the target more accurately.

Owing to their smaller receptive fields, shallow feature
maps within a network tend to gather more detailed and
specific information. Consequently, shallower layers of the
network contain finer details and intricate information [21].
Utilizing the shallow-layer information of a neural network
is a popular method for recognizing small targets. The com-
bination of shallow- and deep-layer features can improve the
detection mAP@50 of the YOLOv5 network.

To address the challenges of detecting bird targets near
airport runways, such as bird targets with a small pixel
size and the difficulty in detecting or omitting bird targets,
this study proposes SMB-YOLOv5, based on YOLOv5s6,
to improve bird detection accuracy while significantly reduc-
ing the model size. By redesigning the feature fusion network
and reusing shallow-level feature maps, the capability of the
network to accurately detect small targets was significantly
improved, along with the removal of certain modules and the
detection head, leading to a reduction in network size.

In conclusion, this study makes the following notable
contributions:
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FIGURE 1. In-flight bird images.

• Introducing the self-supervised predictive convolution
attention block (SSPCAB): The incorporation of the
SSPCAB attention mechanism enhances the feature
extraction capabilities of the feature extraction network
(i.e., Backbone). The SSPCAB minimizes the model
size while augmenting the capacity of the model to
discern various features within the image. It enhances
the detection of small- and low-contrast targets within
scenes.

• A more powerful multi-branch block (MBB) was
designed by replacing the C3 block with an MBB block.
The MBB comprises parallel convolutional branches
with different receptive fields. This improves the net-
work’s expressive capabilities, enriching the feature
space, and reducing instances where the model predicts
the background as bird targets.

• Fusing shallow-level features from the Backbone: Draw-
ing inspiration from [22], shallow-level features from
the Backbone were fused by incorporating the output
feature map of the first C3 block into the Neck. The
replacement of the path aggregation network (PANet)
with a bidirectional feature pyramid network (BiFPN)
[23] enables the network to leverage more detailed infor-
mation from shallow-level features, thus improving the
mAP@50 of small target detection.

• Reduction in network parameters and model size: The
removal of one Conv module and one C3 module from
the Backbone network, along with the removal of one
detection head, effectively reduced the network param-
eters and model size.

• In the loss function of YOLOv5s6, replacing the com-
plete IoU loss (CIoU) with an efficient IoU loss (EIoU)
improves the object detection accuracy. The model’s
convergence speed has improved.

II. RELATED WORK
A. RESEARCH STATUS
Image object detection is applied in various fields, including
bird recognition, facial recognition, and traffic sign recogni-
tion [24]. At present, deep learning-based object detection
algorithms have demonstrated promising performance on
datasets containing medium- to large-sized targets. The small
size of the bird target within a picture results in fewer pixels,
making it challenging for the YOLOv5s6 to extract features
of the small bird target, thus leading to reduced detection per-
formance. Two-stage algorithms offer high accuracy in object
detection tasks but suffer from slow frames per second (FPS),
complex training, and large model sizes. To address these
issues, a single-stage deep learning based object detection
algorithm, the YOLO algorithm, was introduced. The YOLO
method greatly improves detection speed at the expense of
little accuracy. The YOLO algorithm also has a low number
of parameters, low memory consumption for training, and
short training time. Although the YOLO series algorithms
excel in detecting large objects, their efficacy diminishes
when detecting tiny birds at airports. This is primarily owing
to difficulties in extracting features from small objects, the
uneven distribution of small object samples in training data,
challenges in setting prior boxes, difficulties in defining
loss functions, and problems matching negative and positive
samples [22].

Several methods have been proposed to improve
YOLOv5s6’s ability to extract features for small birds. For
instance, reference [25] introduced a refined feature pyramid
method known as the AF-FPN. This model integrates the
adaptive attention module (AAM) and feature enhancement
module (FEM) to minimize information loss during feature
map generation, thereby augmenting the representation capa-
bilities of the feature pyramid. Reference [26] incorporated a
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convolutional channel attention block following each feature
fusion to improve the detection mAP@50 for minor defects.
Reference [27] introduced a convolutional block attention
module (CBAM) into the YOLOv7 model. This method
models the relationships among channels and dynamically
learns weights to adjust feature responses across channels.
This directs the model to prioritize features with rich infor-
mation, consequently enhancing the accuracy of detecting
small objects. Reference [28] integrated a dense block into the
YOLOv2 network. This inclusion bolstered the proficiency
of the network in capturing features from diminutive objects,
thereby augmenting the detection accuracy.

Reference [29] emphasized that during the network infer-
ence process, the features and spatial details of small objects
tend to gradually diminish or decrease. This can be miti-
gated using multiscale feature methods (i.e., feature fusion)
to combine the fine-grained information from shallower-level
feature maps with the semantic information from higher-level
feature maps, thereby reducing information loss and improv-
ing the network’s accuracy. Reference [30] introduced a
feature pyramid network (FPN) comprising a bottom-up net-
work, top-down network, and lateral connections between
them to achieve feature fusion. Building upon the FPN,
reference [31] made further improvements by adding an
additional bottom-up network and lateral connections to cre-
ate PANet, further enhancing the feature fusion efficiency
and boosting network accuracy. Reference [32] introduced
an enhanced feature fusion architecture (PB-FPN) derived
from PANet and BiFPN, which substantially boosted the
capability of the model to detect small targets. In addition
to incorporating attention mechanisms and employing fea-
ture fusion techniques, modifying the loss function of the
model can enhance the detection accuracy. Reference [33]
introduced a Focal DIoU loss into YOLOv3’s loss func-
tion for calculating bounding box regression loss, ultimately
improving the accuracy and convergence speed of the
algorithm.

In the field of computer vision, CNNs have long domi-
nated due to their powerful ability to extract local features.
However, in recent years, vision transformers (ViTs) have
emerged as a promising alternative. They have demonstrated
performance comparable to, or even superior to, CNNs in
certain visual tasks. In reference [34], the authors utilized
a ViT-based deep neural network to classify brain tumors,
achieving a classification accuracy of 98.7%, effectively alle-
viating the burden on radiologists. Reference [24] compared
the performance of seven CNNs and five ViTs on three traffic
sign datasets, but the results revealed that vision transformers
do not possess a competitive advantage. Reference [35] intro-
duced adaptive vision transformers (AdaViT), which learn
to determine usage policies for self-attention heads, patches,
and transformer blocks individually for each input, aiming
to enhance the inference efficiency of vision transformers
while minimizing the decrease in accuracy. Reference [36]
introduced the application of feature fusion strategies to
cross-attention multi-scale vision transformers (CrossViT),

utilizing two branches to process large-scale and small-scale
image patches, and proposed a lightweight token fusion block
based on cross attention. The accuracy of the model is the
same or even better than that of CNNs. Many ViT methods
have the drawbacks of a larger number of model parameters
and computation, higher hardware requirements; higher GPU
memory consumption for model training; and long training
time. For example, during the training of the real time detec-
tion transformer (RT-DETR) [37], it was necessary to reduce
the number of channels in each layer to prevent the GPU
memory required for training from surpassing the GPU’s
memory capacity.

While the aforementioned improvement methods indeed
enhance the detection accuracy of the network, they also
come with certain drawbacks. For instance, some introduced
enhancements increase the parameters and computation of
the object detection network. Moreover, they may not fully
leverage the richer detail information contained in the shal-
low features of the feature extraction network. In this study,
we aim to mitigate these shortcomings as much as possible
to further enhance the overall performance of the object
detection network.

B. STRUCTURE OF YOLOV5S6
The YOLOv5 algorithm is the fifth iteration of the YOLO
series and is a classic single-stage object detection model.
Figure 2 shows its network architecture. YOLOv5, developed
by Ultralytics, is an effective and lightweight deep learning
architecture. YOLO is a set of object detection models rec-
ognized for its simplicity and speed, with the most recent
version being the YOLOv8 series. Because of its excellent
computational efficiency and ability to execute quickly on
various hardware platforms, YOLOv5 has garnered signif-
icant attention for industrial use. Consequently, the use of
YOLOv5 for bird detection at airports is expected to produce
better detection results.

The network structure of YOLOv5s6 includes several mod-
ules, making it convenient to modify the network architecture
and add or remove modules to achieve a better performance.
The compositions of these modules are shown in Figure 2.
The C3 module comprises three Conv modules and n Bot-
tleNecks, allowing for better learning of the residual features
while increasing the YOLOv5s6 network depth and receptive
fields. The BottleNeck module in the Backbone network
employs residual connections, as shown in Figure 2, whereas
the remaining part of YOLOv5s6 does not use residual con-
nections, implying that the BottleNeck module comprises
only two consecutive convolutional modules. The spatial
pyramid pooling (SPP) module, proposed by He in 2015,
addresses issues related to image cropping, scaling oper-
ations, image distortion, and the extraction of redundant
features in CNNs. This significantly increases the speed of
generating candidate boxes and reduces the computational
cost [38]. The SPP fast (SPPF), introduced by Glenn Jocher,
the author of YOLOv5, is a faster version of SPP.
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FIGURE 2. Structure of YOLOv5s6 and composition of Conv, C3, BottleNeck, and SPPF modules in YOLOv5s6. C denotes Concat.

III. PROPOSED SMB-YOLOV5 ALGORITHM
This section presents a comprehensive overview of
the architectural design of the SMB-YOLOv5 model. The
SMB-YOLOv5 network is based on a CNN, whereas the
overall structure of the network is built upon YOLOv5s6.
YOLOv5s6, a variant of YOLOv5, is more accurate than
YOLOv5s and can efficiently handle instances of differ-
ent scales. To balance the computational efficiency of the
network with the details required to detect smaller objects,
an image size of 1024 × 1024 pixels was employed for
model training and testing. The YOLO series is a promi-
nent example of a one-stage detector that has consistently
maintained efficiency and accuracy. Section A describes the
fundamental principles of the proposed SSPCABmodule and
its position in the network. Section B describes the funda-
mental principles of an MBB and its position in a network.
In Section C, we replace the CIoU in the loss function with
the EIoU and explain the formula for the EIoU. In Section D,
we describe the utilization of the shallow-level features of the
network more effectively and making of the network more
lightweight.

A. SPPCAB
The SSPCAB module [39] can learn to predict mask infor-
mation using contextual information. The SSPCABmodule’s
input and output tensors are the same size, making them easy
to integrate into any CNN. The principles of the SSPCAB

module are elaborated as follows. Figure 3 (1) illustrates the
architecture of the SSPCAB.

First, an operation of padding is carried out on the input
feature map, where padding = kernel_size + dilation. Sec-
ond, assume that the width of the feature map after padding
is W and the height is H . Slice the padded feature map
four times: The first slice, with the top-left corner of the
feature map as the origin, preserves a feature map of size
(W - A) × (H - A); the second slice, with the top-right
corner of the feature map as the origin, preserves a feature
map of size (W - A) × (H - A); the third slice, with the
bottom-left corner of the feature map as the origin, preserves
a feature map of size (W - A) × (H - A); the fourth slice,
with the bottom-right corner of the feature map as the origin,
preserves a feature map of size (W - A) × (H - A). Each of
the four sliced feature maps is passed through separate 1 × 1
convolutional layers. The formula for the cropping length A
is A = kernel_size + 2dilation + 1. Third, the output fea-
tures from the aforementioned four convolutional layers are
summed, and the ReLU activation function is applied. Fourth,
squeeze and excitation networks (SENet) are applied to the
activated features. Figure 4 illustrates the architecture of the
SENet module. The final output feature map bears the same
shape as the original feature map.

The convolutional operation in SSPCAB is referred to as
the masked convolution operation, and the masked convo-
lutional kernel is illustrated in Figure 3 (2). The learnable
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FIGURE 3. Structure of the SSPCAB module and receptive field of the SSPCAB module.

FIGURE 4. Structure of SENet.

parameters of the convolution are located at the corners of the
Figure 3 (2) and are denoted by the sub-kernels Ki, ∀i ∈{1,
2, 3, 4}. As shown by M, each kernel Ki is positioned at a
distance (determined by the dilation rate) d ∈ N+ away from
the masked region at the receptive field’s center.

C3 before SPPF is replaced with SSPCAB. Incorporating
the SSPCAB module into the feature extraction network
enhances feature representation, improves object detection
performance for low-contrast scenarios, and enables adaptive
channel attention mechanisms to enhance the model perfor-
mance in detecting small birds. The self-supervised learning
and global structure learning capabilities of the SSPCAB
module introduced more prior information into the model,
aiding in better generalization during training. This helps
reduce the risk of overfitting on small datasets and enhances
the performance across different datasets and scenarios.

B. PROPOSED MUTI-BRANCH BLOCK
In the YOLO series, increased network depth notably
enhanced the detection performance. However, fewer parallel
branch structures are present within the YOLOv5 network
module. Different convolutional branches possess varying
receptive fields and feature extraction capabilities, allowing
them to extract diverse and complex abstract information
from targets. In this study, from the perspective of augment-
ing multiple parallel convolutional branches, we combined
feature maps extracted from multiple branches to obtain

output features with richer information. We introduced a
module known as the MBB module. MBB includes parallel
convolutional branches with distinct receptive fields, such
as 1 × 1 convolution, 3 × 3 convolution, and 1 × 1 con-
volution and average pooling layers, etc. The incorporation
of multiple convolutional branches enhances the expressive
capability of the network and enriches the feature space.
By employing the MBBmodule, the model reduces instances
in which the background is misclassified as a bird target in
object detection, thereby enhancing the precision of predict-
ing small bird targets. The MBB architecture is shown in
Figure 5.

The formula for the MBB is as follows:

x1, x2 = split(f k=1
Conv(F)) (1)

y1 = f k=1
conv (f

k=1
Conv(x1))

y2 = f k=3
conv (f

k=1
conv (f

k=1
Conv(x1)))

y3 = f k=3
conv (f

k=1
Conv(x1))

y4 = fAvgPool(f k=1
conv (f

k=1
Conv(x1)))

(2)

x1′
= SiLU (y1 + y2 + y3 + y4) (3)

F ′
= f k=1

Conv(Cat(x2, x1
′)) (4)

whereF denotes the input featuremap, f k=1
Conv denotes a normal

convolution layer, kernel size = 1 × 1, Split() implies that
the output features are divided into two parts, f k=1

conv denotes
a 1 × 1 convolution operation, when k = 3, it implies that the
kernel size= 3× 3, SiLU () denotes the SiLU activation func-
tion, Cat() denotes concatenating feature maps according to
the channel dimensions, and F ′ denotes the output feature
map.

Introducing a 3 × 3 convolution block into the MBB
module increases the receptive field of YOLOv5s6, enabling
it to capture more complex feature patterns and finer
details. Simultaneously, retaining the 1 × 1 convolution
allows for the adjustment of channel numbers in the feature
maps through weight adjustments, enhancing the nonlinear
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FIGURE 5. Module structure of multi-branch block (MBB).

expressive capabilities while reducing the computational
load. The combination of 1 × 1 and 3 × 3 convolutions
strikes a balance between the improved feature extraction and
network performance. Average pooling reduces the spatial
dimensions of feature maps, diminishing the computational
load and parameter count while preserving the overall trends
of significant features, particularly the relative positional
relationships among features, to enhance the robustness of
YOLOv5s6. After the convolutional and pooling operations
in the four branches, batch normalization was required. The
integration of diverse convolutional branches amplifies the
feature expression capacity of the module, enabling it to learn
more abstract information, thereby enhancing the accuracy of
the network. Moreover, the residual connections within the
MBB prevent the gradient from vanishing in the network,
thereby accelerating the network training and improving its
performance.

C. EIOU LOSS
To improve detection accuracy, this study considered improv-
ing the loss function. Determining the real position of the
target bounding box is an important task in object detection.
The YOLOv5s6 model used the CIoU loss function for train-
ing. A good regression loss should include the coverage area,
center-point distance, and aspect ratio. The CIoU is the sum
of the aspect ratio and the distance IoU loss (DIoU). The
calculation formula is:

CIoU = IoU −
ρ2(b, bgt )

c2
− αν (5)

α =
ν

1 − IoU + ν
(6)

ν =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

(7)

where ρ denotes the Euclidean distance between the center
points, bgt denotes the center point of the ground truth box,
b denotes the center point of the predicted bounding box,
c denotes the diagonal length of the minimum bounding rect-
angle that can simultaneously contain both the predicted box
and the ground truth box, α denotes the weight coefficient,
ν denotes the consistency coefficient used to measure the
aspect ratio between the predicted box and the ground truth

box, h and hgt denotes the heights of the predicted box
and ground truth box, respectively, and w and wgt denotes
the width of the predicted box and the ground truth box,
respectively.

The formula for the CIoU loss is:

LCIoU = 1 − IoU +
ρ2(b, bgt )

c2
+ αν (8)

On the basis of DIoU, CIoU also considers the aspect
ratio, but ν simply reflects the difference in aspect ratio,
instead of the real relations between w and wgt or h and hgt ,
which does not increase the similarity of the aspect ratio,
while it prevents the model from efficiently reducing the real
difference between (w, h) and (wgt , hgt ) [40]. To address this
issue, EIoU has been proposed. Based on the CIoU, the aspect
ratios were separated, and the differences in width and height
were calculated separately. This can accelerate the regression
speed of the prediction box, focus the box regression process
on better anchors, and improve regression accuracy of the
prediction box. The calculation formula is:

LEIoU = 1 − IoU +
ρ2(b, bgt )

c2
+

ρ2(w,wgt )
c2w

+
ρ2(h, hgt )

c2h
(9)

where cw and ch denote the width and height of the minimum
bounding rectangle that encompasses both the predicted box
and ground truth box.

D. UTILIZING SHALLOW-LEVEL FEATURES OF THE
NETWORK AND THE OVERALL STRUCTURE OF
SMB-YOLOV5
When CNNs are used for feature extraction, different net-
work depths correspond to features at different levels [41].
To detect small objects, lower-level features are desir-
able because they often have higher resolution and contain
richer details about the objects that need to be detected.
The resolution of the feature maps gradually decreases as
the YOLOv5s6 network depth increases, and the network
becomes less sensitive to fine details. However, at this
stage, the features contain more semantic information than
shallower-level features.
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FIGURE 6. Structure of SMB-YOLOv5.

Therefore, for scenarios such as the detection of small
birds in an image, utilizing the shallow-level features of the
Backbone network is crucial. To achieve this, the following
changes are made to the network: First, in Figure 2, the
9th and 10th modules are deleted. Second, the feature maps
from the shallower C3 module, which is the 2nd module,
are connected to the subsequent PANet in the Neck section.
Third, inspired by BiFPN [23], the features provided by the
shallower layer, indicated by the red lines in Figure 6, are
utilized. Specifically, the 23rd Concat module is connected
to the 4th C3 block in the Backbone of YOLOv5s6, and
the 26th Concat module is connected to the 6th C3 mod-
ule in the Backbone. Finally, because the features generated
by the 21st MBB block in Figure 6 would significantly
increase the computational cost when passed to the detection
head, the detection head is removed. The resulting improved
YOLOv5s6 model with these four modifications is shown in
Figure 6.
These modifications significantly reduce the network

parameter count, and because the network utilizes shallow-
level features, it significantly improved its capability to detect
small birds. This achieved the goals of a lightweight model
and improved detection accuracy.

IV. EXPERIMENTAL RESULTS
A. DATASETS
The dataset used in this study was obtained from part of
the AirBirds dataset, as described in [42], for training the

SMB-YOLOv5 model. The AirBirds dataset is the first
large-scale image dataset specifically designed to study bird
strikes at airports. It comprises 118,312 images and 409,967
YOLO-formatted bird annotation boxes, with the majority
of the images having a resolution of 1920 × 1080 pixels.
The dataset contains images captured by a camera network
deployed at a real-world airport over the course of one year,
spanning four seasons, covering various bird species, lighting
conditions, and 13 types of weather conditions. The average
annotation size of bird instances in the 1920 × 1080 pixels-
sized images in this dataset is <10 pixels. We first selected
15,000 images with larger instances and sorted them in
descending order, based on the pixel size occupied by the
largest instance. Subsequently, we divided these images into
three datasets: big, medium, and small. The first 5,000 images
constituted the big dataset, the subsequent 5,000 images com-
prised the small dataset, and the 5,000 images in the middle
constituted the medium dataset. A split ratio of 70% for
training, 10% for validation, and 20% for testing was used
to divide each dataset into subsets for training, testing, and
validation. Finally, the best-performing dataset among these
three was selected for the remaining experiments.

To further understand the sizes of the bird instances in
the aforementioned three datasets. The size distributions of
the lengths and widths of the instances for the three datasets
are shown in Figure 7. The height and width were nor-
malized. The vertical axis represents the height while the
horizontal axis represents the width. Big datasets contain
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FIGURE 7. Size distribution of the length and width of instances for three datasets. From left to right, it represents the instance size
distribution for the big, medium, and small datasets, respectively.

several instances with larger sizes, whereas medium and
small datasets have instances with smaller sizes.

B. EXPERIMENTAL ENVIRONMENT AND
HYPERPARAMETER CONFIGURATION
The training and testing environment configurations used in
this study are listed in Table 2. The hyperparameters for this
experiment were configured as follows: during the training,
the batch size was eight, training was 300 rounds, using
eight workers, the initial learning rate was 0.01, the minimum
learning rate was 0.0001, using stochastic gradient descent
(SGD) as the optimizer, the momentum was 0.937, and a
cosine annealing strategy was used to adjust the learning
rate. The image size used during training and testing was
1024 × 1024 (the image size was set to 1280 × 1280 for the
three-dataset performance comparison experiments described
in Section D).

TABLE 1. Hardware and software environment configuration.

C. EVALUATION METRICS
The evaluation metrics utilized in this work include recall
(R), precision (P), mean average precision (mAP@50),model
detection speed in FPS, model parameter size (Params), and
weight size. Precision represents the proportion of correctly
predicted positive images among the images recognized by
the model. Recall denotes the fraction of positive predictions
among all actual positive samples. The average precision
(AP) is indicative of the area under the precision–recall curve,

FIGURE 8. Prediction of positive and negative samples.

and the mAP refers to the average value of all categories of
AP in the object detection task. The following situations were
encountered during training, as shown in Figure 8.
More advanced evaluation metrics such as P, R, AP, mAP

can be obtained from the confusion matrix [43] in Figure 8,
and their formulas are shown in (10)–(13) as follows:

P =
TP

TP+ FP
(10)

R =
TP

TP+ FN
(11)

AP =

∫ 1

0
P(t)dt (12)

mAP =

∑n
n=1 APn
N

(13)

where AP denotes the average precision and P(t) denotes
the precision rate when the threshold value of IoU is taken
as t. N denotes the number of classes, and in this experiment,
N = 1; and APn denotes the AP of the nth category.
FPS denotes themaximumnumber of images the algorithm

can process within a one-second interval.

D. EXPERIMENTAL RESULTS OF THREE DATASETS
In comparative experiments with three differently sized
datasets, the configuration utilized involved a batch size
of 12 and images sized at 1280 × 1280 pixels (Owing to
hardware limitations, the batch and image sizes were 8 and
1024 × 1024 pixels, respectively, in later ablation and com-
parative experiments), with the remaining hyperparameters
set as previously described. Following training and validation
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TABLE 2. Testing results of three datasets.

FIGURE 9. mAP@50 curves of SMB-YOLOv5 and YOLOv5s6.

on the three datasets, the test set images were tested, and the
test results are listed in Table 2.

Table 2 shows that the big dataset had higher P, R, and
mAP@50 values than the other datasets. Therefore, the
best-performing big dataset was selected for ablation and
comparative experiments in this study.

E. TRANING RESULTS OF SMB-YOLOV5 AND YOLOV5S6
To ascertain the efficacy of the SMB-YOLOv5 model,
we performed a comparative analysis of the training out-
comes of the YOLOv5s6 and SMB-YOLOv5 models.
The results are shown in Figures 9, 10, and 11. The
SMB-YOLOv5 model demonstrates faster convergence than
the YOLOv5s6 model, consistently maintaining higher
mAP@50 values throughout the training process. The train-
ing and validation losses of SMB-YOLOv5 were less than
those of YOLOv5s6 during training. Both models exhibited
instability during the initial 100 training epochs, causing
fluctuations in the mAP@50 values. After 100 epochs, the
mAP@50 values slowly increased, gradually flattened, and
then no longer increased. During the training process, the
Precision of the SMB-YOLOv5 has always been higher than
that of the YOLOv5, and the convergence speed is faster
than that of the YOLOv5. For the Recall values during the
training process, during the initial 150 training epochs, SMB-
YOLOv5 had a higher Recall value than YOLOv5; About
150 to 270 epochs, the Recall values of the two models are
similar; After 270 epochs, the Recall value of SMB-YOLOv5
is higher than YOLOv5.

F. ABLATION EXPERIMENTS
In neural networks, ablation experiments are frequently used
to test the impact of a certain module or modification of the
network. Table 3 lists the results of the ablation experiments.
To validate the effectiveness of each improvement, we con-

ducted comparative experiments between each method and
the YOLOv5s6 model. Subsequently, we integrated all
four improvements into a single model and conducted an
experiment. First, introducing the SSPCAB attention mech-
anism into the Backbone network of YOLOv5s6 resulted
in increases of 0.002 in R and 0.005 in mAP@50, along
with decreases of 0.008 in P, 2 frames per second (FPS),
0.1 million Params, and 0.7 megabytes (MB) in weight size.
Second, introducing anMBB into the Neck of YOLOv5s6 led
to increases of 0.007 in P, 0.007 in R, and 0.006 in mAP@50,
with no change in FPS, along with reductions of 1.3 million
Params and 3.5 MB in weight size. Next, leveraging the shal-
low features of the Backbone network and removing some
modules resulted in increases of 0.001 in P, 0.006 in R, and
0.011 inmAP@50, alongwith decreases of 3 FPS, 5.5million
Params, and 11.1 MB in weight. Finally, replacing CIoU with
EIoU led to decreases of 0.006 in P, 0.001 in R, and 4 FPS,
along with an increase of 0.013 in mAP@50, with no change
in parameters or weight size. Ultimately, integrating all four
improvements into a single model resulted in increases of
0.008 in P, 0.008 in R, and 0.026 in mAP@50, along with
decreases of 1 FPS, 6.7 million Params, and 13.6 MB in
weight size.

The amalgamation of all four improvement methods led
to a higher mAP@50 value compared with employing each
improvement method individually. Additionally, the SMB-
YOLOv5 model demonstrated a lower parameter count and
weight size than the other four individual improvement
models.

G. COMPARATIVE EXPERIMENTS
We compared the SMB-YOLOv5 model with YOLOv5s6,
YOLOv8s, YOLOv4-tiny, YOLOv3-tiny, SSD-Mobilenetv2,
YOLOX, CenterNet, YOLOv3, YOLOv6s, and RT-DETR
algorithms in our comparative experiments. All the experi-
ments were conducted in the same hardware and software
environment. The test results are summarized in Table 4.
The SMB-YOLOv5 algorithm exhibited the best mAP@50
performance of 77.1%, which was 64.2% higher than the
poorest-performing YOLOv4-tiny algorithm. The YOLOv4-
tiny model exhibited the highest FPS performance at 89 fps.
SSD-Mobilenetv2 had the lowest model parameter count of
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FIGURE 10. Precision and recall curves of SMB-YOLOv5 and YOLOv5s6.

FIGURE 11. Train and validation losses of SMB-YOLOv5 and YOLOv5s6.

TABLE 3. Results of the ablation experiment.
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FIGURE 12. SMB-YOLOv5’s prediction results on larger instances.

FIGURE 13. SMB-YOLOv5’s prediction results on smaller instances.

only 3.5 million, followed by the SMB-YOLOv5 algorithm.
The SMB-YOLOv5 algorithm also had the smallest weight
size at 11.6 MB, which is 112.4 MB lower than that of the

CenterNet model. Among all algorithms, the SMB-YOLOv5
algorithm achieved the highest precision (P) and recall (R)
scores of 82.6% and 71.1%, respectively.
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TABLE 4. Results of the comparative experiment.

From the ablation and comparative experiments, we can
conclude that the SMB-YOLOv5 model achieves commend-
able performance in mAP@50, precision (P), and recall (R)
metrics while reducing themodel parameter count andweight
size.

H. SMB-YOLOV5 DETECTION RESULTS
We can see the detection results through Figure 12 and 13
below. And Figure 12 displays the model’s detection results
on larger bird instance images, where the model successfully
detected all bird instances. Figure 13 illustrates the model’s
detection results on densely packed and relatively small bird
images. The model successfully detected the majority of bird
instances. However, there are still instances of predicting the
background as birds (As shown in the green rectangle in
Figure 13) and missing detections (As shown in the blue
rectangle in Figure 13).

V. CONCLUSION
In this study, we proposed an SMB-YOLOv5 model for
detecting birds near airport runways. SMB-YOLOv5 incor-
porates some of the latest computer vision techniques, such
as the SSPCAB attention mechanism and BiFPN, and utilizes
data augmentation and training techniques. Incorporating
SSPCAB enabled the network to concentrate on pertinent
regions of interest, thereby improving its ability to detect
small birds. The MBB enhances the expressive capabilities
of YOLOv5s6, enriches the feature space, reduces instances
where the object detection model misclassifies the back-
ground as a bird target, and increases the precision of the
network in predicting small bird targets. Owing to the rich and
detailed features contained in shallow features, the network
leverages shallow features by incorporating them into the
Neck structure, combined with the BiFPN network, achiev-
ing the reutilization of shallow features. Finally, replacing
the CIoU loss with EIoU loss accelerated model conver-
gence and improved the mAP@50 value of the model. These

four improvements enhanced network performance. By test-
ing the test dataset, SMB-YOLOv5 achieved an accuracy
of 77.1%, 2.6% more accurate than YOLOv5s6. A notable
feature of the SMB-YOLOv5 network is its network archi-
tecture, which significantly reduces the Params and weight
size of the SMB-YOLOv5 network. This translates into
a lighter model with a smaller memory footprint, making
it an ideal choice for deployment in devices with limited
resources.

By deploying the SMB-YOLOv5 model on the cen-
tral processing equipment of an airport, processing image
information from distributed monitoring devices can accu-
rately and quickly detect flying birds in the airspace near
the airport. Therefore, the SMB-YOLOv5 object detec-
tion algorithm can overcome the shortcomings of manual
observation and radar detection, improve airport operation
efficiency, and ensure airport operational safety. In addi-
tion to the improvements in the aforementioned performance
metrics, the detection speed of the model decreased. There-
fore, future studies should focus on enhancing the FPS
of this model. In the near future, we aim to integrate the
SMB-YOLOv5 algorithm with airport bird deterrent sys-
tems. The goal of this integration is to improve the speed
and accuracy of avian target detection and tracking, thereby
providing a deeper understanding of bird behavior. By ana-
lyzing these data, more effective bird deterrent measures can
be implemented to ensure the safety and efficiency of civil
aviation.
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