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ABSTRACT Many real-life problems present multiple options necessitating modern researchers to identify
the most suitable choice or decision. In this context, fuzzy sets have proven to be valuable tools for
addressing such problems. Picture fuzzy sets (PFSs), due to their increased flexibility and broader domain
as compared to other extensions of fuzzy sets (FSs) have been extensively used in solving various decision-
making problems. To achieve optimal decisions, various fuzzy graphs and fuzzy hypergraph structures
are employed. Picture fuzzy directed hypergraphs (PFDHGs) offer greater utility in addressing problems
with multiple options or uncertainties. In this study, we introduce novel concepts of PFDHGs, along with
their applications in decision-making theory and hazardous chemicals management. Initially, we present
the foundational concepts of PFDHGs, including essential terminologies such as hyper-edge and height.
Subsequently, we explore various types of PFDHGs, such as simple PFDHGs and support simple PFDHGs.
Additionally, we introduce the concept of (̃α, β̃, γ̃ )-level hyperarcs and elucidate the fundamental sequence
in PFDHGs based on these arcs. The study further examines elementary PFDHGs, partial PFDHGs, and
ordered PFDHGs, investigating the relationships among them. Structural properties of PFDHGs are analyzed
through different types of homomorphisms of PFDHGs. We also define the order and size of PFDHGs.
Finally, we present the applications of PFDHGs in decision-making and managing hazardous chemicals,
emphasizing the innovative contributions and practical implications of our work.

INDEX TERMS Decision making, hazardous chemicals, management, partial PFDHGs, PFDHGs.

I. INTRODUCTION
The concepts of FSs was first introduced by Zadeh [1] in
1965. FSs has been proven to be a useful tool in solving
various daily life problems with uncertainties. Following this,
numerous generalized forms of FSs have been introduced in
the literature. Firstly, interval-valued fuzzy sets (IVFSs) as
a generalization of FSs was initiated by Zadeh [2]. Many
other direct extensions of FSs and their applications have
been explored from time to time. Some of the well known
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extensions of FSs include intuitionistic fuzzy sets (IFSs),
bipolar fuzzy sets (BPFSs), picture fuzzy sets (PFSs) etc.
IFSs was introduced by Atanassov [3]. IFSs allocates the
membership and non-membership degrees to each of its
entity. The notion of BPFSs was added to the literature by
Zhang [4]. BPFSs express each of its entity using positive
membership and negative membership degrees. Recently,
Arif et al. [5] investigated the application of BPFSs towards
decision-making. Cuong and Kreinovich [6] proposed the
concepts of PFSs, where each member was assigned three
values i.e., membership, neutral and non membership values.
PFSs was more generalized than both FSs and IFSs.
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TABLE 1. Abbreviations used in this manuscript.

We refer [7] for basic definitions and applications of PFSs
in DM. Afterwards, Phong et al. [8] studied many operations
and relations on PFSs. Different types of PFSs such as
interval-valued picture fuzzy sets (IVPFSs) [9], bipolar
picture fuzzy sets [10] etc have been introduced in the
literature. Overall, FSs and its extensions have played a key
role in solving many real-world problems related to network
analysis, medical sciences, decision-making theory etc. FSs
and its generalizations has played a crucial role towards
decision making specially multi criteria decision analysis
(MCDA). One can consult [11] for applications and trends
of MCDA.

The idea of fuzzy graphs (FGs) was firstly given by
Rosenfeld [12]. Through FGs, more effective and efficient
models have been explored for explaining real world prob-
lems as compared to those of crisp graphs. Like FSs, many
generalizations of FGs have been introduced. An extension
of FGs termed Interval-valued fuzzy graphs (IVFGs) was
initiated in [13]. Shannon and Atanassov [14] proposed
the idea of intuitionistic fuzzy graphs (IFGs) which was
further elaborated in [15]. Interval-valued intuitionistic fuzzy
graphs (IVIFGs) was proposed in [16]. Zuo et al. [17] added
the term picture fuzzy graphs (PFGs) as an extension FGs
and IFGs. Recently, many types of PFGs with applications
in various fields have been explored. For instance, Khan
et al. introduced bipolar PFGs with application towards
social networks [18], Cayley PFGs with application in
networking [19], Arif et al. introduced some indices for PFGS
with applications in site selection and networking [20], and
interval-valued picture (S,T )-fuzzy graphs with application
in MADM [21]. Similarly, Shi et al. introduced the concepts
of interval-valued picture fuzzy graphs and provided its
applications in social networks and transmission control
protocol [22]. For more work on PFGs, one may consult [23],
[24], [25]

A hypergraph is also a mathematical structure consisting
of vertices and edges. Different types of hypergraphs and
their applications in numerous areas of sciences have been
investigated. Basically, an hypergraph structure is the pair

FIGURE 1. Generalizations of Fuzzy hypergraphs.

H̄ = (V̄ , Ē), where V̄ = {v̄1, v̄2, v̄3, . . . v̄n} and Ē =

{Ē1, Ē2, Ē3, . . . Ēr } are the sets of non-empty set of vertices
and edges, respectively with

⋃
k Ēk = V̄k , for k =

1, 2, 3, . . . r . A hypergraph is a simple, if Ēi ⊆ Ēj implies
i = j. A linear hypergraph is a simple hypergraph with
| Ēi

⋂
Ēj |≤ 1, for each Ēi, Ēj ∈ Ē . Alternatively, Lee-

Kwang and Lee [26] introduced the notion of fuzzy hyper-
graphs (FHGs). After this, various generalizations of FHGs
were introduced like interval-valued fuzzy hypergraphs
(IVFHGs) [27], intuitionistic fuzzy hypergraphs (IFHGs)
[28], [29], interval-valued intuitionistic fuzzy hypergraphs
(IVIFHGs) [30] etc. The term Intutitionistic fuzzy directed
hypergraphs (IFDHGs) was initiated in [31] and [32].
Recently, the notion of interval-valued picture fuzzy hyper-
graph was explored in [33]. Sequentially, by incorporating
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the term PFDHGs, we bridge the gap in the literature
as highlighted in Fig. 1. Some abbreviations used in this
manuscript are enlisted in Table 1.

PFSs is the extension of both the FSs and IFSs that’s why
it is more capable to deal uncertainties properly as compared
to the other generalizations of FSs. Likewise, PFG is the
generalization of both FGs and IFGs. On the same pattern,
FHGs, FDHGS, IFHGS, IFDHGS and PFHGS have been
introduced in the literature. However, the notion PFDHGs is
missing in the existing literature. To fill this gap, we initiate
the idea of PFDHGs along with its applications towards
decisionmaking and chemical graph theory. The capability of
PFDHGs to deal uncertain information using its vast unique
structure makes it one of the best tool to deal many problems
occur in daily life. PFDHGs can deal uncertain information
and help in achieving the perfect option or solution for the
problem.
Novelty: The novelty of our work can be described in the

following steps.
1) Initially, we shift many important characterizations of

FDHGs and IFDHGs towards PFDHGs.
2) We present useful terminologies like hyper-edge,

height and (̃α, β̃, γ̃ )-level hyperarcs of PFDHGs.
3) Various types of PFDHGs like simple PFDHGs,

support simple PFDHGs, elementary PFDHGs, partial
PFDHGs, ordered PFDHGs are also explored.

4) We also define different types of structure preserving
maps regarding PFDHGs and apply them collectively
in theorems 1 and 2.

5) Finally, applications of PFDHGs towards decision
making and most proficient arrangement for hazardous
wastes (chemicals) are presented.

Motivations: The motivations of this study are as follows.
1) Mainly, the existing notions like FDHGs and IFDHGs

motivated us to initiate the concept of PFDHGs.
2) PFDHGs being advanced form of FDHGs increases the

options of expressing the uncertainties.
3) The PFDHGs are more reliable and flexible than the

crisp DHGs and FDHGs and are easy to apply to any
system. Thus PFDHGs provide more accuracy to the
system.

4) PFDHGs can be twisted towards FDHGs and IFDHGs
by assigning different membership values. Hence,
PFDHGs combines the qualitative characteristics of
both the FDHGs and IFDHGs.

Remaining manuscript is organized as: In section II,
some useful terminologies are provided. In section III,
we start our discussion by defining PFDHGs by using
PF-relations. We present various types of IVPFHGs and
discuss different terms like height of PFDHGs, support and
support simple, partial PFDHGs and (̃α, β̃, γ̃ )-level cuts of
PFDHGs. Homomorphism, weak and co homomorphism and
isomorphism of PFDHGs are also discussed. Order and size
of PFDHGs are also defined. In section IV, we provide
two applications of IVPFHGs. Section IV-A contains an
application of PFDHGs towards decision making theory

along with numerical computations, and in section IV-B,
we provide an application for themost proficient arrangement
of hazardous wastes (chemicals). We provide superiority and
comparative analysis of our study with the existing ones
in section V. Finally, we provide the conclusion and future
prospects of our study.

II. PRELIMINARIES
Definition 1 [1] A pair (ξ̄ ,V ), where V is any nonempty

set and ξ̄ : V −→ [0, 1] denotes the MD, is a FS.
Definition 2 [3]: An IFS I is the collection which can be

expressed as I = {(v, ϑI (v), υI (v)) : v ∈ V } where ϑI (v) ∈

[0, 1] is the MD of v in I, υI (v) ∈ [0, 1] is the non-MD of v
in I such that ϑI (v) + υI (v) ≤ 1, for all v ∈ V .
Definition 3 [6]: A PFS P is a collection written as P =

{(s, φP (s), χP (s), ψP (s)) : s ∈ V }, where φP (s) ∈ [0, 1] is
the MD, χP (s) ∈ [0, 1] is the neutral-MD and ψP (s) ∈ [0, 1]
denotes the non-MD of s in P such that (φP (s) + χP (s) +

ψP (s) ≤ 1).
Here, (1− (φP (s)+χP (s)+ψP (s)) is the degree of refusal

MD of s in P .
Definition 4 [12]: Let V be a nonempty set. Then the FG

G on V is presented as a pair of functions ωp̄ and ωq̄ i.e.,
G = (ωp̄, ωp̄).Where ωp̄ is the fuzzy subset of V and ωq̄ is a
symmetric fuzzy relation on V × V i.e., ωp̄: V → [0, 1] and
ωq̄: V ×V → [0, 1] satisfying ωq̄(x, y) ≤ ωp̄(x)∧ωp̄(y),∀x,
y ∈ V .
Definition 5 [14]: Let G∗

= (Q∗,R∗) be a graph. Then,
G = (Q,R) is an IFG over a graphG∗, whereQ= (φQ, ψQ) is
an IFS on (Q∗ and R= (φR, ψR) is an IFS over R∗

⊆Q∗
×Q∗.

such that for each edge e1e2 ∈ R∗,

φR(e1e2) ≤ minφQ(e1), φQ(e2)

ψR(e1e2) ≥ maxψQ(e1), ψQ(e2).

Definition 6 [17]: Let G∗
= (Q∗,R∗) be a graph. Then,

G = (Q,R) is a PFG on G∗
= (Q∗,R∗), where Q =

(φQ, χQ, ψQ) is a PFS on Q∗ and R = (φR, χR, ψR) is a PFS
over R∗

⊆ Q∗
× Q∗ such that for each edge e1e2 ∈ R∗,

φR(e1e2) ≤ minφQ(e1), φQ(e2)

χR(e1e2) ≤ minχQ(e1), χQ(e2)

ψR(e1e2) ≥ maxψQ(e1), ψQ(e2).

We refer [17] for further discussions on PFGs.

III. PICTURE FUZZY DIRECTED HYPERGRAPHS (PFDHGs)
In this section, firstly we introduce the notions PF directed
hyperarc and PFDHGs. In the context of PFDHGs, we define
height of PF directed hyperarc. Moreover, we describe
various types of PFDHGs such as simple, support simple
and elementary PFDHGs. Further to this, we also introduce
the concept of (̃α, β̃, γ̃ )-level hyperarcs, partial PFDHG,
transversal of PFDHG and fundamental sequence of PFD-
HGs. Finally, we discuss the concept of homomorphism and
isomorphism of PFDHGs.
Definition 7: On a non-empty set of vertices V , a directed

hyperarc can be described as a couple of
−→
F = (t(

−→
F ), h(

−→
F ),
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where t(
−→
F ) and h(

−→
F ) are the disjoint subsets ofV . A vertex x

is called a source vertex inV , if x /∈ h(
−→
F ). A vertex d is called

destination vertex in V , if d /∈ t(
−→
F ). A directed hyperarc

is called a picture fuzzy directed hyperarc, if it contains a
pair

−→
ζ = (t(

−→
ζ ), h(

−→
ζ )) of disjoint PF subsets of vertices

such that t(
−→
ζ ) is the tail of ζ and h(

−→
ζ ) is head of

−→
ζ ,

respectively.
Definition 8: A PFDHG on a non-empty set V is

−→
H =

(P,R), where P = {
−→η
1
,−→η

2
, . . .−→η

r
} is collection of ordered

pairs of −→η
k

= (t(−→η
k
), h(−→η

k
)), where t(−→η

k
) and h(−→η

k
) are

disjoint PF subsets on V and R is defined as PF relation on
−→η
k
satisfying

1) φR(
−→
F ) = φR(t(

−→
F ), h(

−→
F )) ≤ min{∧m

i=1φt(−→ηk )
(ui),

∧
n
i=1 φh(−→ηk )

(vi)}

2) χR(
−→
F ) = χR(t(

−→
F ), h(

−→
F )) ≤ min{∧m

i=1χt(−→ηk )
(ui),

∧
n
i=1 χh(−→ηk )

(vi)}

3) ψR(
−→
F ) = ψR(t(

−→
F ), h(

−→
F )) ≥ max{∧m

i=1ψt(−→ηk )
(ui),

∧
n
i=1 ψh(−→ηk )

(vi)}

4) φR(
−→
F )+ χR(

−→
F )+ψR(

−→
F ) ≤ 1, for each

−→
Fk , 1 ≤ k ≤

r , where t(
−→
F ) = {u1, u2, . . . um} ⊂ V and h(

−→
F ) =

{v1, v2, . . . vm} ⊂ V
5)

⋃
k supp(t(

−→η
k
) ∪

⋃
k supp(h(

−→η
k
)) = V , k =

1, 2, 3, . . . r
Definition 9: Let

−→
H = (P,R) is a PFDHG then height

(h(−→η )) of the PF directed hyperarc −→η is defined as

h(−→η ) = (φh(−→η
k
), χh(−→η

k
), ψh(−→η

k
)) = (max{∧x∈Vφt(−→η )(u),

∧x∈V φh(−→η )(u)},max{∧x∈Vχt(−→η )(u),∧x∈Vχh(−→η )(u)},

min{∧x∈Vψt(−→η )(u),∧x∈Vψh(−→η )(u)})

Definition 10: A PFDHG will be simple if for every −→η
i
,

−→η
j

∈ P, supp(t(−→η
i
)) ⊆ supp(t(−→η

i
)) and supp(h(−→η

i
)) ⊆

supp(h(−→η
i
)) then i = j.

Definition 11: A PFDHG
−→
H = (P,R) will be support

simple if whenever −→η
i
, −→η

j
∈ P, t(−→η

i
) ⊆ t(−→η

i
), (h−→η

i
) ⊆

h(−→η
i
) also supp(t(−→η

i
)) = supp(t(−→η

i
)) and supp(h(−→η

i
)) =

supp(h(−→η
i
)) then −→η

i
=

−→η
j
i and j.

Definition 12: Let us consider
−→
H = (P,R) is a PFDHG on

V . For any α̃, β̃ and γ̃ ∈ [0, 1], the (̃α, β̃, γ̃ )- level hyperarc
of a PF directed hyperarc −→η is defined as

−→η (̃α,β̃,γ̃ ) = (t(−→η (̃α,β̃,γ̃ )), (h(
−→η (̃α,β̃,γ̃ ))))

= ((p ∈ V | φt (
−→η )(p) ≥ α̃, χt (

−→η ) ≥ β̃,

ψt (
−→η )(p) ≤ γ̃ ), (q ∈ V | φh(

−→η )(q)

≥ α̃, χh(
−→η ) ≥ β̃, ψh(

−→η )(q) ≤ γ̃ )).
−→
H (α̃, β̃, γ̃ )= (P(̃α, β̃, γ̃ ),R(̃α, β̃, γ̃ )) is called a (̃α, β̃, γ̃ )-

level directed hypergraph of
−→
H where, P(̃α, β̃, γ̃ ) is defined

as

P(̃α, β̃, γ̃ ) = {(
r⋃

k=1

(h(−→η k (̃α,β̃,γ̃ ))))
⋃

(
r⋃

k=1

(t(−→η k (̃α,β̃,γ̃ )))

1 ≤ k ≤ r)},

Definition 13: Let us consider
−→
H = (P,R) is a PFDHG on

V . The fundamental sequence(fs(
−→
H )) of

−→
H is a triplet (̃α, β̃

and γ̃ ) ∈ [0, 1]×[0, 1]×[0, 1], 0 ≤ α̃i+β̃i+ γ̃i ≤ 1 , 1 ≤ i ≤
n, such that α̃1 > α̃2 > α̃3 > ...̃αn, β̃1 > β̃2 > β̃3 > ....β̃n
and γ̃1 < γ̃2 < γ̃3 < ...γ̃n such that

1) If 1 ≥ α̃ > α̃1, 1 ≥ β̃ > β̃1, and 0 ≤ γ̃ < γ̃1 then
R(̃α,β̃,γ̃ ) = φ

2) If α̃i+1 < α̃ ≤ α̃i, β̃i+1 < β̃ ≤ β̃i and γ̃1 ≤ γ̃ < γ̃i+1
then R(̃α,β̃,γ̃ ) = R(̃αi,β̃i,γ̃i)

3) R(̃αi,β̃i,γ̃i) ⊏ R(̃αi+1,β̃i+1,γ̃i+1)

The core set($(
−→
H )) of

−→
H is the corresponding sequence

of (̃α, β̃, γ̃ )-level directed hypergraphs
−→
H (̃α1,β̃1,γ̃1),

−→
H (̃α2,β̃2,γ̃2), . . .,

−→
H (̃αn,β̃n,γ̃n). The (̃αn, β̃n, γ̃n)-level directed

hypergraphs
−→
H (̃αn,β̃n,γ̃n) is called support level of

−→
H .

Definition 14: Let us consider
−→
H = (P,R) is a PFDHG on

V then supp(P) = {(supp(t(−→η ), supp(h(−→η ))) |
−→η ∈ P}. The

collection of PF directed hyperarcs P is called elementary if
P is single-valued on supp(P). A PFDHG

−→
H is elementary if

P and R are elementary otherwise it is non-elementary.

Definition 15: Let
−→

H́ = (Ṕ, Ŕ) be a PFDHG. Then,

a subgraph
−→
H = (P,R) of

−→

H́ is called partial PFDHG if

1) supp(P) ⊆ supp(Ṕ) and supp(R) ⊆ supp(Ŕ),
2) if supp(−→η

i
) ∈ supp(P) and supp(

−→
ή
i
) ∈ supp(Ṕ)

such that

supp(−→η
i
) = supp(

−→
ή
i
)

then −→η
i

=
−→
ή
i
.

It is represented as
−→
H ⊆

−→

H́ .
Definition 16: A PFDHG

−→
H = (P,R) is called ordered,

if the core set $(
−→
H ) = {

−→
H (̃α1,β̃1,γ̃1),

−→
H (̃α2,β̃2,γ̃2), . . .

−→
H (̃αn,β̃n,γ̃n)} is ordered that is

−→
H (̃α1,β̃1,γ̃1) ⊆

−→
H (̃α2,β̃2,γ̃2) ⊆

. . . ⊆
−→
H (̃αn,β̃n,γ̃n).

−→

H́ is simply ordered if
−→
H is ordered and

whenever Ŕ ⊂ R(̃αi+1,β̃i+1,γ̃i+1)\R(̃αi,β̃i,γ̃i) then Ŕ ⊆ R(̃αi,β̃i,γ̃i)

Proposition 1: Let
−→
H be an elementary PFDHG then

−→
H is ordered. If

−→
H is ordered PFDHG and support level

−→
H (̃αn,β̃n,γ̃n) is simple then

−→
H is an elementary PFDHG.

Remark 1: 1) If
−→
H = (P,R) is a PFDHG with P =

{
−→η
1
,−→η

2
, . . .−→η

r
} then P∗

= {
−→η
1
∗,−→η

2
∗, . . .−→η

r
∗
} is

collection of crisp directed hyperarcs corresponding to
P.

2) In PFDHG
−→
H = (P,R), if x is a vertex of tail

of any PF directed hyperarc −→η then −→η
1
(x) =

(ψt(−→η ), χt(−→η ), φt(−→η )). If x ∈ h(−→η )∗ then −→η (x) =
(ψh(−→η ), χh(−→η ), φh(−→η ))

Definition 17: Let
−→
H = (P,R) be a PFDHG. The PF

transversal of
−→
H is a set of PF directed hyperarcs T̃ such

that T̃h(−→ηi ) ∩
−→η
ih(

−→η
i
) ̸= φ, for each −→η

i
∈ P. T̃ is said

to be minimal PF transversal if whenever ϵ ⊂ T̃ , ϵ is
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not a PF transversal of
−→
H . The collection of all minimal PF

transversals of
−→
H is expressed as T̃r̃ (

−→
H ).

Lemma 1:
−→
H = (P,R) be a PFDHG with fundamental

sequence fs(
−→
H ) = {(̃α1, β̃1, γ̃1), (̃α2, β̃2, γ̃2)..., (̃αn, β̃n, γ̃n)}.

If T̃ is a PF transversal of
−→
H then φh(T̃ ) ≥ φh(−→η

i
), χh(T̃ ) ≥

χh(−→η
i
) and ψh(T̃ ) ≤ ψh(−→η

i
). If T̃ is a minimal PF transversal

of
−→
H then h(T̃ ) = (max{φh(−→η

i
) |

−→η
i

∈ P}, max{χh(−→η
i
) |

−→η
i

∈

P}, min{ψh(−→η
i
) |

−→η
i

∈ P}) = (̃α1, β̃1, γ̃1)

Proposition 2: Let
−→
H be a PFDHG, then following are

equivalent.

1) T̃ is a PF transversal of
−→
H

2) For every−→η
i

∈ P, (̃α1, β̃1, γ̃1) ∈ [0, 1]×[0, 1]×[0, 1],
0 ≤ α̃, β̃, γ̃ ≤ 1 with α̃ < φh(−→η

i
), β̃ < χh(−→η

i
) and

γ̃ > φh(−→η
i
) then T̃(̃α,β̃,γ̃ )

⋂
η
i(̃α,β̃,γ̃ )

̸= φ

3) T̃(̃α,β̃,γ̃ ) is a transversal of
−→
H (̃α,β̃,γ̃ )

Graph (Hypergraph) homomorphism play an important
role in understanding the relationships and structural char-
acteristics among two different graphs. By preserving the
connections between vertices, graph homomorphism analyze
how one graph can be expressed within another graph.
It play an important role in various fields like networking,
optimization, computer science etc. Here, we will discuss
about the homomorphism and isomorphism of PFDHGs.

Definition 18: Let
−→
H = (P,R) and

−→

H́ = (Ṕ, Ŕ) be
any two PFDHGs on X and X́ , respectively, where P =

{
−→η
1
,−→η

2
, . . .−→η

r
} and P∗

= {
−→η
1
∗,−→η

2
∗, . . .−→η

r
∗
}. A homomor-

phism of PFDHGs
−→
H and

−→

H́ is a mapping ϕ : X −→ X́ that
satisfies

1) ∧
r
j=1ψ−→η

j
≤ ∧

r
j=1φ−→η

j
∗ (ϕ(x)),∧r

j=1χ−→η
j

≤ ∧
r
j=1χ−→η

j
∗

(ϕ(x))and ∨
r
j=1 φ−→η

j
≥ ∨

r
j=1φ−→η

j
∗ (ϕ(x)),∀x ∈ X

2) ψR({t1, . . . ts}, {h1, . . . hm}) ≤ ψŔ({ϕ(t1), . . . , ϕ(ts)},
{ϕ(h1), . . . , ϕ(hm)})χR({t1, . . . ts}, {h1, . . . hm}) ≤

χŔ({ϕ(t1), . . . , ϕ(ts)}, {ϕ(h1), . . . , ϕ(hm)}) φR({t1, . . .
ts}, {h1, . . . hm}) ≥ φŔ({ϕ(t1),. . . , ϕ(ts)}, {ϕ(h1), . . . ,
ϕ(hm)}),∀t1, t2, . . . , ts, h1, h2, . . . , hm ∈ X

Definition 19: Let
−→
H and

−→

H́ be PFDHGs. A weak
Ismorphism is a bijective homomorphism ϕ : X −→ X́
satisfying

∧
r
j=1ψ−→η

j
= ∧

r
j=1φ−→η

j
∗ (ϕ(x)),

∧
r
j=1χ−→η

j
= ∧

r
j=1χ−→η

j
∗ (ϕ(x)) and ∨

r
j=1 φ−→η

j

= ∨
r
j=1φ−→η

j
∗ (ϕ(x))

for all x ∈ X .
Definition 20: Let

−→
H and

−→

H́ be PFDHGs. A co-weak
Ismorphism is a bijective homomorphism ϕ : X −→ X́
satisfying

ψR({t1, . . . ts}, {h1, . . . hm})

= ψŔ({ϕ(t1), ..., ϕ(ts)}, {ϕ(h1), ..., ϕ(hm)})

χR({t1, . . . ts}, {h1, . . . hm})

= χŔ({ϕ(t1), ..., ϕ(ts)}, {ϕ(h1), ..., ϕ(hm)})

φR({t1, . . . ts}, {h1, . . . hm})

= φŔ({ϕ(t1), ..., ϕ(ts)}, {ϕ(h1), ..., ϕ(hm)})

∀t1, , ..., ts, h1, .., hm ∈ X .

Definition 21: An isomorphism of PFDHGs
−→
H and

−→

H́ is

a bijective mapping ϕ :
−→
H −→

−→

H́ that satisfies
1) ∧

r
j=1ψ−→η

j
= ∧

r
j=1φ−→η

j
∗ (ϕ(x)),∧r

j=1χ−→η
j

= ∧
r
j=1χ−→η

j
∗

(ϕ(x)) and ∨
r
j=1 φ−→η

j
= ∨

r
j=1φ−→η

j
∗ (ϕ(x)),∀x ∈ X

2) ψR({t1, . . . ts}, {h1, . . . hm}) = ψŔ({ϕ(t1), . . . ,
ϕ(ts)}, {ϕ(h1), . . . , ϕ(hm)})χR({t1, . . . ts}, {h1, . . . hm})
χŔ({ϕ(t1), . . . , ϕ(ts)}, {ϕ(h1), . . . , ϕ(hm)}) φR({t1, . . .
ts}, {h1, . . . hm}) = φŔ({ϕ(t1), . . . , ϕ(ts)}, {ϕ(h1), . . . ,
ϕ(hm)})∀t1, t2, . . . , ts, h1, h2, . . . , hm ∈ X

Definition 22: Let
−→
H = (P,R) be a PFDHG then order

O(
−→
H ) ofH is

O(
−→
H ) =

( ∑
x∈X

∧j=1ψ−→η
j
(x),

∑
x∈X

∨j=1χ−→η
j
(x),

∑
x∈X

∨j=1φ−→η
j
(x)

)
Definition 23: Let

−→
H = (P,R) be a PFDHG then size

S(
−→
H ) ofH is

S(
−→
H )

=

( ∑
−→
Fi∈P∗

ψR(
−→
Fi ),

∑
−→
Fi∈P∗

χR
−→
Fi ,

∑
−→
Fi∈P∗

φR(
−→
Fi )

)
Theorem 1: O(

−→
H ) and S(

−→
H ) of isomorphic PFDHGs are

same.
Proof: Let

−→
H1 = (P1,R1) and

−→
H2 = (P2,R2)

be two PFDHGs on X1 and X2, respectively, where
P1 = {η

11
, η

12
, . . . η

1r
} and P2 = {η

21
, η

22
, . . . η

2r
}

be the classes of PF directed hyperarcs. Let ϕ :

X1 −→ X2 be an isomorphism from
−→
H1 to

−→
H2 then

using

O(
−→
H1) =

( ∑
x1∈X1

∧j=1ψ−→η
1j
(x1),

∑
x1∈X1

∨j=1χ−→η
1j
(x1),∑

x1∈X1

∨j=1φ−→η
1j
(x1)

)
=

( ∑
x1∈X1

∧j=1ψ−→η
1j
(ϕ(x1)),

∑
x1∈X1

∨j=1χ−→η
1j
(ϕ(x1)),∑

x1∈X1

∨j=1φ−→η
1j
(ϕ(x1))

)
=

( ∑
x2∈X2

∧j=1ψ−→η
1j
(ϕ(x2)),

∑
x2∈X2

∨j=1χ−→η
1j
(ϕ(x2)),∑

x2∈X2

∨j=1φ−→η
1j
(ϕ(x2))

)
= O(

−→
H2)

S(
−→
H1) =

( ∑
−→
F1i∈P∗

1

ψR1 (
−→
F1i),

∑
−→
F1i∈P∗

1

χR1
−→
F1i,

∑
−→
F1i∈P∗

1

φR1 (
−→
F1i)

)
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=

( ∑
−→
F1i∈P∗

1

ψR2 (ϕ(
−→
F1i)),

∑
−→
F1i∈P∗

1

χR2 (ϕ(
−→
F1i)),

∑
−→
F1i∈P∗

1

φR2 (ϕ(
−→
F1i))

)
=

( ∑
−→
F2i∈P∗

2

ψR2 (
−→
F2i),

∑
−→
F2i∈P∗

2

χR2
−→
F2i,

∑
−→
F2i∈P∗

2

φR2 (
−→
F2i)

)
= S(

−→
H2)

Remark 2: The O(
−→
H ) and S(

−→
H ) of weak and co-weak

isomorphic PFDHGs, respectively are same.
Theorem 2: The isomorphism relation between PFDHGs

is an equivalence relation.
Proof: Let

−→
H1 = (P1,R1),

−→
H2 = (P2,R2) and

−→
H3 =

(P3,R3) be three PFDHGs on X1, X2 and X3, respectively,
where P1 = {η

11
, η

12
, . . . η

1r
}, P2 = {η

21
, η

22
, . . . η

2r
} and

P3 = {η
31
, η

32
, . . . η

3r
}.

1) Reflexive
Let P : X1 −→ X1 is an isomorphism such that by
P(x1) = x1, for all x1 ∈ X1. Then,
a) (∧jψ−→η

1j
(x1),∨jχ−→η

1j
(x1),∨jφ−→η

1j
(x1))

= (∧jψ−→η
1j
(P(x1)),∨jχ−→η

1j
(P(x1)),∨jφ−→η

1j
(P(x1)))

b) (ψR1 (
−→
F1i), χR1

−→
F1i, φR1 (

−→
F1i)) = (ψR1 (P(

−→
F1i)), χR1

(P(
−→
F1i)), φR1 (P(

−→
F1i))),∀x1 ∈ X1, t(

−→
F1i) ⊂

X1, h(
−→
F1i) ⊂ X1.

P is an isomorphism of a PFDHG to itself.
2) Symmetric

Let ϕ : X1 −→ X2 is an isomorphism such that
ϕ(x1) = x2. Since, ϕ is a bijective therefore, ϕ−1

:

X2 −→ X1 exists and ϕ−1(x2) = x1, for all x2 ∈ X2.
Then

(∧j=1ψ−→η
2j
(x2),∨jχ−→η

2j
(x2),∨jφ−→η

2j
(x2))

= (∧jψ−→η
2j
(ϕ(x1)),∨jχ−→η

2j
(ϕ(x1)),∨jφ−→η

2j
(ϕ(x1)))

(∧j=1ψ−→η
1j
(x1),∨jχ−→η

1j
(x1),∨jφ−→η

1j
(x1))

= (∧jψ−→η
1j
(ϕ−1(x2)),∨jχ−→η

1j
(ϕ−1(x2)),∨jφ−→η

1j
(ϕ−1(x2)))

R2(
−→
F2j) = R2(ϕ(

−→
F1j)) = R1(

−→
F1j)

= R1(ϕ−1(
−→
F2j)), t(

−→
F2j) ⊆ X2, h(

−→
F2j) ⊆ X2.

Hence, ϕ−1 is an isomorphism.
3) Transitive

Let ϕ1 : X1 −→ X2 and ϕ2 : X2 −→ X3 are
two isomorphisms i.e.

−→
H1 onto

−→
H2 and

−→
H2 onto

−→
H3,

which are defined as ϕ1(x1) = x2 and ϕ2(x2) =

x3 respectively. By definition

(∧jψ−→η
1j
(x1),∨jχ−→η

1j
(x1),∨jφ−→η

1j
(x1))

= (∧jψ−→η
2j
(x2),∨jχ−→η

2j
(x2),∨jφ−→η

2j
(x2))

= (∧jψ−→η
3j
ϕ2((x2)),∨jχ−→η

3j
ϕ2((x2)),∨jφ−→η

3j
ϕ2((x2)))

= (∧jψ−→η
3j
ϕ2(ϕ1((x1))),∨jχ−→η

3j
ϕ2(ϕ1((x1))),

∨j φ−→η
3j
ϕ2(ϕ1((x1))))

= (∧jψ−→η
3j
ϕ2 ◦ ϕ1((x1)),∨jχ−→η

3j
ϕ2 ◦ ϕ1((x1)),

∨j φ−→η
3j
ϕ2 ◦ ϕ1((x1)))

R1(
−→
F1j) = R2(ϕ(

−→
F2j)) = R3(ϕ2(

−→
F1j))

= R3(ϕ2 ◦ ϕ1(
−→
F1j)),

where
−→
Fij = (t(

−→
Fij), h(

−→
Fij)), t(

−→
Fij) ⊂ X1, h(

−→
Fij) ⊂ X1.

Clearly, ϕ2 ◦ϕ1 is isomorphism from
−→
H1 to

−→
H3. Hence,

isomorphism of PFDHGs is an equivalence relation.

Remark 3: The weak isomorphism relation between
PFDHGs is a partial order relation.

IV. APPLICATIONS
A. APPLICATION OF PFDHGS IN DECISION MAKING
Now a days, many daily life problems have been solved by
using various approaches such as FSs theory, FGs theory,
probability etc. FGs and FHGs have also been utilized for
modeling complex daily life problems with uncertainties.
Here, we propose an algorithm based on PFHGs for solving
the problem occurring in DM. A flowchart is also provided to
the support of proposed algorithm.

ALGORITHM
1) Input the picture fuzzy values of all PFDHG edges.
2) Find theMD, neutral-MD and non-MDvalues of PFDH

edges such that

χR{m, n} ≤

∧
{χS (m), χS (n)}

ψR{m, n} ≤

∧
{ψS (m), ψS (n)}

φR{m, n} ≥

∨
{φS (m), φS (n)}.

3) Calculate the (̃α, β̃, γ̃ )-cuts τ ((̃α,β̃,γ̃ ))j of PFDH edges
such that

χt (p) ≥ α̃

ψt (p) ≥ β̃

φt (p) ≤ γ̃

for all t = 1, 2, . . . ., k .
4) Determine the PFSs describing the parameters accord-

ing to the decision maker satisfaction levels.

A flow chart given in Fig.2 further elaborates our proposed
algorithm.
Let us consider a daily life problem in which a university

studentMr. Z wants to buy a laptop manufactured by different
companies such as Dell, HP, Apple etc. He needs to purchase
a perfect laptop for his study according to his requirements.
In order to purchase a perfect laptop, Mr. Z considers
four companies namely O = {o1, o2, o3, o4}. By utilizing
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TABLE 2. Incidence matrix.

FIGURE 2. Flowchart.

⟨̃α, β̃, γ̃ ⟩-level hyper cuts in PFDHG, we can determine the
best option to purchase.

Consider the vertices of a PFDHG as companies, with
hyper-edges representing the common features of those
laptops belonging to the specific hyperedge as in Fig. 3.

For vertices, the MD represents the laptop companies and
depicts the extent to which the laptop of that company fulfills
the features required by a costumer, neutral-MD indicates
how much the laptop features do not affect the customer’s
need, and non-MD reflects much the laptop lacks the desired
features. These are also depicted in Table. 2.

FIGURE 3. Picture fuzzy hypergraph.

The attributes are hyperedges Y = {τ1, τ2, τ3, τ4} of
PFDHGs, representing the features of different companies
like durability τ1, battery health τ2, operating system τ3 and
marketability τ4. Since τ2 is considered as battery health,
the MD values (0.6, 0.3, 0.1) of τ1 denote that 60% of the
laptops from some company o1 has a good battery health as
per customer’s demand, 30% of laptops have normal battery
health which doesn’t effect the customer’s desire, and 10% of
the company’s laptops lack the battery health as per customers
wish. Similarly, the values of all vertices describe the features
of all laptops manufactured by various companies.

Further, in choosing a perfect laptop, we determine the
⟨̃α, β̃, γ̃ ⟩-level hypercuts of all hyperedges. Then by selecting
the specific values α̃, β̃ and γ̃ by the customer, the laptop
of his desired features will be considered. Assume that
the costumers desired figures are given by (̃α, β̃, γ̃ ) =

(0.5, 0.1, 0.1). It means the customer will be satisfied if the
laptop has 50% or more of the mentioned features, 10% of
the laptop features have no effect on customer’s demand, and
10% of the features are deficient in the laptop. The ⟨̃α, β̃, γ̃ ⟩-
level sets of all hyperedges are in Table. 3.

Here, τ (0.5,0.1,0.1)1 -level set represents that laptops of
company o1 and o2 are most durable compared to the
laptops of other companies, τ (0.5,0.1,0.1)2 -level set denotes
that laptop of company o3 has the best battery health,
τ
(0.5,0.1,0.1)
3 -level set denotes that the company’s laptop o3 has
best operating system and τ (0.5,0.1,0.1)4 -level set denotes that
laptops of companies o1 and o2 have the best marketability.
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TABLE 3. ⟨α̃, β̃, γ̃ ⟩-level sets.

Thus, by considering different ⟨̃α, β̃, γ̃ ⟩-level hypercuts
corresponding to the needs of Mr. Z, the most suitable laptop
fulfilling his demands can be selected.

B. MANAGEMENT OF HAZARDOUS CHEMICALS
THROUGH PFDHGS
Medical field is one of important field of science, with its
main aim being the study of living beings. In this context,
the first step to diagnose the disease and then search for
its treatment. No doubt, chemicals play a crucial role in
all areas of medical science. The primary concern of the
scientists is how to preserve various chemicals. For this
purpose, scientists make efforts to store hazardous chemicals
(HCs) in a safe and suitable environment. Many studies have
been conducted on this matter, and many effective ways for
handling HCs have been suggested overtime. Under certain
complex circumstances, the traditional methods of storing
the chemicals in a safe environment are no longer effective.
So, there is a need for new methods to avoid the adverse
effects of certain chemicals on living beings. As HCs pose
a threat to the environment and living beings. So, some HCs
like sludges, solids, liquids, gases etc can be produced during
different activities/experiments. Thus, if such chemicals are
not properly handled, then they can cause serious health
issues like cancer, nerve damage, birth defects etc. Hence to
ensure well being of living beings, protection of environment,
the proper management for dumping HCs is extremely
important. We also encounter uncertainties in almost every
procedure for preserving HCs. Since, FSs has been proven
the best tool for dealing with vague and uncertain situations.
Evidently, PFSs being the most generalized form of FSs with
MD, neutral-MD and non-MD values of any entity, can play
a crucial role in properly preserving HCs. Consequentially,
PFDHGs would be an efficient tool for managing the system
of storingHCs. In this context, we propose a PFDHG model
for some compatible and incompatible elements, as shown
in Fig. 4. The HCs discussed in our study are elaborated in
Table. 4.

The oval vertices G = {G1,G2,G3,G4,G5} of a PFDHG
represent the elements adjacent to them. Details of these
vertices are provided in Table. 5. Fill containers upto 75%
capacity for cost efficient and safe management of wastes.

FIGURE 4. Directed picture fuzzy hypergraph model.

Additionally, the quality of containers material should be
such that it is compatible with the HCs stored in it. As we
know that when two or more different elements are combined
sometimes it may result in severe reaction if these elements
are not compatible to each other. No reaction occur if they
are compatible to each other. So only those elements that are
compatible and are safe to store together are joined using PF
directed hyperedges. For the perfect and safe management
of waste one must be aware of the properties of these HCs
like toxicity, corrosivity, reactivity etc. A PFS can be used to
express the characteristic of any element in a best possible
way in terms of MD, neutral-MD and non-MD. So, here we
consider corrosivity of elements and express them using PFSs
as

D = {(HNO3,65,10,25),(H2SO4,65,10,25),

(HCl,65,10,25),(CH3COOH ,85,05,10),(C4H8O2,85,

05,10),(HCOOH ,85,05,10),(NaOH ,80,08,12),

(NH4OH ,80,08,12),(Solution,80,08,12),(C6H15N ,75,

10,15),(C4H11O2,70,10,20),(C2H8N2,80,15,05),

(C6H5Cl,65,15,20),(C2HCl3,65,15,20),

(CCl3F,75,15,10)}

Table. 6 describes the importance of defining this picture
fuzzy set.

The material used for making containers must also
be compatible with the waste stored in them, and they
must be non-leaking. Avoid using containers made of
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TABLE 4. Chemicals.

TABLE 5. Oval Vertices Discription.

TABLE 6. Square vertices discription.

incompatible material for storing such HCs, For instance,
avoid using metal containers for keeping acids, polyethylene
containers(light weighted) for storing solvents, and glass
containers for storing HCl. Thus, one should ensure that
containers must be highly compatible with chemicals stored
in them. Now, we consider a containers/cabinets set C =

{C1,C2,C3,C4,C5}, and define five PFSs on it, keeping
in mind their compatibility with these elements. The MD,
neutral-MD and non-MD of these PFSs refer to highly com-
patible, slightly compatible and incompatible, respectively.
For example, theMDsC1(G2) = (0.310, 0.220, 0.455) imply
that the C1 container is made up of such material that is
incompatible for storing inorganic acids and suitable for
storing organic acids, as C1(G1) = (0.650, 0.230, 0.100).

Similarly, using the same assumptions, we define other PFSs
as given in Table. 7.

It can be noted from Table. 7 that container C1 is THE best
choice to store inorganic acids or halogenated compounds,
but it will be used to store inorganic acids because it is
highly compatible to them i.e., 65%. Likewise, the quality of
material of C2 is compatible with organic acids, caustics, and
halogenated compounds but it will be used to store organic
acids because the MD is greatest in this case. Similarlry,
we find that C3, C4 and C5 are ideal containers for storing
amines and alkanolamines, halogenated compounds and
caustics, respectively. The results are demonstrated in Table.
8. The graphical representations of these storages are shown
in Fig.5. Thus, by utilizing the proposed model, HCs can be
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TABLE 7. Compatibility and incompatibility levels of containers to chemical substances.

TABLE 8. Results.

FIGURE 5. Graphical expression for the storages of chemicals.

systemized in a more appropriate way to reduce their precar-
ious risks to the health of living beings and the environment.

V. COMPARATIVE ANALYSIS AND SUPERIORITY
Zadeh initiated the idea of FSs in 1965. Since then FSs
has been generalized in many different ways. Some famous
extensions of FSs are IFSs, PFSs, BPFSs etc. These
generalizations of FSs have their own importance under
specific environments. IFSs and PFSs are the main direct
extensions of FSs and among the other extensions. Basically,
FSs use only membership degree to express each of its
entity, IFSs has a MD and non-MD for each of its element,
but PFSs allocate MD, neutral-MD and non-MD to each
of its entity. Consequently, PFSs become more generalized
form of FSs. However, PFSs can be reduced to IFSs and
FSs by choosing different MDs. Thus the PFSs is the best
tool to deal the problems with uncertainties. Based on these
generalizations, the concepts of FGs, IFGs an PFGs have
been added in the literature. It has also proven that PFGs are
more useful as compared to IFGs and FGs. PFGs can model
the complex problems which cannot be modeled through
FGs and IFGs. Likewise, the notion of PFHGs has its own
importance and appearmore useful inmodeling the real world
problems with uncertainties. The notions of FDHGs and
IFDHGs have been described in the literature and also applied

TABLE 9. Generalizations of fuzzy graphs.

to different circumstances. However, sometimes to handle
complex problems through these are impossible. Hence,
we need a vast structure like PFDHGs with more options to
address such situations. Our proposed structure i.e., PFDHGs
is more flexible and easy to apply as compared to the others
found in [33], [34], [35], [36], [37], and [38]. In Table.9,
we provide the details about some existing FHGs and the
notions associated with them. Overall, we have observed that
our newly established structure appears more useful than the
existing ones, which proves its superiority.

VI. CONCLUSION
FSs and its generalizations were used widely to solve
different types of daily life problems. Likewise, FGs and
its generalizations were used to model real world problems.
PFSs is an extension of FSs, three values MD, neutral-MD
and non-MD were allocated to each of its entity. FHGs and
its extensions were used to study more complex problems.
In this manuscript, we have introduced a direct extension
of FDHGs named PFDHGs. We have also provided its
applications towards decisionmaking theory and inmanaging
the hazardous chemicals. In the start, we have introduced the
concept of PFDHGs alongwith different useful terminologies
like hyper-edge, height etc related to it. Afterwards, we have
initiated various types of PFDHGs such as simple PFDHGs,
support simple PFDHGs etc. We introduce the notion of
(̃α, β̃, γ̃ )-level hyperarcs and describe the term fundamental
sequence in PFDHGs based on these arcs. We have also
initiated the ideas of elementary PFDHGs, partial PFDHGs,
ordered PFDHGs etc and explored few relations among
them. Some structural properties of PFDHGS have also been
explored by introducing different kinds of homomorphisms
on PFDHGs. The terms order and size of PFDHGs have been
examined through homomorphism of PFDHGs. To ensure
the impact of this study, we have provided two different
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applications of PFDHGs. The first application of PFDHGs
is related to decision making, in which we have proposed a
case study for buying the best laptop. Secondly, we proposed
an affective and appropriate method for storing the HCs
in a most affective and appropriate way. Furthermore, one
could extend the ideas presented in this study towards other
extensions of FHGs like T-spherical fuzzy hypergraphs,
T-spherical directed fuzzy hypergraphs, bipolar picture fuzzy
hypergraphs etc.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest
regarding the publication of this article.

ACKNOWLEDGMENT
This work was supported by the University of Economics Ho
Chi Minh City (UEH), Vietnam.

REFERENCES

[1] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.
[2] L. A. Zadeh, ‘‘The concept of a linguistic variable and its application to

approximate reasoning—I,’’ Inf. Sci., vol. 8, no. 3, pp. 199–249, 1975.
[3] K. Atanassov, ‘‘Intuitionistic fuzzy set,’’ Fuzzy Sets Syst., vol. 20,

pp. 87–96, Aug. 1986.
[4] W.-R. Zhang, ‘‘(Yin) (Yang) bipolar fuzzy sets,’’ in Proc. IEEE Int. Conf.

Fuzzy Syst., IEEE World Congr. Comput. Intell., May 1998, pp. 835–840.
[5] W. Arif, W. A. Khan, A. Khan, T. Mahmood, and H. Rashmanlou,

‘‘TOPSIS method based on connection number of set pair analysis subject
to bipolar fuzzy environment with application in decision making,’’ J.
Intell. Fuzzy Syst., vol. 46, no. 1, pp. 1627–1635, Jan. 2024.

[6] B. C. Cuong and V. Kreinovich, ‘‘Picture fuzzy sets,’’ J. Comput. Sci.
Cybern., vol. 30, no. 4, pp. 409–420, Feb. 2015.

[7] C. Jana, M. Pal, V. E. Balas, and R. R. Yager, Picture Fuzzy Logic and Its
Applications in Decision Making Problems. Amsterdam, The Netherlands:
Elsevier, 2023.

[8] P. H. Phong, D. T. Hieu, R. T. H. Ngan, and P. T. Them, ‘‘Some
compositions of picture fuzzy relations,’’ in Proc. 7th Nat. Conf. Fundam.
Appl. Inf. Technol. Res. (FAIR), 2014, pp. 19–20.

[9] A. M. Khalil, S.-G. Li, H. Garg, H. Li, and S. Ma, ‘‘New operations on
interval-valued picture fuzzy set, interval-valued picture fuzzy soft set and
their applications,’’ IEEE Access, vol. 7, pp. 51236–51253, 2019.

[10] W. A. Khan, K. Faiz, and A. Taouti, ‘‘Bipolar picture fuzzy sets and
relations with applications,’’ Songklanakarin J. Sci. Technol., vol. 44, no. 4,
pp. 987–999, 2022.
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