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ABSTRACT Software reliability growth models (SRGMs) are widely used for predicting the reliability of
software systems during testing and debugging. Selecting the most appropriate SRGM solutions is a multi-
criteria decision-making (MCDM) problem that is very difficult when criteria are imprecise or ambiguous.
The paper introduces a novel approach to SRGM selection which relies on q-rung orthopair fuzzy sets
(q-ROFS) and the compromise ranking method of VIKOR. New q-rung orthopair fuzzy (q ROF) entropy
and divergence measures are proposed for criteria weights assignment and to select superior SRGMs. The
VIKOR method is then applied on the q-ROF decision matrix to identify the optimal compromise SRGM
solution. This approach provides a systematic framework for handling subjective criteria and modeling
uncertainty during SRGM selection. The proposed MCDM methodology is illustrated on the example of a
case study involving four common SRGMs evaluated on the four different criteria. Results are demonstrated
to be in line with the latest q-rung measures which provide more accurate results than the previous
intuitionistic fuzzy methods. The q-ROF VIKOR approach provides the software teams with a more robust
information base for the reliability growth decision-making process. At the end of this manuscript, we do the
comparison of the proposed theory with certain prevailing concepts to reveal the dominance and supremacy
of this work. Whereas yet there are some expected limitations of the proposed work for instance it can’t be
helpful in the generalized structures of q-ROFS.

INDEX TERMS Software reliability growth model, MADM, VIKOR technique, q-rung orthopair fuzzy
entropy, divergence measures, fuzzy set, decision making.

I. INTRODUCTION
Delivering highly reliable software systems is a critical
imperative for organizations across industries. Software fail-
ures can have severe consequences, ranging from frustrated
users to catastrophic system outages impacting operations
and revenues. As software grows more complex and is
deployed in increasingly high-stakes domains like healthcare,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

transportation, and finance, rigorous reliability testing and
modeling during development becomes paramount. Software
reliability growth models (SRGMs) provide a powerful ana-
lytical lens for predicting and improving system reliability
over the testing lifecycle. By mathematically characterizing
the fault detection process, SRGMs enable forecasting of
future failure rates and volumes. However, the large number
of available SRGM options, each with their own assumptions
and characteristics, poses a significant model selection chal-
lenge for practitioners.
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Selecting an improper SRGM for a specific project envi-
ronment and reliability level may result in wrong prognosis,
time-consuming testing, and, finally, the delivered soft-
ware may not meet the reliability goals. For instance, an
e-commerce firm that is implementing new website features
will likely target the short-term SRGMs that aim at attaining
reliability growth while an aerospace firm that is imple-
menting flight control software will prefer the long-term
reliability growth models. The best SRGM depends on fac-
tors such as the type of software, the methodology used
in developing the software, the maturity level of the test
practices, and the risk tolerance levels of the stakehold-
ers. SRGM’s mathematically describe the failure process
in software systems and predict improvements in reliabil-
ity over time. Common SRGMs include exponential and
S-shaped models based on Non-Homogeneous Poisson Pro-
cesses (NHPP). The NHPP distribution allows modeling
software failure intensity as a function of factors like test-
ing time and fault detection/removal rates. This research
explores using the VIKOR multi-criteria decision method-
ology to optimize selection of an appropriate SRGM by
evaluating data-model fitness, predictive power, and com-
putation complexity across NHPP-based models like the
Goel-Okumoto, Musa-Okumoto Logarithmic Poisson, and
Yamada Delayed S-Shaped models. However, determining
the most accurate SRGM for a particular system remains
difficult given the number and variety of models available.
Multi-criteria decision-making techniques provide a system-
atic methodology for SRGM selection based on multiple
weighted criteria. The q-rung orthopair fuzzy entropy and
divergence measures provide enhanced capability in criteria
weighting and performance scoring for ambiguous/uncertain
metrics. The proposed approach facilitates more informed,
accurate SRGM selection for reliability growth assessment.

One of the earliest papers on the S-shaped SRGM was
by Musa et al. [1] They proposed a three-parameter model
that assumed that the detection of software fault and removal
process could be modeled using an S-shaped curve. The
three parameters of the model were the initial number of
faults, the saturation level, and the inflection point. Themodel
was shown to fit data from several large software projects
reasonably well. Since then, many researchers have pro-
posed variations of the S-shaped SRGM, including different
functional forms and additional parameters. For example,
based on the presumption that the pace of fault detection
and removal is related to the number of faults still present,
Goel and Okumoto [2] suggested a two-parameter model.
Yamada et al. [3], [4] introduced the software reliability
models reflected the test effort put out during phase called
as exponential and Rayleigh models. These models even
take into consideration the testing resources employed in the
earlier established model. Two data sets were used to show
that the new model, proposed by Pham and Zhang [5], Com-
pared to the previous models, the non-homogeneous Poisson
process-based model fits and makes predictions much better.

A S-shaped curve model based on NHPP having increasing
cumulative number of software failures was proposed by
Zhang et al. [6]. Kim et al. [7] propose a software reliabil-
ity model based on the assumption of dependent software
failures. They derive this model considering the number of
software failures and fault detection rate, assuming point
symmetry. Jin and Jin [8] proposed a ground-breaking opti-
mization technique known as Quantum Particle Swarm Opti-
mization (QPSO) to alter reliability parameters. Gupta [9]
developed the Weighted Distance-Based technique (WDBA)
MCDM technique by modeling the as an MCDM problem.
The SRGM selection procedure’s solution is computed using
a mathematical technique Garg [10], [11], [12]. Mahmu-
dova [13] used the TOPSIS method concept to increase
software efficiency.

q-Rung Orthopair Fuzzy Sets (q-ROFs) is a relatively
recent development in fuzzy sets that has shown promise
in modeling uncertain and imprecise data in SRGM’s.
q-ROFs combines the Orthopair fuzzy sets with q-Rung
Fuzzy Set to represent both the degree of non-membership
and membership of an element in a set. A method for iden-
tifying decision-making issues based on entropy weight and
aggregation operators was described by Garg [10], [11], [12].
Entropy measures for IFSs were introduced in their sepa-
rate and generalized form Garg [10], [11], [12]. Yager [14]
presented the idea of the q-rung orthopair fuzzy set, a gen-
eralization of the Pythagorean and intuitionistic fuzzy sets.
In Q-rung fuzzy sets, the membership function of an element
in a set is represented by a sequence of real numbers that
describe its degree of membership at different granularities
or levels of abstraction. Orthopair fuzzy sets were introduced
by Zhu et al. [15] as an extension of fuzzy sets that allows for
the representation of uncertain and conflicting information.
Using the tangent inverse function, Khan et al. [16] propose
the knowledge measure for q-ROFS. This method quantifies
the knowledge related to qROFS. The knowledge measure is
defined by the membership and non-membership functions,
as well as the hesitation margin, allowing it to consider both
knowledge and fuzziness. To handle the decision data in
circumstances where they might reflect a wider range of
uncertain data because the aggregated of the qth powers of the
degrees of both non-membership andmembership is less than
or equal to 1, Liu et al. [17] presented the q-ROF weighted
geometric operator and the q-rung orthopair fuzzy weighted
averaging operator. Complex q-ROF’s (Cq-ROFS), a novel
idea that is a useful tool for dealing with ambiguous and
complex information, was introduced by Garg et al. [11].

Akram et al. [18] analyze aggregation operators (AOs)
within the q-rung orthopair fuzzy environment using Einstein
norm operations. Gou et al. [19] investigate Pythagorean
fuzzy information, analyzing change values of Pythagorean
fuzzy numbers (PFNs) as variables and dividing them into
eight regions based on PFN operations. They also develop
Pythagorean fuzzy functions and scrutinize their funda-
mental properties, including continuity, derivability, and

VOLUME 12, 2024 86573



F. M. Khan et al.: SRGM Selection by Using VIKOR Method Based on q ROF Entropy and Divergence Measures

differentiability. Pethaperumal et al. [20] investigate the alge-
braic properties of q-rung orthopair multi-fuzzy sets (MFSs)
and examine their corresponding operational laws.

Gou et al. [21] introduce hesitant fuzzy linguistic entropy
and cross-entropy measures and develop a model for deter-
mining criteria weights. This model accounts for both the
individual and interactive effects of hesitant fuzzy lin-
guistic elements (HFLEs) with respect to each criterion.
Uluçay et al. [22] develop a novel multi-criteria decision-
making (MCDM) method using the VIKOR approach based
on Q-single-valued neutrosophic sets. Rani and Kumar [23]
propose an innovative distance measure designed to quan-
tify the dissimilarity between Q-rung orthopair fuzzy sets
(Q-ROFSs). Akram et al. [24] introduce linguistic q-rung
orthopair fuzzy graphs (Lq-ROFGs) and explore effi-
cient methods for complex multi-attribute group decision-
making (MAGDM) scenarios. This approach utilizes the
distance measure to establish a similarity measure between
Q-ROFSs. For instance, Park et al. [25] proposes a new
method to calculate the divergence between intuitionistic
fuzzy sets (IFSs) based on their three-dimensional repre-
sentation, and explores the relationship between similarity
and distance measures of IFSs. Qin et. al. [26] developed
a novel multi-attribute decision-making (MADM) method
for q-rung orthopair hesitant fuzzy information, utilizing
the Choquet integral. Shahzadi et al. [27] propose a study
to develop a decision-making strategy that addresses the
significant tendencies of the conventional TOPSIS method
within the framework of (p, q)-rung orthopair fuzzy sets.
Akram et al. [28] works on the development and appli-
cation of the measurement and ranking of the alternatives
based on the compromise solution under the context of
2-tuple linguistic q-rung picture fuzzy sets. Mishra et al. [29]
have proposed a four-stage hybrid DSS known as q-ROFR-
SPC-RANCOM-MULTIMOORA. This system combines the
q-rung orthopair fuzzy rough sets (q-ROFRS), the sym-
metry points of criterion (SPC), the ranking comparison
(RANCOM), and the multiattribute multiobjective optimiza-
tion based on ratio assessment (MULTIMOORA). Akram
and Shumaiza [30] also improve the PROMETHEE method
by applying q-rung orthopair fuzzy sets (q-ROFS) which
is a generalization of Pythagorean fuzzy sets (PFS). This
approach enhances themanagement of ambiguous and impre-
cise information, which in turn enhances the quantification
of uncertainty in other ratings. Ariafar et al. [31] propose
the Grey Hungarian Algorithm (GHA) to apply the grey
preference degrees to the classic Hungarian algorithm for
solving the Linear Assignment Models (LAM) in conditions
of uncertainty. Pethaperumal et al. [20] propose two new
distance metrics specifically for q-rung orthopair multi-fuzzy
sets (q-ROMFSs) of order k, which improves the ability
to differentiate between the sets. Gou et al. [21] introduce
hesitant fuzzy linguistic entropy and cross-entropy measures,
which create a model to calculate criteria weights. This model
considers the direct impact of each hesitant fuzzy linguistic
element (HFLE) and the combined impact of any two of

them with regard to each criterion. Mahalakshmi et al. [32]
put forward two new distance measures for q-rung orthopair
multi-fuzzy sets (q-ROMFSs) of dimension k to improve the
distinguishing capability of distancemeasures. Gou et al. [33]
propose the probabilistic double hierarchy linguistic term
sets (PDHLTS) which is more general. They also present
enhanced operations for PDHLTSs and a distance measure
for two PDHLTSs, as well as an adjustment method that
makes the probability distributions of two PDHLTSs equal.
This research aims to address the problem of SRGM selection
by proposing a novel fuzzy multi-criteria decision-making
(MCDM) approach that can effectively handle imprecise and
subjective assessments of the models. The primary research
questions are: 1) How can we systematically evaluate and
rank SRGMs considering multiple criteria while accounting
for the inherent uncertainty and vagueness in the decision-
making process? 2) Can advanced fuzzy set theory and
entropy measures provide more accurate and nuanced mod-
eling of ambiguity compared to existing techniques?

The key research motivations are:
1. To develop a systematic SRGM selection framework to

handle imprecise assessments
2. To apply advanced fuzzy set theory to model ambiguity

and complexity
3. To introduce new q-rung orthopair fuzzy measures for

criteria weights and evaluations
4. To implement a structuredMCDM technique (VIKOR) for

compromise ranking
The proposed fuzzy MCDM approach aims to provide more
accurate and flexible SRGM selection compared to existing
techniques by better capturing the subjective and uncertain
nature of criteria evaluations. The novelty of this study lies in
the integration of advanced q-ROF set theorywith theVIKOR
method, facilitating a robust and systematic decision-making
process for SRGM selection while accounting for ambiguity
and imprecision. The existing methods of selecting SRGM
are still heavily dependent on subjective expert opinions,
which often lack consistency and do not properly deal with
the uncertainty involved in assessing trade-offs across multi-
ple criteria. Unplanned selection process contributes to over
or under estimation of the true reliability levels. The intro-
duction of the proposed q-ROF VIKOR methodology with
a structured, data-driven approach that explicitly captures
subjective uncertainty for identifying the best SRGM is done.
This enables the software teams to have better reliability
decisions that are tailored to the product specifics and the
organizational priorities. On the other hand, a company con-
centrating on short-term financial trading software stability
would consider SRGMs against criteria like early prediction
accuracy. A healthcare device manufacturer, on the other
side, would put greater emphasis on long-term reliability
projections because of risk aversion. The fuzzy entropy and
divergence metrics can be used to model these possibly
contradicting priorities in a refined way. Using the fuzzy
set theory capability to treat ambiguity with the VIKOR
compromise ranking algorithm, the method has a systematic
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framework for analyzing interdependencies of all the relevant
criteria. The ability to do so allows for a more accurate assess-
ment of the tradeoffs inherent in each project context and
thus enables the practitioners to select the most appropriate
SRGMs for their projects instead of relying on rudimentary
techniques that cannot capture the full complexity of the
decision process.

The main contributions of this study are:
1. Developing a systematic SRGM selection framework that

can handle imprecise assessments and capture the com-
plexity and ambiguity involved in the decision-making
process.

2. Introducing novel q-rung orthopair fuzzy (q-ROF) entropy
and divergence measures that can model uncertainty and
subjectivity in a more nuanced way compared to previous
intuitionistic or Pythagorean fuzzy methods.

3. Implementing theVIKOR compromise ranking technique,
a structured MCDM method, to identify the best SRGM
based on the fuzzy decision matrix and criteria weights
derived from the proposed q-ROF measures.

With the ever-increasing societal reliance on software sys-
tems, rigorous reliability engineering has become a business-
critical competency. This research offers software teams a
novel and robust decision support tool for one of themost fun-
damental reliability tasks - optimal growth model selection
tailored to their specific domain requirements and priorities.

The following categories apply to the article: The foun-
dations of the VIKOR Methodology, q-ROF entropy and
divergence measure are briefly reviewed in Section II.
The suggested VIKOR methodology and divergence and
entropy metrics of q-ROFs are discussed in Section III. The
suggested measures have been validated using mathemati-
cal calculations. Section IV has completed the application
of the research methodology and its implementation for
the selection of SRGMs. The suggested methodology has
been compared to the current methodology in Section V.
Section VI concludes the article and provides direction for
more analyses.

II. PRELIMINARIES
The definition, operational guidelines, comparison technique,
divergence measure, and q-ROF’s aggregation operator are
explained in this section, which will be employ in the upcom-
ing study, in order to make this work as self-contained as
feasible.

Yager [14]presented a more general form, called q-ROFS,
and proposes q-ROFS’s operations based on the IFS and PFS.
Definition 1: Let X be a universe of discourse. A q-ROFS
over X is given by

=

{
< , θ ( ) , ϑ ( ) >

∣∣∣ ∈X}

where θ : X → [0, 1] signifies the degree of membership
and ϑ : X → [0, 1] denotes the degree of non-membership

of element ∈X respectively with the condition that

0≤θ
q

( ) + ϑ
q

( ) ≤1 (q≥1). The extent of indeterminacy

is π ( ) =

(
1 −

(
θ ( )

)q
−

(
ϑ ( )

)q) 1
q
. For expedi-

ency, Yager [14]referred =

(
θ , ϑ

)
as q-rung orthopair

fuzzy set (q-ROFS). The main difference between PFNs,
IFNs, and q-ROFNs is their corresponding constraint con-
ditions. The set of all q-rung fuzzy set represented by
q − ROFS(X )
Definition 2: [34]If and Ṽ∈ q-ROFS(X), then;

i. c
=

{
,θ ( ) , ϑ ( )

∣∣∣ ∈X};

ii. ⊆Ṽ if and only if ∀ ∈X , ϑ ( ) ≤θ ( )

and (x)≥ Ṽ(x)
iii. = Ṽ if and only if ∀ ∈X , ϑ ( ) = θ ( )

and (x) = Ṽ(x)
iv. ∪Ṽ = {max(ϑ ( ), ϑṼ( )),min(θ ( ),

θṼ( ))| ∈X}; ∀ ∈X;

v. ∩Ṽ = {min(ϑ ( ), ϑṼ( )),max(θ ( ),
θṼ( ))| ∈X}; ∀ ∈X;

Definition 3: Amap Ỳ : q−ROFS(X )×q−ROFS(X ) →

[0, 1] is as identified divergence measure if the underneath
axioms hold
(D1) 0≤Ỳ( , Ṽ)≤1
(D2) Ỳ( , Ṽ) = Ỳ(Ṽ, )
(D3) Ỳ( , Ṽ) = 0 if = Ṽ
(D4) If ⊆Ṽ⊆Ẑ, and Ỳ

(
, Ṽ

)
≤Ỳ

(
Ṽ, Ẑ

)
and Ỳ(Ṽ,

Ẑ)≤ Ỳ( , Ẑ)
To evaluate and rank alternatives based on several criteria, the
multi-criteria decision-making (MCDM) technique VIKOR
is utilized. It helps in selecting the best compromise solution
when there are conflicting objectives. The following steps are
needed to implement the VIKOR method:

• Identification ofDecision Problem: The decision-making
problem and the desired results should be stated in clear
terms. Establish a list of alternatives for evaluation and
decide on the relevant criteria for the problem.

• Criteria Definition: Determine the factors that are criti-
cal for assessing the options. These standards ought to be
quantifiable, distinct, and exclusive. Give each criterion
the proper weights to indicate their relative relevance.

• Normalize the criterion: Normalize the raw values to
a common scale (typically 0 to 1). There are different
normalization formulas that can be used.

• Decision Matrix Construction: Calculate the perfor-
mance measure of each alternative under each criterion.
Organize this into a matrix with alternatives as rows and
criteria as columns.

• Determine the criteria’s weights: Based on the rela-
tive importance of each criterion, determine its weights.
Numerous techniques, such as the Analytic Hierarchy
Process (AHP) and the Simple Additive Weighting
(SAW) method, can be used to accomplish this.

• Determine the best and worst values. Identify the best
(maximum) and worst (minimum) performance scores
among the alternatives for each criterion.
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• Determine the S- and R-values: Use formulas to cal-
culate S (utility measure) and R (regret measure) for
each alternative. These depend on the normalized scores,
criteria weights, and best/worst values.

• Calculate the VIKOR index and order the options: Com-
pute the VIKOR index (Q) for each alternative from S,
R and v (weight for strategy of maximum group utility).

• Final Ranking: Using the rankings, choose the compro-
mise that best solves the decision problem and achieves
the intended goals

III. PROPOSED ENTROPY AND DIVERGENCE MEASURES
FOR q-ROFS
In this section, a thorough explanation of the suggested mea-
sure has been presented, which is a crucial part of our study.
Here, we want to clarify the significance and potential impact
of our new method as we delve into its complexities in order
to address the numerous difficulties at hand. Our suggested
measure promises to alter current paradigms and open the
door for more efficient multi-criteria decision-making pro-
cesses, representing a step forward in the search for novel
solutions.

A. PROPOSED ENTROPY AND DIVERGENCE MEASURES
Initially, we must consider the obvious proposition of entropy
and divergence for the q-ROFS. Throughout this article,
q− ROFS(X ) will represent collection of q-ROFSs.
Proposition 1: Let and Ṽ be two q-ROFS(X); ={
,θ ( ) , ϑ ( )

∣∣∣ ∈X} and ˜V ={ ,θṼ ( ) ,

ϑṼ ( ) | ∈X} for E : q−ROFS(X ) → [0, 1], has to possess
the following qualities in order to be a crisp function:
(E1) Confindness:0≤θ

q
( ) , ϑ

q
( ) ≤1

(E2) Asymmetry:E( c) = E( )
(E3) Crispness: if θq

( ) = 0, ϑq
( ) = 1 or θ

q
( ) =

1, ϑq
( ) = 0 then E(P) = 0

(E4) Severable: if θq
( ) = ϑ

q
( ) = 1, than E(P) = 1

(E5) Disparity: E
( )

≤E(Ṽ), if θq
( ) ≤θ

q

Ṽ
( ),

ϑ
q

( ) ≤ϑ
q

Ṽ
( ) or θ

q
( ) ≥θ

q

Ṽ
( ),ϑq

( ) ≥ϑ
q

Ṽ
( )for

all ∈X
Proposition 2: Let assume a non-empty set X and
, Ṽ, Ẑ∈q − ROFS(X ); a function DIV: q − ROFS x q −

ROFS(X ) → [0, 1] satisfies is the divergence measure
between and Ṽ:
(D1) Confindness: 0≤Div ( , Ṽ)≤1
(D2) Severable: Div

(
, Ṽ

)
= 0 ↔ = Ṽ

(D3) Slanting: Div
(

, Ṽ
)

= Div
(
Ṽ,

)
(D4) Disparity: If ⊆Ṽ ⊆Ẑ, then Ỳ

(
, Ṽ

)
≤Ỳ

(
Ṽ, Ẑ

)
and Ỳ(Ṽ, Ẑ)≤Ỳ( , Ẑ)
The weight of the constituent’s i ∈ X must be considered

in a number of situations. For instance, while making deci-
sions, the attributes typically have different significance and
should be given different weights. As a result, we suggest the

following entropy measurements:

EṼROF
( )

=
1
n

n∑
i=1

1 − tan

{∣∣∣θq
( i) − ϑ

q
( i)

∣∣∣ π}
4


(1)

EW ṼROF ( ) =
1
n

n∑
i=1

1 − tan
{|θ

q
( i) − ϑ

q
( i) |π}

4


(2)

Accordingly, we suggest tangent divergence measures for q-
ROFSs as:

DṼROF

(
, Ṽ

)
= 1 −

1
n

n∑
i=1

tanπ

4
−

π

12


∣∣∣θq

( i) − θ
q

Ṽ
( i)

∣∣∣ +∣∣∣ϑq
( i) − ϑ

q
Ṽ

( i)

∣∣∣ +∣∣∣ηq ( i) − η
q
Ṽ

( i)

∣∣∣




(3)

DW ṼROF

(
, Ṽ

)
= 1 −

1
n

n∑
i=1

itan
[π

4

−
π

12


∣∣∣θq

( i) − θ
q

Ṽ
( i)

∣∣∣ +∣∣∣ϑq
( i) − ϑ

q
Ṽ

( i)

∣∣∣ +∣∣∣ηq ( i) − η
q
Ṽ

( i)

∣∣∣




(4)

where η
q
B ( i) =

√
1 − θ

q
( i) − ϑ

q
( i) and η

q
Ṽ

( i) =√
1 − θ

q
Ṽ

( i) − ϑ
q
Ṽ

( i) and =
(

1, 2, 3 . . . . n
)T

and K∈[0, 1], k = 1, 2, . . . ..n,
n∑

k=1
, k = 1 if

=

(
1
n ,

1
n , . . . 1

n

)T
if we take k = 1 then EṼROF

( )
=

EW ṼROF ( ) Similarly, the same can be rechecked that

DṼROF

(
, Ṽ

)
= DW ṼROF

(
, Ṽ

)
.

Theorem 1: Both entropy measure EṼROF
( )

and
EW ṼROF

( )
defined in equation (1) and (2) are the

valid/reliable entropy measure of q-ROFSs :
It is of the utmost importance to demonstrate that the

suggested entropy function satisfies all axioms of the entropy
measures stated above, in order to establish its validity as an
information measure. Proof is as follows:

(E1) Confindness: 0≤EṼROF
( )

, EW ṼROF

( )
≤1

Proof: For EṼROF
( )

: By the definition of q-ROFs,
we have 0 ≤ θ ( ) ≤ 1 and 0 ≤ ϑ ( ) ≤ 1. This
implies that 0 ≤ θ

q
( ) ≤ 1 and 0 ≤ ϑ

q
( ) ≤ 1. We have

0≤| θ
q

( ) − ϑ
q

( ) |≤1

0≤

{∣∣∣θq ( ) − ϑ
q

( )

∣∣∣ π}
4

≤
π

4
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H⇒ 0 ≤1 − tan


{∣∣∣θq ( ) − ϑ

q
( )

∣∣∣ π}
4

 ≤1

H⇒ 0 ≤
1
n

n∑
i=1

1 − tan

{∣∣∣θq ( ) − ϑ
q

( )

∣∣∣ π}
4

 ≤1

H⇒ 0≤EṼROF
( )

≤1. So, we can prove similarly the mea-
sure of EW ṼROF

( )
.

(E2) Asymmetry: E( C ) = E( )
The proofs are simple and readily apparent.
(E3) Crispness: EṼROF

( )
, EW ṼROF

( )
= 0 if is the

crisp set.
Proof: For EṼROF

( )
if θ

q
( ) = 0 , ϑ

q
( ) = 1 or

θ
q

( ) = 1 , ϑ
q

( ) = 0 then | θ
q

( ) − ϑ
q

( ) | = 1

H⇒
1
n

n∑
i=1

1 − tan

{∣∣∣θq ( ) − ϑ
q

( )

∣∣∣ π}
4

 = 0

H⇒ EṼROF
( )

= 0 So, we can prove similarly the measure
of EW ṼROF

( )
.

(E4) Severable: if θ
q

( ) = ϑ
q

( ) = 1, than E(A) = 1

Proof: ForEṼROF
( )

: for all ∈X , if θq
( ) = ϑ

q
( )

or θq
( ) = ϑ

q
( ) then

∣∣∣θq
( ) = ϑ

q
( )

∣∣∣ = 0 .Hence,

tan

{∣∣∣θq
( ) = ϑ

q
( )

∣∣∣ π}
4

= 0

H⇒
1
n

n∑
i=1

1 − tan

{∣∣∣θq ( ) − ϑ
q

( )

∣∣∣ π}
4

 = 1

Therefore, EṼROF
( )

= 1. If EṼROF
( )

= 1, this indicates1 − tan

{∣∣∣θq ( ) − ϑ
q

( )

∣∣∣ π}
4

 = 0

H⇒

∣∣∣θq ( ) − ϑ
q

( )

∣∣∣ = 0

Therefore,θq ( ) = ϑ
q

( ), Hence θ ( ) = ϑ ( ). So,

we can prove similarly the measure of EW ṼROF

( )
.

Theorem 2: Both divergence measureDṼROF

(
, Ṽ

)
and

DW ṼROF

(
, Ṽ

)
defined in equation (3) and (4) are the

valid/reliable entropy measure of q-ROFSs:
Proof: These properties shown in Proposition 2 can

be validated for the divergence measure DṼROF

(
, Ṽ

)
and

DW ṼROF

(
, Ṽ

)
in accordance with the contentions made

above.

B. PROPOSED VIKOR METHODOLOGY
VIKOR is a MCDM technique used to solve the prob-
lem of optimizing a complex system with conflicting and

non-measurable criteria and is most effective when the deci-
sion maker is not able to state his preferences at the initial
stage of the design phase. VIKOR method is used when
one has to select from a set of alternatives in the context of
conflicting criteria, and it offers a maximum of ‘group utility’
for the ‘majority’ and aminimum of ‘individual regret’ for the
‘opponent’. The method also presents the multi-criteria rank-
ing index using the specific measure of ‘distance’ from the
‘ideal’ solution. The VIKORmethod is initiated by construct-
ing the decision matrix, in which the performance ratings
of the alternatives are offered for each criterion. Next, the
method determines the group utility and individual regret for
each of the alternatives. These values are then used to rank the
alternatives based on the VIKOR index which is the weighted
sum of the group utility and the individual regret. The main
strengths of the VIKOR method include the consideration
of conflict between the criteria, efficiency of calculations,
and determination of the compromise solution which is the
closest to the ideal one. The method is most effective when
the decision-makers have different preferences or priorities
and it is required to identify a solution that would be equally
undesirable for all of them. The VIKOR method has been
used in different areas of application, including environmen-
tal management, energy, transportation, and project selection,
among others.

The VIKOR method will help us in decision-making in
respect of selection of appropriate SRGM’s over the dataset
used in this study. The suggested method is shown as a
flowchart in Figure 1. The following steps will be used for
ranking via VIKOR method:

Step 1: Decision matrix has been normalized, list the
SRGM’s (alternatives) evaluated during the study based on
q-ROF’s based on criteria for the selection.

Step 2: Entropy Calculation of each criteria using entropy
equation (1).

Step 3: weights i for each mentioned criterion for each
Ci can be calculated using the following equation.

i =
1 − EṼROF (Ci)∑n
i=1(1 − EṼROF (Ci))

(5)

Step 4: The following equations can be used to calculate the
virtual positive ideal solutions and the virtual negative ideal
solutions for the attribute Ai:

ϔ+

j = maxi
(
ϔij

)
(6)

ϔ−

j = mini(ϔij) (7)

Step 5: Group utility computation of Si and S ′
i can be calcu-

lated using the following equation:

Si =

n∑
j=1

j
d(ϔ+

j , ϔij)

d(ϔ+

j , ϔ−

j )
(8)

S ′
i = max

 j

d
(
ϔ+

j , ϔij

)
d

(
ϔ+

j , ϔ−

j

)
 (9)
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TABLE 1. Description of SRGM’S for comparison.

FIGURE 1. VIKOR approach flow chart.

Step 6: The results of Ṽi will be computed by the following
equation:

Ṽi =
α (Si − min (Si))

(max (Si) − min (Si))
+

(1 − α) (S ′
i − min (S ′

i ))

(maxS ′
i − min (S ′

i ))

(10)

Step 7: Rank the SRGMs based on their composite utility
values, with the SRGM having the highest value ranked first.

In the equation (10), the symbol α is a balance parameter
that can strike a balance between collective utility and per-
sonal regret. Three possibilities exist:
a. If α > 0.5 symbolize that the minimal individual regret

is greater than maximum group utility.
b. If α < 0.5 symbolize that the maximum group utility is

greater than the minimal individual regret.
c. If α = 0.5 symbolize that the maximum group utility and

the minimal individual regret have equal priority.

IV. SELECTION OF SRGM’S BY RANKING USING VIKOR
APPROACH
During the testing and debugging process, SRGM’s based
on NHPP (Non-Homogeneous Poisson Process) are widely
used to anticipate the reliability of software systems. It is

TABLE 2. Decision matrix of alternative & criteria.

TABLE 3. Entropy of each criteria.

TABLE 4. Weighted values of each criteria.

assumed that software faults arise using the Poisson process
that underlies this model, which has a time-dependent failure
intensity function. This study focusses on evaluating, pref-
erence, and SRGM ratings in relation to the testing phase of
SDLC. As a result, a thorough investigation into the operation
and categorization of SRGMs was carried out, concentrating
on distinct categories i.e. NHPP and failure-rate models.
Delivering highly dependable software solutions is a critical
skill for software engineers in today’s cutthroat corporate
environment. Software engineers frequently utilize SRGMs
to estimate reliability. This study’s primary objective is to
frame the SRGMs selection problem as a difficult MCDM
problem.

The Maximum Likelihood Estimation (MLE) approach is
often used in SRGM’s to estimate parameters. Bymaximizing
the likelihood function, which measures the likelihood of get-
ting the observed data given the model and its parameters, the
MLE statistical technique estimates the model’s parameters.
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TABLE 5. Positive & negative ideal solutions.

TABLE 6. Values of the group utility.

TABLE 7. q-computation against different attributes.

TABLE 1 shows the list of four different types of
SRGM’s – these are Goel and Okumoto model (A1), Yamada
Rayleigh (A2), Yamada exponential Model (A3) and V-tub
shaped fault detection rate model (A4) with the aim of opti-
mal selection researchers commonly employ four selection
indices: Mean Square Error (C1), R2(C2), Predictive Ratio
Risk (C3) and Predictive Power (C4). In this study, we have
used the VIKOR’s approach subsequent phases to access the
most appropriate SRGM considering the above-mentioned
criteria.

SRGM’s can be ranked using the VIKOR approach,
a multi-criteria decision-making (MCDM) technique, based
on a variety of criteria or features. Criteria such as prediction
accuracy, computational complexity, model simplicity, and
robustness. The computation based on the VIKOR method
following the procedural steps on the factors stated above,
the best SRGM’s may be determined:

Step 1: Normalized the decision matrix, Table 2 list the
SRGM’s (alternatives) evaluated during the study based on
q-ROF’s based on above mentioned criteria for the selec-
tion. This table presents the decision matrix, which lists the
alternatives (different SRGM’s) being evaluated against the
selected criteria. The alternatives are represented by A1 to
A4, while the criteria are C1 to C4. The entries in the matrix
are in q-rung orthopair fuzzy number (q-ROFN) format,
which captures both the membership and non-membership
degrees to model uncertainty and ambiguity. Each cell con-
tains a pair (x, y) representing the membership degree x
and non-membership degree y for that particular alternative-
criteria combination.

Step 2: The TABLE 3 calculates the entropy values
EQROF(C i) for each criterion Ci using the proposed q-ROF
entropy measure from Equation (2). Higher entropy indicates

more ambiguity or uncertainty in that criterion’s evaluations
across the alternatives. Lower entropy suggests the criterion
evaluations are crisper and more certain. These entropy val-
ues will be used in the next step to determine the relative
importance weights of the criteria.

Step 3: Based on the entropy values computed in TABLE 3
this table derives the criteria weight values i using
equation (5). The weights represent the relative importance of
each criterion in the overall SRGM selection decision. Crite-
ria with lower entropy (more certain evaluations) get higher
weights. These weights will be used in subsequent computa-
tions to determine the rankings of the SRGM alternatives.

Step 4: The TABLE 5 identifies the positive ideal solution
(PIS) and negative ideal solution (NIS) for each criterion
across the alternatives computed using Equation (6) and (7).
The PIS represents the best/maximum criterion value across
all alternatives, acting as an anchor for comparisons. The
NIS represents the worst/minimum criterion value across all
alternatives. These ideal solutions, derived from the decision
matrix, enable calculation of divergences from each alterna-
tive to reference ideal scenarios.

Step 5: The TABLE 6 computes the group utility values Si
and individual regret values S ′

i for each alternative Ai using
the equation (8) and (9) respectively. Si represents the overall
utility or performance score of an alternative considering all
criteria. S ′

i captures the maximum regret or opportunity cost
for that alternative across the worst-case criterion scenario.

These values will be used in the next step to derive the
compromise rankings balancing collective and individual
priorities.

Step 6: The TABLE 7 calculates the final VIKOR index
value Qi for each alternative Ai based on equation (10), using
the group utility Si and individual regret S ′

i from TABLE 6.
The index Qi represents the compromise ranking score, bal-
ancing the group utility and individual regret through the
weight parameter alpha. The alternative with the minimum
Qi value is considered the overall best compromise solution.
Step 7: The TABLE 8 presents the final ranking of the

SRGM alternatives based on sorting the Qi values computed
in TABLE 7 in ascending order. It provides three ranking
perspectives based on Si (group utility), S ′

i (maximum regret),
andQi (compromise score). The top-ranked alternative based
on Qi represents the recommended optimal SRGM selection
per the proposed methodology.

The VIKOR method enables the computation of group
utility, allowing decision-makers to make informed choices
considering multiple criteria or attributes. The ranking results
have been listed in TABLE 8 against the four models.
These four models have been compared against four different
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TABLE 8. Ranking results.

TABLE 9. Comparison between proposed & existing approach.

criteria. The VIKOR method offers a robust and system-
atic approach to decision-making by providing S-values that
facilitate the ranking and selection of alternatives in multi-
criteria scenarios. Decision-making can be enhanced through
a considerate attitude towards different aspects, which are
both positive and negative, enabling decision-makers to be
guided by informed choices that suit conflicting criteria.
Grasping how S-values are captured and their interpretation
using the VIKOR method provides decision-makers with
the tools to solve knotty decision-making challenges. These
values enable the setup of a hierarchy that makes it possible to
select the most suitable plans, and higher S-values encompass
the best alternative. The VIKOR method is judicious as it
considers not only benefits but also demerits of each option
in its decision making while the trade-offs between them are
also considered.

V. COMPARISON OF EXISTING METHODOLOGY WITH
PROPOSED METHODOLOGY
The previous studies have contributed significantly to
our understanding of various phenomena, but they often
encounter limitations when it comes to measuring cer-
tain attributes. According to the previous studies Park et al
[25]suggested the divergence measure using intuitionistic
fuzzy sets. Li et al. [35]and the Arora & Naithani [36]uses
the methodology of Pythagorean fuzzy sets for computation
of the divergence measure. This suggests a consistent pattern
across multiple studies where the techniques’ differences
are challenging to assess using the employed measures. The
TABLE 9 below presents a comparison of divergence mea-
sures between different techniques based on multiple studies.
The findings indicate that while some studies couldn’t quan-
tify the differences, whereas the proposed study suggested a
novel measure that assigns numerical values to the divergence
between these techniques.

While existing fuzzyMCDMmethods offer some improve-
ments over classical crisp techniques, the proposed method-
ology represents a cohesive advance in tackling higher-order
subjective ambiguities inherent in the software reliability
domain. The innovative integration of new q-ROFS measures
with principled weight derivation and aggregation opera-
tors provides a flexible and rational decision framework for

SRGM selection. The key differentiator is the methodol-
ogy’s ability to systematically capture subjective uncertainty
beyond traditional fuzzy set representations. By leveraging
the properties of q-ROF’s, it can model more complex and
nuanced degrees of membership, non-membership, and hes-
itation that often arise in software reliability evaluations.
Furthermore, the proposed approach introduces a novel tech-
nique for determining criteria weights based on the ambiguity
quantified by the q-ROFS entropy measure. This ensures
that more certain criteria are prioritized appropriately during
the decision-making process, enhancing the credibility of the
final rankings.

By tailoring the widely-used VIKORmethod to the SRGM
selection problem and integrating it with the advanced
q-ROF theory, this research delivers a cohesive and structured
multi-criteria decision analysis solution specifically designed
for the software reliability domain. The ability to balance
group utility and individual regret considerations aligns well
with the trade-offs and risk postures inherent in reliability
engineering decisions. The comparative performance against
other fuzzy MCDM techniques remains an area for further
investigation, the proposed methodology’s strong theoretical
foundations and tailored design for the target problem domain
position it as a promising solution for software teams grap-
pling with subjective ambiguity in their reliability growth
modeling efforts. The comparison between the proposed and
the Existing approach are mentioned in TABLE 9. However,
by the computation using the q-ROF Entropy and pro-
posed Divergence Measure the four previously unmeasurable
attributes that are valid and have a significant computation
a better SRGM’s selection have been suggested. Divergence
measures proposed in this article were designed to satisfy
certain properties and axioms relevant to software reliability
modeling. Some existing measures may not fulfill the same
foundations. Furthermore, the new measures enabled direct
comparisons to previous Intuitionistic or Pythagorean fuzzy
techniques applied in this domain existing q-ROF measures
would not facilitate these insightful comparisons.

VI. CONCLUSION
This research introduced a fuzzyMCDM approach for select-
ing the most appropriate SRGM tailored to the specific
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priorities and ambiguity inherent in subjective evaluations.
By integrating q-rung orthopair fuzzy set theory with
the VIKOR compromise ranking technique, the proposed
methodology provides a structured framework for SRGM
selection that can effectively capture nuanced trade-offs
across criteria. The new entropy and divergence measures of
q-ROF are the theoretical contributions that help to expand
the uncertainty modeling compared to the conventional fuzzy
approaches. The entropy measure enables the differentiation
of weights of criteria in terms of their fuzziness, and the
divergence measure enables the comparison of SRGMs in
the fuzzy criteria space. Applying the VIKOR method on
this fuzzy decision information then gave the following com-
promise ranking which is the balance of both the collective
and individual regrets. From a practical standpoint, the pro-
posed methodology enables software organizations to make a
rational decision on one of the most strategic reliability deci-
sions, namely, the choice of an appropriate SRGM. Instead
of relying on ad-hoc processes that can be inconsistent and
biased, this approach helps practitioners with high confidence
to find growth models that are appropriate for their specific
product environments, development methodologies, and risk
appetites. While the proposed techniques show strong poten-
tial, there are several avenues for future expansion and open
questions warranting further investigation:

1. Validating the methodology on larger datasets cover-
ing more SRGM options and evaluation criteria would
increase confidence in its universal applicability across
software domains.

2. Exploring intuitive visualization techniques beyond the
mathematical representations could enhance human com-
prehensibility when interpreting the fuzzy computations.

3. Integrating feedback loops and sensitivity analyses within
the fuzzy VIKOR flow may provide insights on uncer-
tainty propagation and assist in refining subjective
evaluations.

4. Extending the fuzzy decision constructs to concepts like
bipolar or spherical fuzzy sets could expand descriptive
capability for modeling higher-order uncertainty.

5. Developing decision support tools that automate and
streamline the fuzzy VIKOR calculations would facilitate
easier industry adoption of the methodology.

6. Investigating how the q-rung measures influence compu-
tational complexity and algorithm scalability limitations
when dealing with extremely large SRGM sets.

7. Examining real-world case studies comparing the fuzzy
VIKOR SRGM recommendations against conventional
techniques could validate its practical predictive accuracy.

Despite these outstanding questions, the research makes a
valuable contribution towards addressing the ambiguity chal-
lenges in SRGM’s - a crucial consideration as our societal
reliance on robust software systems continues to escalate. The
fuzzy MCDM techniques open new pathways for data-driven
reliability decision-making capable of navigating subjec-
tive trade-offs. Potential applicability extends well beyond

SRGM selection to other software domains grappling with
multi-criteria prioritization under uncertainty. Overall, this
paper delivers an innovative solution to a critical software
engineering challenge leveraging advanced fuzzy sets and
multi-criteria decision analysis. The fuzzy VIKOR approach
represents a significant step forward in modeling ambiguity
for improved SRGM selection. The expansion of this theory
to include the concepts of bipolar complex fuzzy sets [37],
[38], bipolar complex fuzzy soft sets [38], and bipolar com-
plex spherical fuzzy sets [39] is one of our future goal.
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