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ABSTRACT In an era marked by escalating data breaches and the emergence of quantum computing,
ensuring robust data security is paramount. This study introduces an innovative image encryption scheme that
employs billiard quantum chaos in conjunctionwith the Fibonacci sequence to reinforce data integrity against
quantum threats. The proposed approach exploits the unpredictable behavior inherent in quantum particles,
thereby augmenting the level of randomness in image data. For distributed keys, the Fibonacci sequence
operates on the least significant bits, while the sequence generated through billiard quantum chaos affects
the most significant bits of the image. This dual-layered approach adds complexity and resilience against
advanced persistent threats. The uniform distribution of least and most significant bits is contingent on the
key length, and the proposed model ensures adaptability to diverse security requirements. A comprehensive
analysis on the ciphered image substantiates the effectiveness of the methodology in achieving security
objectives. Comparative assessments validate its applicability in real-world scenarios, underscoring its
robustness against quantum attacks. Through the integration of state-of-the-art cryptographic techniques,
this scheme presents a formidable response to the challenges posed by quantum computing, positioning a
solid foundation for secure image encryption in the post-quantum era.

INDEX TERMS Billiard chaos, fibonacci sequence, image encryption, quantum chaos, true randomness.

I. INTRODUCTION
Image encryption schemes hold significant importance in
modern society due to their widespread use of digital
images in various domains. With the proliferation of per-
sonal devices and social media platforms, their impact
can be seen in several key areas such as privacy preser-
vation, healthcare, national security, financial transactions,
forensics, e-commerce, remote sensing, and entertainment.
These schemes strive for several security goals, including
authentication, resistance to cryptanalysis, robustness against
different types of attacks, key sensitivity, avalanche effect,
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and scalability, ensuring the confidentiality and integrity of
digital images.

Chaos theory capitalizes on the inherent unpredictability
and complexity of chaotic systems to effectively address these
security objectives. By enhancing the security of encryption
processes, it provides a robust and reliable method for pro-
tecting digital images from unauthorized access, tampering,
and interception [1]. It utilizes deterministic systems that
exhibit highly sensitive dependence on initial conditions,
even a tiny change in the initial conditions can lead to
extremely different outcomes. Furthermore, these encryption
schemes offer several distinct advantages and have a sig-
nificant impact compared to other conventional encryption
methods, including sensitivity to initial conditions, minimal
computational overhead [2], fast encryption and decryption
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process [3], adaptability to dynamic environments [4], and
potential applicability in emerging technologies such as quan-
tum key distribution [5].
Traditional chaos-based encryptionmethods, though effec-

tive, face several potential threats posed by the advent of
quantum computing. For instance, Shor’s algorithm demon-
strates remarkable efficiency in factorizing large numbers
and solving discrete logarithm problems, directly threatening
classical encryption algorithms, including those potentially
employed in chaos-based cryptosystems [6]. Furthermore,
quantum computers have the potential to significantly reduce
the effective key length required for breaking classical
encryption algorithms [7]. Therefore, even with a shorter
key length, a quantum computer can still feasibly break the
encryption, rendering chaos-based cryptosystems vulnerable.
Conversely, quantum key distribution offers a secure mech-
anism for exchanging cryptographic keys utilizing quantum
properties [8], however, its practical implementation is lim-
ited by the requirement for specialized quantum hardware,
which is not yet widely available.

In light of these potential risks, researchers are actively
engaged in the development and adoption of post-quantum
cryptographic techniques with the aim of fortifying defenses
against the formidable computational capabilities of quan-
tum machines. These include the exploration of quantum
chaos and hybrid strategies that combine classical chaos with
quantum-resistant algorithms [9], [10], [11], [12]. Quantum
chaos-based encryption schemes hold considerable assur-
ance, owing the fundamental principles of superposition that
exhibit inherent uncertainty, offering a significantly higher
level of security and resilience against quantum threats com-
pared to conventional chaos-based methodologies. Although
these schemes signify a substantial advancement in secure
communication, they are confronted by various challenges
and limitations, primarily due to their early stage of devel-
opment [13]. The implementation of quantum encryption
schemes necessitates specialized hardware and communica-
tion systems, equipped with sufficient numbers of qubits
with low error rates, which is quite challenging. Additionally,
many quantum-based schemes deal with constraints related
to adaptability and scalability [14], [15], [16]. They must be
seamlessly integrated with classical information processing
systems and exhibit compatibility with real-time applica-
tions operating within the confines of limited computational
resources.

In addressing the challenges associated with quantum
chaos-based encryption, this study introduces a novel model
based on billiard quantum chaos. In the proposed frame-
work, particles are characterized by evolving wave functions
governed by the Schrödinger equation [17], rather than fol-
lowing predictable trajectories, as classical physics dictates
for billiard systems using Newton’s laws [18]. Quantum
mechanics introduces inherent probabilistic behavior when
applied to billiards, resulting in complex interactions of inter-
ference patterns and superposition states, yielding intricate
quantum dynamics. Leveraging the inherent complexity and

unpredictability of quantum chaos, this approach designs
highly secure encryption schemes. The proposed billiard
quantum chaos-based scheme offers distinct advantages over
general quantum chaos methods, including deterministic
behavior, confined phase space, lower sensitivity to pertur-
bations, predictability and control, efficient computational
simulations, and potential for hardware implementation. The
key features of billiard quantum chaos in image encryption
scheme can be characterized as follows:

• Exhibit sensitive dependence on initial conditions, small
changes in initial conditions can lead to vastly different
outcomes over time, a hallmark of chaotic systems.

• Exhibit statistical properties in terms of energy levels,
eigenstates, and other observables, rather than discrete
and quantized values.

• Chaos behavior in billiard systems generates pseudoran-
dom patterns that are inherently unpredictable.

• Eigenfunctions (wave functions) associated with chaotic
billiard systems are highly complex, with intricate pat-
terns and irregularities.

Overall, while both general quantum chaos and billiard
quantum chaos offer opportunities for enhancing information
security, the controlled and deterministic nature of billiard
systems provides distinct advantages in terms of predictabil-
ity, stability, and potential for tailored encryption schemes.
These benefits make billiard quantum chaos a promising
avenue for the development of secure communication proto-
cols and encryption algorithms.

The remaining sections of the paper are organized as
follows: Section II provides preliminaries with methodol-
ogy, Section III presents the experimentation with extensive
security analyses, Section IV analyzes the security measures
in comparison with existing methodologies, and Section V
comprises concluding remarks.

II. PRELIMINARIES AND METHODOLOGY
In this section, we provide a concise overview of quantum
billiard chaos (including experimental analysis), Fibonacci
sequence, and outline the methodology. Quantum billiard
chaos is characterized by the time-independent Schrödinger
equation, which governs the quantum dynamics of particles,
and the Fibonacci sequence, on the other hand, has the capac-
ity to generate a finite sequence of pseudorandom numbers.

A. QUANTUM BILLIARD CHAOS
Quantum billiard chaos in image encryption involves lever-
aging the complex and unpredictable behavior exhibited
by quantum particles moving within a confined, boundary-
rich region, much like a billiard ball bouncing around a
table, to enhance the security of image encryption. This
phenomenon arises due to the wave-like nature of quantum
particles and their interactions with the boundaries [19],
and can be described by the time-independent Schrödinger
equation which governs the quantum dynamics of particles
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within the billiard-like region as follows:

HΨ (x, y) = EΨ (x, y) , (1)

where H is the Hamiltonian operator, representing the total
energy of the quantum system, Ψ (x, y) is the wave func-
tion, a complex-valued function that encodes the probability
amplitude of finding the bit at position (x, y), and E is the
energy eigenvalue, which quantizes the energy levels of the
system.

In the context of image encryption, this system is used to
generate a quantum key or a random sequence governed by
the laws of physics, which is employed in the encryption and
decryption processes. The boundary conditions are precari-
ous in this scenario, as they precept how the wave functions
interact with the boundaries. The wave function must satisfy
appropriate boundary conditions that align with the image
encryption process.

The dynamics of quantum billiard chaos become complex
due to the interference of wave functions reflecting off the
boundaries. This leads to the formation of quantum eigen-
states, representing the allowed energy levels of the system.
These eigenstates Ψn (x, y) are solutions to the Schrödinger
equationwith the appropriate boundary conditions as follows:

HΨn (x, y) = EnΨn (x, y) , (2)

where eigenvalues En represent the quantized energy levels
of the system, and the corresponding eigenstates Ψn (x, y)
describe the probability distribution of finding the bit at dif-
ferent positions within the field.

1) BILLIARD TRAJECTORIES
First we define a parameterized curve that represents the
trajectory of a billiard ball based on a Limacon of Pascal
curve [20]. The simulated billiard trajectories, in Fig. 1, using
numerical integration, taking into account reflections at the
boundary, defined by curve equation based on parameters a
and ε is: (

x2 + y2 − aεx
)2

− a2
(
x2 + y2

)
= 0, (3)

where a and ε are parameters that influence the shape and
behavior of the curve, respectively. By varying these parame-
ters, we can obtain different curves that satisfy this equation.
These curves may have different geometrical properties, such
as size, symmetry, and complexity, depending on the values
chosen for a and ε.

2) INITIALIZATION DATA
The motion of a billiard ball within a specified region, taking
into account reflections at the boundary, based on the Pascal
curve equation. The generated data points for a Poincaré
section by simulating multiple billiard trajectories in parallel
by introducing initial conditions, defined by most significant
bits (MSBs) of key, within the defined region. The simulation
results of Poincaré sections are generated for different values,
and presented here for ε = 0 and ε = 0.5 in Fig. 2.

FIGURE 1. Simulation of billiard trajectories.

FIGURE 2. Parallel simulation of multiple billiard trajectories on data
points within the defined region for a Poincaré.

3) QUANTUM BILLIARDS
We simulated the functions for Bunimovich stadium and
Robnik billiard, including eigenvalues and eigenfunctions,
and presented the results for Bunimovich stadium billiard in
Fig. 3. The probability density plots associated with eigenval-
ues and eigenfunctions are evaluated at random data points
within a specified region.

4) POTENTIAL AND HAMILTONIAN
To compute the Hamiltonian, which is the total energy of
the system, we define energy function based on the variables
x and y. It combines the kinetic and potential energies to
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FIGURE 3. Probability density plots on random data points within a
specified region of Bunimovich stadium billiard.

represent the total energy of the system as follows:

H
(
x, y, px , py

)
=

1
2

(
p2x + p2y + V (x, y)

)
, (4)

where px and py are the momentum components in the x
and y directions, p2x and p2y represents the kinetic energy,
and V (x, y) is the potential energy, such that V (x, y) =

1
2

(
x2 + y2 + 2x2y−

2
3y

3
)
.

Jacobi matrix is employed to relate the partial derivatives
of the Hamiltonian with respect to the position and momen-
tum variables. It is used in conjunction with the Hamiltonian
derivatives to formulate the equations of motion to quantify
the system’s behavior near a specific point in phase space.
In the experiment, we created a 4 × 4 matrix with specific
entries (1, 1, −1, −1) at positions (1, 3), (2, 4), (3, 1), and
(4, 2) respectively. These specific entries are used in the
sparse array to create the matrix. The equations of motion
are derived from the Hamiltonian function, which governs the
dynamics of the system. The trajectory in Fig. 4 showcases
how the system’s state evolves over time under the influence
of the Hamiltonian dynamics.

5) POINCARÉ SECTION
– The Poincaré function efficiently identifies points that inter-
sect with the specified surface in phase space, allowing for

FIGURE 4. System’s behavior under the influence of Hamiltonian
dynamics.

detailed analysis of the system’s behavior at those specific
moments [21]. We implemented the Poincaré section with
the specified energy level and input parameters, x0, y0, px0 ,
and py0 , as initial conditions in the phase space. We specify
the event locator with condition px [t] > 0, which means
it triggers when the momentum component (px) is greater
than zero, to locate events during the integration process and
record the values of y, py, and t at the events. Figure 5 presents
the plots of Poincaré sections for a specified energy level and
the number of trajectories.

6) LYAPUNOV SPECTRUM
Lyapunov exponent describes how a dynamic system behaves
under small perturbations. The spectrum provides valuable
information about the system’s sensitivity to initial con-
ditions, such as exponential divergence or convergence of
nearby trajectories in a dynamic system, which is an essen-
tial feature of chaos theory [22]. We assessed the Lyapunov
spectrums by defining the maximum time for the simulation
with initial conditions, x0, y0, px0 , and py0 , in the phase space.

The plot in Fig. 6 (a) shows the Lyapunov exponents over
time on a linear scale, indicating the rates of separation of
infinitesimally close trajectories in the system. Positive expo-
nents signify chaotic behavior, zero indicates neutral stability
(such as in a periodic orbit), and negative values suggest
convergence to a stable point or cycle. The exponents λ1, λ2,
λ3, and λ4 are plotted as functions of time or normalization
steps, with each line representing the value of a Lyapunov
exponent over time. Moreover, the plot in Fig. 6 (b) shows the
first two Lyapunov exponents on a log-log scale, providing a
clearer view of the exponents’ behavior over many orders of
magnitude. The log-log scaling on both axes highlights the
exponential nature of the growth or decay of the exponents.
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FIGURE 5. Poincaré section plots for a specified energy level and number of trajectories.

FIGURE 6. Lyapunov spectrum plots: (a) Lyapunov exponents on a linear scale, (b) Lyapunov exponents on a log-log scale.
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FIGURE 7. Fibonacci sequence of pseudorandom numbers.

B. FIBONACCI SEQUENCE
The Fibonacci sequence is a series of numbers in which each
number (after the first two) is the sum of the two preceding
ones to generate a pseudorandom sequence [23]. It begins
with 0 and 1, and continues as follows: 0, 1, 1, 2, 3, 5, 8,
13, 21, and so forth. We can initiate the sequence by opting
F0 and F1, and the subsequent numbers can be determined
using Fn−1 + Fn−2 as follows:

Fn =


0, if n = 0
1, if n = 1
Fn−1 + Fn−2, if n > 1

(5)

where n represents the position in the sequence. Depending
on the specific encryption algorithm, the Fibonacci sequence,
depicted in Fig. 7, may be truncated or transformed to gen-
erate a finite sequence of pseudorandom numbers. In the
context of image encryption schemes, this phenomenon may
be used to assign a pseudorandom number from the truncated
Fibonacci sequence to each pixel in the image [24]. This
number will determine the encryption operation applied to
that pixel.

C. ALGORITHM
Billiard quantum chaos arises when the classical counter-
part of the system exhibits chaotic behavior. Through the
strategic integration of the billiard quantum chaos with the
Fibonacci sequence, we have formulated an innovative image
encryption scheme that harnesses the wave-like nature and
the interference patterns of quantum particles to provide
an unpredictable trajectory to produce complex system for
image encryption scheme.

Encrypted images are typically recovered by manipulating
the least significant bits (LSBs), as altering the LSBs has
a minimal visual impact on the image. During encryption,
in our algorithm, LSBs of the pixel values in the image are
modified with the Fibonacci sequence at given instances.
Using the same algorithm and key, the recipient applies the
reverse operation to the encrypted image, which involves
manipulating the LSBs back to their original state, to recover
the original image. While LSB modification can provide
a basic level of security for image encryption, we modify
most significant bits (MSBs) of the image with the sequence
generated by billiard quantum chaos. These modifications are
made in such away that they are statistically indistinguishable

FIGURE 8. Proposed image encryption scheme.

from random noise, and the true recipient can recover the
original data efficiently.

The proposed algorithm operates based on the assumption
of symmetric keys and associated quantum chaos values. The
operational principle of the proposed algorithm, as shown in
Fig. 8, is as follows:

1. Equidistribution of LSBs and MSBs: Regarding key
length, we deliberated equidistribution to organize the
most and least significant bits. This entails using 8 bits
for each in the case of a 16-bit key, and 16 bits for each
in the case of a 32-bit key.

2. Initialization: For experimentation, a key with the
binary representation 1000110000101100 is set to
initiate both Fibonacci and billiard quantum chaos
sequences.

• In relation to the decimal value of the least signif-
icant bits (LSBs), i.e. 44, we start the Fibonacci
sequence at n44.

• Concerning the decimal value of the most sig-
nificant bits (MSBs), we set the initial condition
at m140 to initiate the billiard quantum chaos
sequence.

3. Image fragmentation: For an 8-bit input image M ,
which contains RGB content, we fragmented the LSBs
and MSBs.

4. LSBs transformation: To transform the LSBs of
the image values, we assign a pseudorandom num-
ber (obtained by taking mod256 from the truncated
Fibonacci sequence) to each pixel in the image. This
is accomplished by performing a bit-XOR operation
between the pixel value and the LSBs of the corre-
sponding pseudorandom number from the Fibonacci
sequence, therebymodifying the pixel value. In order to
decrypt the image, the recipient must possess the same
initial values used to generate the Fibonacci sequence.
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TABLE 1. Encryption and decryption analyses for the ASCII characters.

5. MSBs transformation: To modify the MSBs of the
image values, we assign a true random number (again
obtained by taking mod256) and conduct a bit-XOR
operation between the MSBs of the image and the
MSBs of the sequence generated by the billiard quan-
tum chaos.

6. All processed chunks are then reassembled to construct
the cipher image.

This algorithm introduces an innovative approach to secure
image encryption, leveraging the interplay of billiard quan-
tum chaos and the Fibonacci sequence with digital images to
ensure robust data protection.

III. EXPERIMENT AND SECURITY ANALYSES
We conducted comprehensive experiments on text and a
variety of 256 × 256 images sourced from the SIPI image
database [25], employing the proposed algorithm. These
experiments intensely showcase the algorithm’s adaptability
to diverse types of content.

• For text analysis, we modify the algorithm pertaining the
LSBs and MSBs of ASCII characters. The outcomes of these
modifications are summarized in Table 1. By varying a single
bit in the key, whether in the LSBs or MSBs, we examined
the impact of randomness generated in the ASCII sequence
during decryption.

• For image analysis, we showcased the encryption prac-
tices applied to multiple contents of the Pepper and Airplane
images, presented in Fig. 9. By varying a single bit in the
key, either in the LSBs or MSBs, we assessed the randomness
generated in both images upon decryption, as presented in
Table 2.

To ensure the effectiveness and security of the pro-
posed algorithm, we conducted comprehensive assessments
involving factual examination, inconsistencies detection, and
sensitivity analysis on the encrypted images using our devel-
oped approach. These evaluations encompassed a wide range
of analytical techniques such as histogram, entropy, correla-
tion, evaluation of pixel attributes, and differential analyses.

TABLE 2. Decryption analyses for images with original and 1-bit change
in key.

These trials collectively provide a robust evaluation system
to measure the algorithm’s performance and its ability to
withstand real-world conditions.

A. HISTOGRAM ANALYSES
Histogram analysis provides valuable insights of statistical
properties present in the image. It scrutinizes how pixel inten-
sity values are dispersed within an encrypted image. This
analysis allows us to detect irregularities, assess uniformity,
and uncover potential weaknesses in the encryption proce-
dure [26]. In Figs. 10–11, the histograms of the encrypted
Pepper and Airplane images, generated using our proposed
technique, do not reveal any noticeable patterns or disclose
information about the original content. This serves as vali-
dation for the robustness of our encryption scheme against
statistical attacks.

B. ENTROPY ANALYSES
Entropy analysis quantifies the level of randomness or uncer-
tainty in the pixel distribution of an encrypted image. It can
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FIGURE 9. Layer-wise encryption of pepper and airplane images: (a) Plain
Pepper image, (b) Extracted layers (c) Encrypted layers, (d) Encrypted
Pepper image; (e) Plain Airplane image, (f) Extracted layers (g) Encrypted
layers, (h) Encrypted Airplane image.

be estimated using the following expression:

H = −

∑
p(x) log2 (p(x)), (6)

where p(x) signifies the probability of a pixel in the image
having the value x. A higher entropy value indicates a more
random distribution of pixel values, implying greater secu-
rity [27]. The assessment of entropy for various encrypted
images utilizing our proposed methodology is presesented in
Table 3.

C. CORRELATION ANALYSES
In image encryption schemes, correlation analysis entails
evaluating the statistical relationships between pixel values
within an encrypted image. It provides a means to understand
how alterations in one pixel correspond to changes in adja-
cent pixels [28]. The correlation coefficient (ρ) between two
variables X and Y can be expressed as:

ρ =
Cov (X ,Y )

σXσY
, (7)

where Cov (X ,Y ) is the covariance between variables X and
Y , and σX , σY are the standard deviations of X and Y respec-
tively. We performed this analysis to assess the degree of
association between adjacent pixels, Fig. 12.

The lower correlation values in Table 4 indicate that neigh-
boring pixels exhibit less interdependence. This is a favorable
trait for encryption schemes as it indicates that patterns in the

TABLE 3. Layer-wise entropies and differential analyses for source and
corresponding encrypted images.

original image are being disrupted. This analysis reinforces
the effectiveness of the proposed encryption scheme in dis-
persing information across the image, thereby strengthening
its resilience against attacks.

D. DIFFERENTIAL ATTACK ANALYSIS
Differential attack analysis estimates the encryption scheme’s
susceptibility to minor alterations in the plaintext. This
involves assessing how changing one or more bits in the
input affects the resulting ciphertext [29]. We employed this
analysis on various cipher images, specifically focusing on
1-bit alterations. The evaluation outcomes, detailed in
Table 3, were assessed using two standard metrics:

1) NUMBER OF PIXEL CHANGES RATE (NPCR)
This metric measures the percentage of pixel changes
in the ciphertext when a single pixel in the plaintext
is modified. It indicates the encryption algorithm’s sen-
sitivity to small input changes and can be evaluated as
follows:

NPCR =
N −M
N

× 100%, (8)

where N represents the total number of pixels in the
image and M is the number of pixels that remain unal-
tered in the ciphertext when one pixel in the plaintext is
changed.

2) UNIFIED AVERAGE CHANGING INTENSITY (UACI)
This estimates the average intensity of pixel changes when
one bit is altered in the plaintext. It provides a measure of how
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FIGURE 10. Layer-wise histograms of pepper image: (a-d) Plain image –
histograms at grayscale and corresponding RGB content, (e-h) Encrypted
image – histograms at grayscale and corresponding RGB content.

much the image changes in response to minor adjustments in
the input and can be evaluated as follows:

UACI =
1
N

∑N

i=1

∣∣Ci − C ′
i

∣∣
L

× 100%, (9)

where Ci and C ′
i denote the intensity values of the ith pixels

in the original and modified ciphertexts, and L represents the
maximum possible pixel intensity value (e.g., 255 for an 8-bit
image). Higher NPCR values, as shown in Table 3, indicate
greater resilience against differential attacks, signifying that
even slight changes in the plaintext lead to substantial alter-
ations in the ciphertext.

E. PIXELS’ SIMILARITY ANALYSES
Pixel similarity analysis quantifies the resemblance of cor-
related pixel values across different image regions [30].
We assess this similarity using three widely recognized mea-
sures, outlined in Table 5, as follows:

FIGURE 11. Layer-wise histograms of airplane image: (a-d) Plain image –
histograms at grayscale and corresponding RGB content, (e-h) Encrypted
image – histograms at grayscale and corresponding RGB content.

1) STRUCTURAL SIMILARITY INDEX MATRIX (SSIM)
This metric evaluates the similarity between two images,
considering luminance, contrast, and structure. It can be eval-
uated as:

SSIM(x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ2

y + C1

) (
σ 2
x + σ 2

y + C2

) , (10)

where C1 and C2 are constants for stability, µx and µy are
means of compared images x and y, σx and σy are standard
deviations, and σxy is the covariance of x and y.

2) NORMALIZED CROSS-CORRELATION (NCC)
This measure quantifies the similarity between two images
by assessing the cross-correlation between their pixel values.
It can be evaluated as:

NCC(x, y) =

∑
(xi − µx)

(
yi − µy

)√∑
(xi − µx)

2 ∑ (
yi − µy

)2 , (11)
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FIGURE 12. Correlation analyses of adjacent pixels for source and
encrypted images in horizontal, vertical, and diagonal directions.
(a-f) analysis of source and corresponding encrypted Pepper image;
(g-l) analysis of source and corresponding encrypted airplane image.

where xi and yi are pixel values at corresponding positions,
and µx and µy represent means of images x and y.

3) STRUCTURAL CONTENT
This metric evaluates the structural content of an image by
comparing gradients. It can be quantified using the Gradient

TABLE 4. Layer-wise correlation coefficients analyses for source and
corresponding encrypted images.

Similarity Index (GSI) as:

GSI(x, y) =
2σxσy + C3

σ 2
x σ 2

y + C3
, (12)

where σx and σy are standard deviations of gradients of
images x and y, and C3 is a constant.

Table 5 provides an overview of the results from the
similarity analyses conducted on the source and encrypted
images. These findings reveal notable distinctions in struc-
tural attributes between the original and encrypted content.
Furthermore, Fig. 13 visually underscores the correlations
and resemblances observed between the source and encrypted
versions of the Pepper and Airplane images. Notably, the
anticipated values for NCC and GSI intimately approach
zero, indicating a significant degree of dissimilarity among
the various content variations.

F. PIXELS’ DIFFERENCE ANALYSES
Pixel disparity analysis investigates the difference between
corresponding pixels in two images, providing insights
into the performance of various image processing tech-
niques, including encryption methods [31]. We computed
the disparity among pixels in source and encrypted images
using three common measures, outlined in Table 5, as
follows:

1) MEAN ABSOLUTE ERROR (MAE)
This metric determines the average absolute difference
between corresponding pixels in two images, represent-
ing the average magnitude of errors. It can be computed
as:

MAE(x, y) =
1
N

∑N

i=1
|xi − yi| , (13)

where N denotes the total number of pixels, and xi and yi are
pixel values at corresponding positions.
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FIGURE 13. Surface plots for the normalized cross-correlation of image
contents. Pepper image – (a-b) Plain and encrypted, (c-d) Corresponding
surface plots; Airplane image – (e-f) Plain and encrypted, (g-h)
Corresponding surface plots.

2) MEAN SQUARED ERROR (MSE)
This measure determines the average of the squared differ-
ences between corresponding pixels, giving more emphasis
to larger discrepancies compared toMAE. It can be computed
as:

MSE(x, y) =
1
N

∑N

i=1
(xi − yi)2 . (14)

3) PEAK SIGNAL-TO-NOISE RATIO (PSNR)
This metric assesses the ratio between the maximum possible
signal value (pixel values) and the introduced noise (error
from the encryption process). It can be evaluated as:

PSNR(x, y) = 10 · log10

(
MAX2

MSE(x, y)

)
, (15)

where MAX represents the maximum possible pixel value
(e.g., 255 for 8-bit images) and MSE(x, y) is the mean
squared error between the original image x and the encrypted
image y.

The data in Table 5 conclusively affirms that MAE high-
lights a substantial variance in pixel values between the
source and encrypted images. Moreover, MSE exhibits sig-
nificant variations alongside PSNR. Notably, when MSE is

TABLE 5. Pixels’ similarity and difference analyses between source and
corresponding encrypted images.

TABLE 6. Pixels’ fidelity analyses between source and corresponding
encrypted images.

higher and PSNR is lower, or vice versa, it indicates an
enrichment in the encryption quality.

G. PIXELS’ FIDELITY ANALYSES
Pixels’ fidelity analyses determine the quality of encryp-
tion in terms of maintaining image fidelity. This ensures
the encrypted images retain their integrity and are resistant
to unauthorized access and tampering [32]. We computed
the fidelity among pixels in source and encrypted images
using three common measures, outlined in Table 6, as
follows:

1) NORMALIZED ABSOLUTE ERROR (NAE)
It quantifies the average relative difference between cor-
responding pixels in the original and encrypted images.
It provides a normalized view of the errors, making it useful
for comparing images of different scales or resolutions. It can
be evaluated as:

NAE =
1
N

∑
|xi − yi|

(L − 1)
, (16)

where N is the total number of pixels in the image, x and y
are pixel values at corresponding positions in the original and
encrypted images, and L is the range of possible pixel values
(e.g., 256 for an 8-bit image).

2) AVERAGE DIFFERENCE (AD)
This metric computes the average absolute difference
between corresponding pixel values in the plaintext and
ciphertext images. It provides a measure of the overall dis-
crepancy between the images. It can be computed as:

AD =
1
N

∑
|xi − yi| . (17)
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3) MAXIMUM DIFFERENCE (MD)
This metric quantifies the maximum absolute difference
between corresponding pixel values in the plaintext and
ciphertext images. It highlights the most significant variation
between the images, as can be computed as follows:

MD = max |xi − yi| . (18)

These measures assess the discrepancies introduced during
encryption. A lower NAE and AD, in Table 6, indicates that
the encryption process introduces minimal relative differ-
ences and maintains close alignment of pixel values between
the original and encrypted images, resulting in a minimal
average difference and preserving the image quality effec-
tively.

H. NOISE AND OCCLUSION ATTACK ANALYSES
Noise and occlusion attack analyses assess the algorithm’s
resilience to disruptions and partial image obstructions. These
attacks replicate real-world situations where images can face
different types of interference. In a noise attack, random
disruptions or pixel value alterations are introduced to the
image [33], while an occlusion attack involves concealing
portions of the image, imitating situations where chunks of
the image are concealed or degraded [34]. These analyses can
be modeled as follows:

Ins = Iorg + G, (19)

Ioc = Iorg ⊙ B, (20)

where Iorg, Ins, and Ioc are the original, noisy, and occluded
images, G represents the added noise (specifically Gaussian
noise), andB is a binarymask indicating the occluded regions.

The objective of the noise attack analysis is to assess the
encryption scheme’s ability to withstand information degra-
dation or distortion in the presence of noise. To validate the
algorithm’s robustness, we computed MSE and PSNR met-
rics by introducing Gaussian noise with normalized power
levels of 0.000001, 0.000003, 0.000005, and 0.000007. The
corresponding results are presented in Table 7.

The occlusion attack analysis aims to evaluate the encryp-
tion scheme’s capability to recover the original image from
an occluded version. We conducted this analysis on the
encrypted image occluded by fractions of 1/4, 1/2, and 3/5,
and the outcomes are portrayed in Fig. 14 and summarized in
Table 8.
In both scenarios, an effective image encryption scheme

should ideally possess the capacity to retrieve the original
image even in the presence of noise or occlusion. The ability
to withstand these attacks is a critical factor in appraising
the efficacy of an encryption scheme for image data. The
observed slight variations in the noise ratio and error esti-
mation when varying the noise strength from 0.000001 to
0.000007 emphasize the robust efficiency of the proposed
framework against noise attacks. Furthermore, the results
regarding MSE and PSNR, as shown in Table 8 and Fig. 14,
indicate that the proposed algorithm can withstand up to a
60% occlusion attack.

TABLE 7. Noise attack analysis.

FIGURE 14. Occlusion analysis for the encrypted Pepper and Airplane
images. (a-d) Occluded by fraction of 1/4 (in the corners) and
corresponding recovered images; (e-h) Occluded by fraction of 1/2 (in the
diagonals) and corresponding recovered images; (i-l) Occluded by
fraction of 3/5 (in the diagonals, and mid of top-left/right and
end-left/right corners) and corresponding recovered image.

IV. DISCUSSION
The proposed algorithm exhibits superior performance com-
pared to state-of-the-art literature across various key metrics.
Although practical quantum computing hardware is not pub-
licly available yet, we simulated the quantum algorithm on
IBM Quantum Composer with the QISKit library for gener-
ating quantum states and simulated the billiard trajectory on
Jupyter Notebook with Wolfram Engine 12.1. Here, we pro-
vide a detailed discussion on comparative analyses of the
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TABLE 8. Occlusion analysis.

proposed algorithm with existing methodologies, including
statistical, differential, luminance, structural, contrast, cross-
correlation, and fidelity assessments as follows:

A. ENTROPY AND DIFFERENTIAL ATTACK ASSESSMENT
The proposed algorithm demonstrates higher entropy values,
signifying increased unpredictability, and lower sensitivity
to input alterations, indicating its effectiveness in protecting
against differential attacks. Table 9 validates the high ran-
domness and low sensitivity, pertaining the small changes in
the plaintext, observed in encrypted images with the proposed
method in comparison to existing methodologies [35], [36],
[37], [38], as the computed entropy closely aligns with the
ideal entropy for 8-bit digital content. This correspondence
ensures that the encrypted images exhibit resilience against
statistical and differential attacks, as well as potential infor-
mation leakage.

B. CORRELATION COEFFICIENTS ASSESSMENT
The proposed algorithm exhibits lower correlation coeffi-
cients, implying reduced predictability, which makes it more
resistant to attacks relying on linear dependencies. Table 10
validates the effectiveness of the proposed encryption scheme
in dispersing information across the image, showcasing its
improved resilience in comparison with existing methodolo-
gies [36], [39] to attacks targeting linear relationships.

C. PIXELS’ SIMILARITY ASSESSMENT
The proposed algorithm demonstrates lower pixel similarity
in different image regions, indicating reduced predictability
and greater resistance to attacks exploiting correlated pixel
values. Table 11 validates the notable distinctions between
plain and encrypted images for the proposed method in com-
parison with existing methodologies [40], [41], considering
luminance, contrast, cross-correlation, and structural content.
The anticipated values for normalized cross-correlation and
gradient similarity indexwith the proposedmethod intimately
approach zero, indicating a significant degree of dissimilarity
among the various content variations.

TABLE 9. Comparative analysis of proposed scheme with existing
methodologies for average entropies and differential attack analysis.

TABLE 10. Comparative analysis of proposed scheme with existing
methodologies for correlation coefficients.

TABLE 11. Comparative analysis of proposed scheme with existing
methodologies for Pixels’ similarity analysis.

D. PIXELS’ DIFFERENCE ASSESSMENT
The proposed algorithm exhibits lower mean absolute error
and better tradeoffs of mean squared error and peak signal-
to-noise ratio in comparison to existing methodologies [42],
[43], signifying fewer relative differences between corre-
sponding pixels. The average of the squared differences
between corresponding pixels are sufficiently high to the ratio
between the maximum possible signal values and the intro-
duced noise in the encryption process, in Table 12, indicates
effective preservation of image quality during encryption.
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TABLE 12. Comparative analysis of proposed scheme with existing
methodologies for Pixels’ difference analysis.

TABLE 13. Comparative analysis of proposed scheme with existing
methodologies for Pixels’ fidelity analysis.

E. PIXELS’ FIDELITY ASSESSMENT
The proposed algorithm maintains close alignment of pixel
values between the original and encrypted images, resulting
in a minimal average difference and preserving the image
quality effectively. In comparison to existing methodologies,
[41], [44], lower normalized absolute errors and average
differences between corresponding pixel values, in Table 13,
with the proposed method ensures the encrypted images
retain their integrity and resistivity to unauthorized access and
tampering.

In summary, the proposed algorithm outperforms existing
methods in a comprehensive range of analyses, demonstrating
its superior resilience and effectiveness in preserving digital
images against a diverse set of attacks and instabilities. This
makes it a promising advancement in the collateral era.

V. CONCLUSION
In forthcoming frameworks, as adversaries increasingly
employ advanced AI technologies, it is anticipated that many
image encryption schemes may become vulnerable to a range
of threats. The presented image encryption scheme utilizes
billiard quantum chaos on the secure shared key, incorporat-
ing true randomness in the data. This arrangement ensures
that an adversary cannot circumvent the protocol, even if one
of the secrets from the key pairs is compromised. Notably,
the experiment is conducted without relying on assumptions

of computational hardness. The results of the experiment
confirm that quantum physics enables enhanced security
tradeoffs for specific computing tasks within classical com-
munications. Both performance and security assessments
validate the proposed method’s superior resilience compared
to the state-of-the-art approaches when subjected to hostile
attacks. It is worth noting that the outcomes generated by
the proposed methodology align well with the existing tech-
nology. This suggests that our work indicates the promising
domain of quantum practices to fortify the security of classi-
cal image encryption schemes.
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