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ABSTRACT Advances in quantum simulator technology are increasingly required because research on
quantum algorithms is becoming more sophisticated and complex. State vector simulation utilizes CPU and
memory resources in computing nodes exponentially with respect to the number of qubits; furthermore,
in a variational quantum algorithm, the large number of repeated runs by classical optimization is also
a heavy load. This problem has been addressed by preparing numerous computing nodes or simulation
frameworks that operate effectively. This study aimed to accelerate quantum simulation using two newly
proposed methods: to efficiently utilize limited computational resources by adjusting the ratio of the MPI
and distributed processing parallelism corresponding to the target problem settings and to slim down the
Hamiltonian by considering the effect of accuracy on the calculation result. Ground-state energy calculations
of a fermionic model were performed using a variational quantum eigensolver (VQE) on an HPC cluster with
up to 1024 FUJITSU Processor A64FX connected to each other by InfiniBand; the processor is also used
on supercomputer Fugaku. We achieved 200 times higher speed over VQE simulations and demonstrated
32 qubits ground-state energy calculations in acceptable time. This result indicates that > 30 qubit state
vector simulations can be realistically utilized for further research on variational quantum algorithms.

INDEX TERMS Distribute computing, quantum computing, quantum simulation, variational quantum
algorithm, variational quantum eigensolver.

I. INTRODUCTION
Quantum computer has received much attention from both
hardware and algorithmic perspectives in the last decades.
This is because it was expected to perform faster than
classical computation in certain calculation area [1]. Previous
studies have reported several experiments of quantum com-
putation conducted on a noisy intermediate scale quantum
computer (NISQ [2]) [3], [4]. However, the limited capability
of NISQ, derived from hardware noise and short coherence
time, makes it challenging to validate sophisticated and
complex quantum algorithms that contain many qubits or
gate operations. Therefore, quantum simulations on classical
computers, which simulate ideal noise less or manually
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controllable noise environment, are increasingly important
for the advancement of quantum algorithm study.

Quantum simulation requires large computational resources
of classical computers. A state vector simulator, for
example, Qulacs [5], must allocate 2n+4bytes to store 2n

double-precision complex numbers for representing n qubit
quantum state. Consequently, memory resource requirement
increases exponentially. Accordingly, the gate operation
must control exponentially increasing computational bases,
hence computational costs also increase exponentially.
In addition to the state vector, other quantum simulation
methods have been proposed such as tensor networks [6] and
decision diagrams [7], which also require large computational
resources.

The variational quantum algorithm is one of practical
quantum algorithms for NISQ. For each purpose, they are
defined in the form of variational quantum eigensolver
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(VQE) [8], [9], [10], [11], quantum approximate optimization
algorithm (QAOA) [12], and quantum machine learning
(QML) [13], [14]. Since they perform variational calculations
by optimizing parameters embedded in the quantum circuit,
the quantum circuit must be executed many times in the
algorithm. VQE is an algorithm for quantum chemical
calculations that has been studied by simulations and a few
qubit real experiments [3], [4]. The VQE can calculate,
in typical usage, ground-state energy or excitation energy
[15], [16], [17] by representing molecular orbitals in the
quantum circuit.

Several simulations were performed by previous studies.
As a partial example of VQE, the ground-state calculations
of BeH2 of 14 qubits [18], N2 of 16 qubits [19], and
naphthalene of 20 qubits [20] have been reported. These
problem targets are all fermionic model Hamiltonian. On the
other hand, Heisenberg model Hamiltonian, a limited model
that interacts with adjacent spins, has been reported to be up
to 40 qubits [21]. Similarly, non-variational quantum com-
putational simulations on HPC cluster have been reported.
Quantum simulations up to 72 qubits supported by NASA
HPC cluster Pleiades and Electra [22] and 121 qubits on the
supercomputer summit [23] have been carried out. However,
research on the large-scale implementation of variational
quantum algorithms is still limited; thus discussion on the
feasibility of this area is important. Especially, there is a lack
of VQE for dealing with fermionic models, which require a
large number of Hamiltonian terms.

This paper reports the demonstration of fermionic model
VQE simulations up to 36 qubits using two newly proposed
techniques. The first technique is to efficiently combine
MPI parallel and distributed processing corresponding to
the target problem. By optimizing the node usage ratio
of two parallelization methods for the prepared computing
nodes, the computing capability can be improved. The
second technique is to slim down Hamiltonian to speed-up
the expectation value calculation of quantum simulation;
this accelerates VQE while maintaining nearly the same
calculation accuracy. The simulation was carried out on
an HPC cluster with up to 1024 FUJITSU Processor
A64FX (A64FX) connected to each other by InfiniBand; the
processor is also used on supercomputer Fugaku.

For the 28- and 32-qubit problems, we demonstrated a
complete simulation until the obtained energywas converged.
For the 36-qubit problem, only one iteration was performed;
the characteristic was revealed.

II. METHODOLOGY
In this section, we introduce our VQE simulation methods
for an HPC cluster system. The section is divided into the
following:

A. Computing node
B. VQE algorithm
C. MPI and distributed processing
D. Hamiltonian terms cutoff

TABLE 1. HPC cluster system specifications.

Subsections A and B describe known techniques, where A
shows the hardware usage of the HPC cluster system and B
shows the VQE algorithm. Subsections C and D describe the
newly proposed methods; C explains a way to combine MPI
and distributed processing parallelization, and D explains
how to accelerate expectation value calculation by slimming
down Hamiltonian. For another method related to coding,
we used pySCF [24] for quantum chemical calculations,
openfermion [25] for hamiltonian qubit mapping, and Qiskit
SLSQP for parameter optimization. Qiskit SLSQP function
is based on scipy [26].

A. COMPUTING NODE
Large-scale quantum simulations have been performed on
a number of multi-node HPC cluster systems as in pre-
vious studies [22], [23]. Our system consists of FUJITSU
PRIMEHPC FX700 (FX700), a computing node with A64FX
and 32-GiB memory. A64FX, the Armv8.2-A instruction
set architecture, is a processor also used in the Fugaku
supercomputer. A total of 1024 nodes are connected by
InfiniBand EDR. See Table. 1 for the detailed specifications
of our HPC cluster system. Our system is also an HPC cluster
as in previous studies; however it was designed for a state
vector simulator.

Several quantum simulation frameworks such as Qiskit
Aer, Intel-QS [27], and Qulacs [5] have been published.
We used mpiQulacs [28], an extended Qulacs for distributed
simulation, to run on this cluster system. MpiQulacs was
selected because Qulacs is one of the fastest state vector
simulation frameworks.

MpiQulacs takes anMPI approach similar to intel-QS [27],
in which the vector representing the quantum state is divided
by the number of MPI processes. The memory used per
node is 2n+4

p = 2n−log2 p+4 bytes, when the number of MPI
processes is p and the number of qubits is n. This means
storing a total of two to the n power of double complex
type variables. Since the FX700 node has 32-GiB memory,
considering the amount of memory required for operating
systems, Python code, and so on, 230+4 =16 GiB can
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FIGURE 1. VQE overall algorithm flow. one/two-electron integral and CISD are calculated by pySCF. Threshold Th1 is sent to
Hamiltonian output process. Th2 is sent to initial value and ansatz generation. In the VQE main part, the expected values of all
observables are summed up to obtain the energy value E(θ). This is repeated until it converges to the minimum value Egd .

be used to store quantum states. Therefore, the maximum
number of qubits that can be executed by a single node
is 30, and the minimum number of 2(n−30) nodes are
required when calculating > 30 qubits. For example, 36-qubit
computation requires at least 236−30 =64 nodes connected
by MPI communication. Refer to the citation [28] for more
information on MPI parallel techniques using mpiQulacs.

B. VQE ALGORITHM
The VQE algorithm has concerns to be determined carefully,
particularly for the design of a quantum circuit ansatz and the
overall structure of the algorithm including preprocessing.

To achieve better accuracy in shallower circuits, previous
studies have proposed many VQE ansatz. Hardware efficient
[4], symmetry preserving [29], and UCCSD [30] ansatz are
representatives. In addition, their derivatives include gate
fabric symmetry preserving [20], UpCCGSD [19], jastrow-
factor [31] and qCC [32]. Regarding the overall structure
of the VQE algorithm, for example, classical calculation
for obtaining initial values of variational parameters [33],
adaptive generation of quantum circuits [34], and postpro-
cessing to mitigate hardware noise [35], have been proposed
as support feature.

The entire algorithm in this study is illustrated in Fig. 1.
At the beginning of the preprocessing, values of the one-
and two-electron integrals were calculated from the chemical
problem of interest. Subsequently, the second quantized
Hamiltonian H was generated; it is represented as (1) in the

fermionic model.

H =
∑
pq

hpqa†paq +
∑
pqrs

hpqrsa†pa
†
qaras. (1)

Values a†,a, and h mean generation operator, annihilation
operator and coefficient, respectively.

These values were sent to two separate flows. One is to
generate qubit-mapped Hamiltonians; because our ansatz has
the quantum-number-preserving property, the Jordan-Wigner
transform method [36] was chosen instead of Bravyi-Kitaev
[37] or parity basis [38]. The Hamiltonian H is represented
by the sum of Pauli strings, also known as observables P.
In (2), (3), and (4), w represents the observable coefficient,
and σ is the Pauli matrix of I , X , Y , or Z . See a citation [39]
for the details on possible forms of P.

H =
∑

wiPi. (2)

Pi =
n⊗

k=1

σ
(i)
k . (3)

σ
(i)
k ∈ {I ,X ,Y ,Z }. (4)

The another is to calculate the configuration interaction
singles and doubles (CISD), one of the well-known computa-
tional methods of quantum chemistry, to determine the ansatz
quantum circuit and initial values of variational parameters.
The preprocessing approach to obtain the quantum circuit
[32], [34] and the execution of the quantum chemical
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calculation to generate the initial parameter value [33] have
been studied. We used the modified version of the methods
used in these previous studies by utilizing CISD because of
its high accuracy and straightforward correspondence with
quantum circuits. CI coefficients were extracted from the
CISD calculation result. The CI coefficients-generated ansatz
U was made up of the product of gate sets, where gate set
S represents one-electron excitations on molecular orbitals
and D represents two-electron excitations; see (5). Since
one CI coefficient corresponds to one excitation operator,
it generated one S or D. Among all the one- or two- electron
excitations, the CI coefficient determined the excitation
operator to be implemented in ansatz. Moreover, the initial
parameters of the excitation operator were set, derived from
the corresponding CI coefficients. For S and D, we referred
to the gate set of the conventional method [20]. This ansatz
form is like a cross between gate fabric symmetry preserving
[20] and UCCSD [30]. The gate fabric symmetry preserving
ansatz is a more advanced form of symmetry preserving,
and it has good convergence. In the ansatz in this work,
by using the initial value, it converges even better. Therefore,
the simulation time should be shorter than that for typical
ansatz.

After completing the preprocessing, the process moves
to the VQE main part. The ansatz with embedded initial
parameters U (θ0) acted through various gate operations on
the wave function ψHF representing the Hartree-Fock state.
This created a wave function ψ(θ0) which represents the
superposition of molecular orbitals. The parameters were
updated by a classical optimization process. This process
is repeated until the obtained energy converges to the
ground-state energy Egd , as shown in (6),(7). Types of
optimizers include BFGS, Powell, and COBYLA; SLSQP
was selected from the viewpoint of the small number of
circuit runs until convergence in a noise-less environment.

U (θ ) =
∏
pqrs

Dpqrs(θpqrs)
∏
pq

Spq(θpq). (5)

ψ(θ ) = U (θ )ψHF . (6)

Egd = min
θ

⟨ψ(θ )|H |ψ(θ )⟩
⟨ψ(θ )|ψ(θ )⟩

. (7)

The target molecules for ground-state energy calculation
were CO2 for 28 qubits and C3H6 for 32 and 36 qubits,
respectively. The basis functions are STO-3G for all.

C. MPI AND DISTRIBUTED PROCESSING
In general, a method for computing plurality of nodes is
not only MPI communication but also distributed processing
using remote procedure call (RPC). RPC is the technology
in the connected remote node; the technology can be utilized
to speed-up the entire computation by concurrent execution
of processes that need not be executed in series. Among the
widely used RPC frameworks, we used gRPC [40] owing to
its simplicity and high performance. As an operational form
of gRPC, a gRPC client for overall management was assigned

FIGURE 2. Conceptual diagram of distributed processing on optimization.
P1-S102 indicates circuit run for one iteration. Px means a process that
can be executed in parallel and Sx means cannot. For example 1 in the
middle column, a 1.96 times speedup is achieved and the parallelization
efficiency is 98 %. In the case of example 2 in the lower column, the
efficiency is 94 %.

to a single node, and numerous gRPC servers for computing
were established.

Distributed processing by RPC can speed-up the VQE
optimization process because the parameter vector θ consists
of a plurality of scalar parameters θpq and θpqrs as shown
in (5); thus, for each parameter, the value can be tuned
independently on a certain optimizer. Fig. 2 shows a simple
example of two and three gRPC servers with hundred
parameters that achieves 1.96 and 2.83 times increase
in speed. In this case, the parallelization efficiencies are
102
2×52 ≈ 0.98 and 102

3×36 ≈ 0.94, respectively. As a
trend, the higher the number of parameters, the better the
parallelization efficiency. Variational quantum algorithms are
suitable because of their diverse parameters.

When dealing with sequential and parallel processing, the
parallelization efficiency is generally derived by Amdahl’s
law, which is a famous theory of parallel computational
acceleration. See Amdahl’s law speed-up scailing factor (8)
and efficiency (9).

Sideal =
Np + Ns
Np

nparallel
+ Ns

. (8)

ϵideal =
Np + Ns

Np + Nsnparallel
. (9)
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FIGURE 3. A schematic image of the combination of MPI parallel and
distributed processing. The red square frame indicates MPI parallelism.
In the image above, eight compute nodes are in MPI connection. In the
image below, two nodes with MPI-connected configuration performs four
distributed operations. Each configuration is assigned an individual
parameter adjustment. The blue line indicates that the node is connected
by InfiniBand. They were actually connected through switches, not
directly.

Sideal ,ϵideal , Np, Ns, and nparallel indicate the speed-up
scaling factor, parallelization efficiency, number of paralleliz-
able process, sequencial process, and parallelization. These
formulae show that a sequential process becomes a bottleneck
where nparallel gets larger. When distributed processing is
performed by HPC cluster, creating a surplus of nodes is
possible, as shown in Fig. 2. The efficiency in that case
is shown as follows (10).

ϵDP =
Np + Ns

nserver⌈
Np

nserver
+ Ns⌉

. (10)

⌈⌉ represents the ceiling function, which is the smallest
integer greater than value in ⌈⌉. ϵDP and nserver indicate
the efficiency of distributed processing and the number of
gRPC servers, respectively. Np and Ns are derived from the
number of variational parameters; the relational expression
depends on the optimizer. For SLSQP we used, Np = (# of
parameter) and Ns = 3. When the parallelization efficiency
of MPI parallel is ϵMPI , the efficiency of the whole system
can be expressed by ϵMPI ϵDP. If no distributed processing is
performed, the efficiency is equal to ϵMPI .
The proposed method aims to maximize ϵMPI ϵDP by com-

bining parallel execution by MPI and distributed processing.
As an example of a small 8 nodes system, there are four
patterns of node usage. ×(number of MPI parallelizations) -
×(number of gRPC servers) is expressed as ×8-×1, ×4-×2,
×2-×4 and ×1-×8. Fig. 3 shows an example.

In our validation, the best combination with a maximum
of 1024 nodes was selected. Regarding MPI, ϵMPI is
unpredictable because communication overhead is highly
affected. ϵMPI was obtained by executing a quantum circuit
once for all MPI patterns. In other words, the following

configurations were performed:×1−×1,×2−×1,×4−×1,
×8 − ×1, ×16 − ×1, ×32 − ×1, ×64 − ×1, ×128 − ×1,
×256−×1,×512−×1,×1024−×1. Regarding distributed
processing, ϵDP can be predicted by (10). Therefore, ϵMPI ϵDP
was figured out.

Distributed processing is also affected by communication
overhead, whereas the effect should be negligible for large-
scale calculations. A comparison between the theoretical
values and the results obtained in the actual simulation is
presented in the section III-B.

D. HAMILTONIAN TERMS CUTOFF
Calculating the expectation values of the Hamiltonian with
the generated wave functions ⟨ψ |H |ψ⟩ must be a major
bottleneck in the simulation elapsed time. The reason is
obtaining an expectation value that requires an operations for
exponentially increasing computational basis and the number
of observable terms scale O(n4) in the quantum chemical
calculation problem of fermionic model Hamiltonian [39].
The Hamiltonian terms are represented by (2), (3), and (4).

Since the expectation value of the observables is limited to
the range of −1 ≤ ⟨ψ |P |ψ⟩ ≤ +1, it may be useful to
cutoff termswith small coefficients to slim downHamiltonian
because that of the actual term wP moves in the range of
−|w| ≤ ⟨ψ |wP |ψ⟩ ≤ +|w|.

In large-scale simulations, knowing the relationship
between cutoff threshold, accuracy, and simulation time is
difficult because the obtained accuracy is not exactly known
until the simulation is completed and energy converges
to Egd . Our approach determines the Hamiltonian cutoff
threshold Th1 by estimating the accuracy from a complete
run of a relatively small qubit problem. Algorithm 1 shows
pseudocode for obtaining the Hamiltonian cutoff ratio.

Specifically for 32-qubit problem, the effect on the
accuracy was considered by executing the 28-qubit problem
simulation until convergence for several different cutoff
ratios. The cutoff ratio is determined to minimize the number
of Hamiltonian terms while satisfying the required accuracy.
Then, moving on to the 32-qubit problem, the cut-off
threshold Th1 is determined such that the Hamiltonian term
is left by its ratio.

Algorithm 1 Get Hamiltonian Cutoff Ratio

Require: Smaller qubit Hamiltonian H = 6N
1 wiPi

Require: a < b⇒ |wa| ≥ |wb|
Require: Required accuracy 1E
ratio← 1
while ratio ≥ 0.1 do
Eratiogd ← executeVQE(H = 6(N×raito)

1 wiPi)
if |Eratio − E1| ≥ 1E then

return (ratio + 0.1)
end if

end while
return ratio
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FIGURE 4. MPI parallel simulation results. The number of parallels is plotted as a power of 2, from 1 to 1024. The three subgraphs are
derived from the same result. (a) Elapsed time per quantum circuit execution. (b) Speed-up scailing factor from the minimum configuration.
(c) Parallelization efficiency ϵMPI .

III. RESULTS
Data obtained in previous studies reveal the properties of the
fermionic model VQE simulation up to 20 qubits [18], [19],
[20]. In this study, we present the results and characteristics
of the VQE simulations up to 36 qubits run on an FX700
HPC cluster system. As new techniques, we yield parallel
execution using a combination of MPI and distributed
processing and a Hamiltonian terms cutoff.

This section is divided into the following subsections:

A. MPI parallelism
B. Distrubuted processing
C. MPI and distributed processing
D. Hamiltonian terms cutoff
E. 32-qubit complete VQE simulation

The effects of parallel execution are discussed in terms of
MPI parallelism, distributed processing, and their combina-
tion. Then Hamiltonian terms are discussed in subsection D.
Finally, the complete simulation of the 32-qubit problem to
convergence is shown.

A. MPI PARALLELISM
Up to 36-qubit calculation with mpiQulacs has been reported
in a previous study [28]. The study showed the usefulness of
quantum computational simulations using MPI for systems
with up to 64 A64FX processors. In this study, we conducted
VQE simulations of 28, 32, and 36 qubits with different
degrees of MPI parallelism; furthermore, the elapsed time
were obtained. To save the total running time, the durations

of single quantum circuit execution including an expectation
value measurement were compared.

Fig. 4(a) shows the relationship between number of
the MPI parallelisms and execution time. In the 28-qubit
computation, the computation speed decreased when the
number of MPI parallelisms was increased from 1 to 2.
This implies that the communication overhead time exceeded
the effect of increasing processing capability. We barely
managed to overcome a single node with over 16 MPI par-
allelisms. In other words, single node computation was very
efficient.

For the three datasets, the slopes of the trendlines with
more than two parallelisms were almost identical. This
indicates that the time reduction rate is less associated with
the number of qubits in this MPI parallel region. The larger
the number of MPI parallelisms, the shorter the execution
time, with a negative slope. Since 1ϵmpi

1nparallel
< 0, doubling the

number of MPI parallelisms does not reduce the time in half.
Therefore, the slopes were a little gradual. This can also be
observed from the slopes of more than 256 parallelisms.

In Fig. 4(b), a speed-up scaling factor from the mini-
mum configuration can be observed. Here, the minimum
configuration was ×1 − ×1 for 28 qubits, ×4 − ×1 for
32 qubits, and ×64 − ×1 for 36 qubits. Theoretically,
if there is no communication overhead, the scaling in the
×1024 − ×1 configuration should be larger for those with
smaller qubits. However, in reality, because of the commu-
nication overhead, single node computation can be faster
instead of following the MPI parallel trend. Accordingly, the
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FIGURE 5. Distrubuted processing simulation results and estimated ideal values. (a),(b) and (c) represents execute time, speed-up scaling
and efficiency, respectively as same as Fig. 4. Execute time is during 1 iteration starts to finishes. Plots mean actual obtained values from
simulation. Line means ideal expected values drived from (10).

scaling of 28 qubits relative to a single node was worse than
that of 32 qubits and better than that of 36 qubits.

Fig. 4(c) shows the efficiency ϵMPI . The trendline had a
negative slope because 1ϵmpi

1nparallel
< 0. Since the efficiency

was compared with the minimum configuration, larger values
were naturally obtained in the order of 36, 32, and 28 qubits
when comparing on×1024−×1. For example, 32 qubits was
20 times faster in a ×512 − ×1 configuration but 128 times
more with MPI parallelism, resulting in an efficiency of
20
128 ≈ 0.16. A sharp drop in efficiency was commonly
observed for more than 256 nodes, suggesting a limit
when the number of nodes is increased indefinitely.

The results revealed thatMPI parallelism reliably improves
the speed by increasing the number of parallelisms, whereas
larger parallelisms have a restricted efficiency.

B. DISTRBUTED PROCESSING
When the gRPC is used for distributed processing, the degree
of parallelism is the same as the number of gRPC servers.
A single node gRPC client sent instructions to multiple
gRPC servers with up to 1024 nodes. The gRPC server
consisted of 1, 4, and 64 nodes for 28-, 32-, and 36-qubit
problems, respectively. For example, 32 qubits measurements
are run in a ×4 − ×N configuration, where N is the
number of gRPC servers. The distributed processing method
ideally has a parallelization efficiency shown in (10) however,
a communication overhead should exist between the gRPC
client and the gRPC server; the objective is to verify this
effect. Furthermore, this subsection compares the speed-up

scaling and the efficiency to MPI parallelism. Unlike Fig. 4,
the comparison was based on the execution time of one
iteration; because of taking into account the negative effects
of the surplus nodes.

Fig. 5(a) shows the relationship between the number of
gRPC servers and execution time. The theoretical ideal values
are shown as solid lines and the actual values obtained in the
simulations are shown as plots. First of all, the theoretical and
measured values were almost the same. This implies that the
communication overhead and the impact of server operations
for distributed processing are relatively small. Second, the
execution time trends were similar for all three problem
settings. A performance decrease was not observed when
the number of nodes was increased from one to two, which
was observed in the MPI parallel. We found that the degree
of performance improvement achieved by the distributed
processing was stable.

Fig. 5(b) and (c) display speed-up scaling factor and
efficiency ϵDP as well as Fig. 4. The three problem settings
exhibited approximately the same scaling and efficiency. The
subtle difference arose from the number of parameters; each
had 104, 118 and 153 variational parameters in the circuit.
The efficiency ϵDP decreased as the number of gRPC servers
increased. This is not primarily due to the communication
overhead. In the parameter optimization process, paralleliz-
ability processes are executed simultaneously on the gRPC
servers. As a result, the parallelization efficiency decreases
because of the increase in the proportion of the sequential
processing part. This is known as Amdal’s law.
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FIGURE 6. Combination of MPI and distributed processing. (a), (c) and (e) represent speed up scailing of 28, 32 and 36 qubits simulation. (b), (d) and
(f) represent parallelization efficiency ϵMPI ϵDP of 28, 32 and 36 qubits.. The red and green frames in the figure indicate the combination with the highest
speed up scaling factor and the most efficient combination when using 1024 nodes. White color areas are not feasible combinations. The speed up
scailing and efficiency of the distributed processing are estimated from (10).

C. MPI AND DISTRIBUTED PROCESSING
Accelerating the simulation by combining MPI and dis-
tributed processing in a suitable ratio is one of the
new attempts of this study; the effect is verified here.
The effects of the independent method were discussed

in the previous subsections. The question is whether the
combination provides improvement. Since the total num-
ber of available nodes is 1024, a combination such as
×256 − ×16 cannot be configured. Similarly, because
a 32 qubits simulation requires at least four nodes of
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FIGURE 7. Effect of Hamiltonian term reduction on execution time. The
two subgraphs derive from the same result. The time of one quantum
circuit execution when the cutoff threshold set to 0, is normalized to
100%.

MPI parallel, a configuration such as ×1 − ×64 is not
possible.

Fig. 6 shows heatmaps of the improvement in speed and
efficiency. The white areas are not feasible combinations.
The values on the left and bottom edges of the graph were
equal to those obtained in Figs. 4 and 5, respectively. The
left edge corresponds to independent distributed processing
and the bottom edge corresponds to MPI parallel; as the
degree of parallelism increases, the degree of speeding-up
increases, and the parallelization efficiency deteriorates. The
new results obtained here is provided at the center of the
graph.

From (a), (c) and (e), the maximum speed-up scal-
ing factors of 28, 32 and 36 qubits were obtained for
×64 − ×16, ×128 − ×8 and ×128 − ×8, respectively.
While these three results agree that using all 1024 nodes is
the fastest, and even faster when used in combination rather
than independently. In particular, the 32 qubits results showed
a 4-fold speed-up compared with using only the individual
methods.

Whole parallelization efficiency ϵMPI ϵDP is shown in (b),
(d), and (f). Efficiency has the best value ϵMPI ϵDP = 1 for the
minimum configuration, and tends to worsen as the degree of
parallelism increases. It is the upper right outermost region,
which means the line using 1024 nodes, which is important,
where the most efficient combination corresponds to the one
with the highest speed improvement represented by (a), (c)
and (e).

FIGURE 8. Accuracy and Hamiltonian cutoff ratio. The error indicates the
difference from Egd at the threshold Th1=0. The Hamiltonian cutoff ratio
indicates the percentage of terms reduced.

These results suggest that MPI and distributed processing
should be combined for the fastest and most efficient use
of prepared nodes. The results are highly dependent on the
communication overhead; different hardware communication
configurations can lead to different ratio.

D. HAMILTONIAN TERMS CUTOFF
Here, we have seen how reducing the number of terms in
the Hamiltonian improves the simulation speed and decreases
the calculation accuracy. The Jordan-Wigner transformed
Hamiltonian terms were sorted according to the absolute
values of the coefficients. Then the values below the set
threshold Th1 were cutoff to slim down and reconstruct the
Hamiltonian.

Fig. 7(a) displays the relationship between the Th1 and
execution time; the time corresponds to single quantum
circuit execution with a minimum configuration. The time is
normalized to 100% when the Th1 = 0. The three colors of
the plots show similar trends.

Fig. 7(b) displays the relationship between the number
of Hamiltonian terms and execution time. A proportional
relationship was observed, which can be imagined from the
steps of the computation process, by calculating the terms
individually.

Fig. 7 accounts that adjusting Th1 in the range of 10−3 can
dramatically reduce the time required to obtain the expected
value ⟨ψ |H |ψ⟩.

Fig. 8 shows the relationship between the cutoff ratio
and accuracy of the ground-state energy. The ratio means
that the Th1 was set to cutoff the terms in a particular
percentage. For the 28-qubit problem, the accuracy was
obtained with cutoff ratios in increments of 10%. For the
32-qubit problem, it was obtained at 0, 60, 70, 80, and 90%
were used as references. The two problems show the same
trend; the accuracy deteriorates as the number of terms to
be cutoff increases. In both problem settings, the accuracy
was significantly worse when the cutoff ratio was increased
to 90%.

The objective of these measurements was to determine the
Th1 value for the complete simulation of 32 qubits. Based on
these results, cutoff ratio was set to 70%.
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FIGURE 9. Overall VQE simulation time. The measurement time is only for
the VQE main part; preprocessing is excluded. The preprocessing time is
relatively small hence negligible. First and third from the left are
estimates. The naive estimation done by multiplying the number of
executions by the time required for each quantum circuit execution.

FIGURE 10. Energy convergence process of complete VQE. The plots mean
the completion point of each iteration. The blue dashed line is the ground
state energy obtained without the Hamiltonian cutoff.

E. 32-QUBIT COMPLETE VQE SIMULATION
Large-scale VQE simulations with fermionic Hamiltonian
beyond 30 qubits have not been performed; however,
we demonstrated VQE simulations at 32 qubits using the
introduced techniques. The demonstration was conducted
using a combination of MPI and distributed processing at
an optimal ratio and using a Hamiltonian cutoff threshold
of 0.0025. The threshold was set to reduce the Hamiltonian
terms by 70%. The accuracy of the ground-state energy is
targeted at 0.01 Hartree from that with Th1 = 0, hence an
error of 0.01% is acceptable.Moreover, the execution time for
the comparison configuration is also indicated; however, this

TABLE 2. Obtained ground-state energy.

takes a very long time so that the estimation value is shown.
The estimation value was obtained by measuring the time
required for one quantum circuit execution and multiplying
by the expected number of executions.

Fig. 9 shows the overall execution time of VQE except
for preprocessing. This is because the time for preprocessing
is very short and does not affect the overall time. The time
required by this work, implementing newly two techniques,
was approximately 15 hours, which is a realistic accept-
able time for conducting algorithm research. The energy
convergence process is shown in Fig. 10 and the ground-
state energies are listed in Table 2. Typical conventional
calculation methods were also compared. This means that the
proper ground-state energy could be obtained by our VQE.

When none or only one of the techniques was applied, the
estimated times were 200 days for naive simulation, 3 days
for the MPI-DP combination, and 40 days for Hamiltonian
cutoff. The improvement ratio from the naive estimation
to this work was approximately 200. This is somewhat
consistent with the approximate percentage improvement

82
(1−0.7) derived from the discussion in subsections III-C
and III-D. The effect of the two techniques can be represented
approximately by simple multiplication because they are
independent and do not affect each other.

This result indicates that by implementing the two
techniques, the fermionic model VQE simulation until energy
convergence can be completed within an acceptable time to
proceed with the study of quantum algorithms. On the other
hand, it was estimated that using only a single technique
would take more than three days. Increasing the number
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of nodes from 1024 is another way to solve this problem;
however, it incurs additional costs.

IV. CONCLUSION
Previous research has attempted to further develop quantum
algorithms by simulating quantum calculations using a
large number of qubits. Despite these significant steps,
simulations of variational quantum algorithms, which require
multiple quantum circuit executions, had have problem of
not completing them in an acceptable time. This is because,
as the number of qubits and variational parameters increases,
the number of quantum circuit executions for optimization is
high. Therefore, to the best of the authors’ knowledge, VQE
for solving the Hamiltonian of fermionic model has only been
reported up to 20 qubits [20]. In our method, we added newly
techniques using the characteristics of the algorithm with
parameter optimization and expectation value calculation.
One is to run the 1024 FX700 nodes not simply in parallel
with MPI, but concurrently through distributed processing.
The another is to slim down the Hamiltonian used to calculate
the expectation value without losing too much accuracy.

We demonstrated that 32-qubit VQE simulation could
be completed in 15 hours. This is an acceptable time to
study the algorithm while changing the gates implemented in
ansatz or the problem settings. Large-scale VQE simulations
can be performed by the efficient use of HPC cluster
systems. In addition, two newly techniques were verified. The
computational speed-up owing to distributed processing was
not significantly affected by the communication overhead.
This behavior followed the modified Amdahl’s law. The
combination of MPI and distributed processing was found to
be faster than the use of only one method. In particular, for
the 32-qubit problem, the efficient combination got four times
faster than only MPI parallelism or distributed processing.
For the Hamiltonian slimming down, the error was 0.05%
even when the terms were reduced by 70% for the 28-qubit
problem. In verifying VQE by simulation, the result implies
that the calculation time can be reduced by several dozen
percent by this method if high calculation accuracy is not
required.

The 32 qubits simulation demonstration updated the
previously reported maximum number of qubits for VQE
simulations of fermionic models. The two newly techniques
should also provide improvements not only for VQE but also
for other variational algorithms such as QAOA and QML.
Since this work takes the form of a statevector simulation,
the effect of noise can also be simulated. Running simulations
and experiments on real quantum hardware make it possible
to separate the effects of noise from the shortcomings of the
algorithm and extract them from the experimental results.

Several factors should be considered. For both MPI and
distributed processing, communication processing has an
effec; therefore, if the communication environment is not
well developed, execution time may increase significantly
and become unstable. We chose SLSQP as the optimizer.
Other optimization methods may not be as effective as those

in this study if the ratio of sequential processing is large.
Conversely, amore parallelism-dominated optimizer could be
further improved.

This study allowed us to increase the number of qubits
that can be simulated in research of variational quantum
algorithm. These techniques will contribute to a practical
algorithm search for NISQ.

In future work, we would like to challenge the completion
of the VQE simulation with more than 32 qubits in realistic
time. We would also like to expand the scope and work on
variational quantum algorithms other than VQE. Leveraging
many nodes simultaneously creates a variety of operational
problems such as communication. It is necessary to solve this
problem using general multi-node know-how and unique use
of quantum simulation.
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