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ABSTRACT This paper introduces a Cooperative Model of Salp Swarm Optimization (CMSSO), which
combines four algorithms: Salp Swarm Algorithm (SSA), Elite Opposition Learning-based SSA (EOSSA),
Elite Opposition Quantum-inspired SSA (EQSSA), and Individual Dependent Approach for Differential
Evolution (IDA-DE). These algorithms collaborate to tackle single-objective numerical optimization
benchmarks from CEC-2022. SSA is a robust population-based metaheuristic renowned for its efficacy
in practical optimization tasks. EOL and Quantum-inspired evolutionary algorithms exhibit enhanced
capabilities in navigating search spaces compared to standard evolutionary algorithms. The objective of
this cooperative model is to preserve the diversity and computational prowess of SSA while leveraging
the strengths of these advanced algorithms. The multiobjective controller placement problem in Software
Defined Networks (SDN) involves assigning switches to controllers, impacting network Quality of
Service (QoS). Previous studies often focused on propagation latency for this assignment. However, our
paper addresses this problem considering propagation latency between switches and controllers, inter-
controller latency, and load balancing as multiobjective optimization. The experimental results confirmed
the effectiveness of the proposed approach and showed that CMSSO is competitive with the standard SSA
approaches.

INDEX TERMS Multiobjective combinatorial optimization, SSA, computational intelligence, SDN,
controller placement problem.

I. INTRODUCTION

Meta-heuristic techniques surged in popularity due to
their flexibility, gradient-free mechanism, and ability to
circumvent local optima. These advantages stem from the

metaheuristics find applications across various scientific and
industrial domains.

Inspired by intelligent navigating and foraging swarming
behavior of Salp in deep oceans, Mirjalili et al. [1] proposed

general nature of metaheuristics, eliminating the need for
derivative calculations. Their stochastic nature and random
operators enable them to navigate complex problem land-
scapes and avoid local solutions effectively. Consequently,
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the Salp Swarm Algorithm (SSA) as a robust metaheuristic
in 2017. While SSA shares similarities with other evolution-
ary algorithms, its exceptional performance is noteworthy
across various real-world optimization problems. However,
recent contributions have shown that the swarming behavior
of SSA can avoid convergence of each solution into a
local optimum up-to some extent, especially for those
problems having many local optima [2]. One of SSA’s
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limitations is its struggle to enhance the current global
best solution and reach the anticipated global optima within
the search space, particularly evident in certain unimodal,
multimodal benchmark problems, and the multiobjective
controller placement problem. These challenges often stem
from SSA getting trapped in local minima and experiencing
a reduction in population diversity.

The motivation behind the cooperative model is based on
earlier research in this area and a study on the competitive
variant of DE. In this similar thought, there is a cooperative
model of six state-of-the-art DE variants introduced in 2012
[3]. This model has been applied to real-world problems of
CEC 2011, where it has obtained very promising results [4].
The proposed cooperative model of four algorithms in this
paper is such a different variant of SSA with IDA-DE,
has performed well, and is capable of solving nine CEC
2022 optimization problems. The proposed approach is
briefly described below:

o There is an attempt made first time by applying four
different strategies from three different variants of SSA
and a variant of Differential Evolutional (DE) from evo-
lutionary algorithms, which has different characteristics
and can compensate for the various shortcomings of
standalone SSA for the CEC-2022 benchmark problems
such as premature convergence.

« Firstiteration of the optimization process builds the Salp
chain in CMSSO.

« Roulette wheel with equal probabilities used at the
start of optimization for selecting the next algorithm.
The best-performing approach is most preferred in the
next generation. That is assessed against new solutions
obtained and is the preferred solution for the next
generation.

« Eigen-based cross-over applied for the IDA-DE algo-
rithm with same approach to the approach discussed
in [7].

Another novel strategy in the field of intelligent computing
is to enhance the searchability of algorithms called Elite
Opposition-Based Learning (EOL) or Reverse learning [11]
has appeared and promoted intense research in the last
decade. It offers a cost-effective and highly effective approach
to problem-solving when compared to other algorithms.
In intricate multidimensional problems, solution quality is
frequently influenced by numerous factors. Many intelligent
algorithms employ random optimization within the search
space to discover a global optimum solution, typically based
on specific termination criteria. The use of a search strategy
rooted in reverse learning can notably boost the population’s
search capabilities.

Quantum-inspired evolutionary algorithm (QEA) pre-
sented in [15] shows an aggrandized competence for easily
exploring and exploiting the search space when matched
with standard evolutionary algorithms. Further, it has been
observed that QEA works well during the exploration of the
search space with a smaller number of individuals and obtains
global optima by exploiting the search space in a shorter
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FIGURE 1. Quantum-inspired evolutionary algorithm.

duration. The Quantum Evolutionary Algorithm (QEA) is
crafted based on the principles of quantum computing,
enabling it to handle a multitude of quantum states concur-
rently, akin to quantum bits and the superposition of states.
It’s important to clarify that while QEA leverages concepts
from quantum computing, it is not a quantum algorithm
per se, but rather a novel evolutionary algorithm [16],
as illustrated in Figure 1. It maintains the fundamental charac-
teristics of traditional evolutionary algorithms, encompassing
population representation and evaluation methods.

Many research works have been proposed towards merging
evolutionary algorithms and quantum computing since 1990s.
The quantum-inspired algorithm is emerging as a novel sec-
tion of research in evolutionary computing and is described
by the fundamental principles of quantum physics, including
superposition, interference, and uncertainty [17], [24]. The
procedure to combine and design the quantum-inspired
algorithms for conventional computers leads to representing
the solutions in quantum representation. The principles of
quantum computation offer superior diversity throughout
the optimization process, and the quantum search method
smartly guides the individuals against the global optima by
significantly upgrading the convergence pace and resolution
effectiveness [24].

Similarly, there are many types of research introduced
recently in the field of combination between conventional
meta-heuristics and reverse learning [12], [13]. The purpose
of this combination is to enhance the capabilities of the
algorithm. EOL enhances collaboration among followers
and introduces an intelligent search strategy to enhance
the original SSA’s performance. This strategy guides all
individuals within the population toward the best global
solution identified by Salp, thereby improving diversity.
EOL along with the principles of quantum computing
increases the individual Salp searchability and enhance the
diversity of the population. It should be mentioned that
there is little consideration in the literature to boost SSA’s
performance [14]. As far as we know, cooperative model of
SSA for the CEC2022 problems and multiobjective controller
placement problem is introduced first-time. The following are
the main contributions of this paper:

o Three different variants of SSA and a variant of DE
from the evolutionary algorithms, which has different
characters and are able to compensate the various
shortcomings of standalone SSA such as premature
convergence. The SSA variants are based on the
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principles of quantum computing and reverse learning
strategy which is a novel approach to boost the overall
performance of standard evolutionary algorithms.

o The enhanced iteration of CMSSO is utilized to address
the Pareto-based multiobjective controller placement
problem by employing a weighted sum approach.
This technique involves transforming the multiobjective
vector into a single objective by linearly combining the
objective functions with a predetermined weight vector.

o The mean best value and standard deviation results are
calculated using the CEC2022 benchmark functions and
are then compared to those of the original SSA and
EQSSA algorithms.

« While the average best and standard deviation gauge
the overall performance of the CMSSO algorithm, they
don’t assess individual runs. To do so and determine
result significance, a Wilcoxon rank-sum test is con-
ducted at 95% confidence interval (or at 5% significance
level).

e The OS3E Internet Topology Zoo is simulated for
evaluation of the multiobjective controller placement
problem. The obtained results with 34 possible place-
ments and best placement analyzed and provided all
the possibilities to the network provider for decision
making.

With the emergence of Software-Defined Networking
(SDN) as a promising networking approach, there has been
a paradigm shift in network communication technology,
offering substantial benefits such as network programma-
bility, flexibility, improved network management, vendor-
independent control interfaces, innovation, and cost-effective
design and maintenance. Unlike conventional networking,
SDN decouples the control plane from the data plane.
This separation means routing decision-making is distinct
from packet forwarding, with all control functions inte-
grated within a logically centralized entity known as the
controller, abstracted from the underlying infrastructure.
The most popular SDN-enabled communication protocol
between the control plane and the data plane is Open-
Flow [10], which facilitates communication via a south-
bound API. In the OpenFlow architecture, the logically
centralized and programmable SDN controller manages
the connected switch behavior by installing rules that
dictate the packet-handling behavior of switches. To enhance
scalability and fault tolerance, a logically centralized but
physically distributed multi-controller network architecture
emerged as HyperFlow [6]. This architecture allows for
partitioning networks into multiple domains, each handled
by an individual controller [5]. Given the significant impact
of SDN controller location on overall network performance
and behavior, the controller placement problem is a focal
point in SDN research. This problem encompasses decisions
related to the optimal location and quantity of controllers in
multi-controller network architectures.

Heller et al. [9] discussed the placement of the controller
in Wide Area Network (WAN) considering the reaction
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time requirements to minimize latency between each switch
and its associated controller. The fundamental scenario
of optimizing controller-to-switch latency is akin to a
facility location problem, which is recognized as NP-
hard. Developing an algorithm to produce the optimal
controller placement solution is a time-consuming and
resource-intensive endeavor. In the context of an optimization
algorithm, the search space encompasses the number of
agents while considering specified constraints. For the
CPP, involving k in n forwarding elements, the entire set
of potential combinations is represented as (nck) where
k < n. As an example, in the quest to determine the
optimal placement of 7 network controllers within a network
containing 60 forwarding elements, the solution is discovered
by examining a total of 38,620,692,0 potential placements.
In such scenarios, evolutionary algorithms offer an alternative
approach, exploring a smaller subset of the vast search space
to deliver solutions that are close to optimal.

We formulated a Pareto-based multiobjective controller
placement problem for placing the controllers in SDN.
A Pareto-based approach for controller placement involves
evaluating candidate solutions within multiobjective prob-
lems and selecting the optimal Pareto set as the controller
placement solution. In essence, a solution is considered
part of the Pareto set if there is no other solution that can
enhance any of the objectives without compromising another
objective. In this study, the parameters of interest encompass
switch-to-controller (S2C) latency, inter-controller (C2C)
latency, and imbalance. The primary objective is to minimize
these parameters while offering a comprehensive under-
standing of the trade-offs among these competing criteria.
Furthermore, this work offers decision-makers an alternative
perspective on managing these diverse objectives.

The paper is structured as follows: In Section II, we review
related work on standard SSA and approaches in the literature
for solving CEC2022 and real-world optimization problems.
Section III introduces the proposed algorithm and its applica-
tion to benchmark problems and the multiobjective controller
placement problem. Section IV covers the experimental
settings, results analysis, and discussions. Finally, Section V
concludes the paper and outlines future work.

Il. RELATED WORK

This section presents the background and relevant related
work for the standard Salp Swarm Algorithm (SSA), and the
controller placement problem. The details are discussed with
the background of this study in the subsections.

A. SALP SWARM ALGORITHM

The literature shows an increasing interest for applying SSA
in various stationary problems such as in hydrology for river
flow forecasting [18], binary SSA and a novel chaotic SSA
for feature selection problems in [14] and [19] respectively,
and chaotic SSA for SDN multi-controller placement prob-
lems [2]. Faris et al. [19] presented a work to deal with
feature selection task in machine learning, they considered
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a binary version of SSA (BSSA) and proposed two wrapper
feature selection approaches. In the initial method, eight
transfer functions were employed to convert the continuous
SSA into binary format. In an alternative approach, the
average operator was substituted with a crossover operator to
enhance the exploration capabilities of the binary algorithm.
The proposed feature selection technique was assessed
across 22 benchmark problem datasets, and its performance
was compared to another feature selection approach for
effectiveness.

Sayed et al. [14] proposed a chaos based Salp Swarm
Algorithm (CSSA) for the feature selection task in machine
learning. The simulation outcomes using feature selection
datasets demonstrate that CSSA outperforms several pre-
vious optimization methods. Ismael et al. [34] used the
original version of SSA to choose the best conductor in a
real-world application of radial distribution system in Egypt.
Ekinci et al. [35] applied the SSA to tune the stabilizer, that is
an important task of a multi-machine power system to deliver
the constant voltage regardless of changes in the input voltage
of the power system. The carried-out experiment’s experi-
mental results demonstrated the effectiveness of SSA and
confirmed that it outperformed other intelligent techniques.

These previous studies illustrate SSA’s adaptability and
effectiveness in handling the exploration and exploitation
aspects of nature-inspired algorithms. This adaptability is
particularly valuable in tasks such as feature selection
in machine learning, where SSA demonstrates promising
performance in optimizing problems and the capability to
identify near-optimal solutions with flexibility.

B. RELEVANT WORK FOR THE CONTROLLER PLACEMENT
PROBLEM

As already mentioned, Heller et al. [9] identified the
controller placement problem that includes finding the
location of controllers and the required number of controllers
in respect of network topology. The application user can
define the controller placement problem in topology network
based on various networks performance parameters such as
minimizing latencies between network switch and controller,
fault tolerance, controller-to-controller latencies, and load
balancing.

Wang et al. [20] introduced the concept of network
partitioning to decrease the whole latency of the network
considering queuing latency of SDN controllers. The
Clustering-based Network Partition Algorithm (CNPA) was
introduced for network partitioning, with a focus on reducing
the maximum end-to-end latency between SDN controllers
and OpenFlow switches in each partition. Notably, their
approach also considers the load on controllers. Yao et al. [28]
focus one step ahead with a capacity of the controller
along with propagation latency, thus it is regarded as
capacitated K-center problem. The trade-off between
propagation latency and the traffic load investigated by
Hu et al. [30], the results depicted that a little increment
of delay can balance the load on the control plane.
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Han et al. [31] the different approach investigated as to
maximize the number of controlled switches within a
bounded latency instead minimizing the propagation latency.

Bari et al. [33] proposed an approach by considering
the large-scale WAN deployment where centralized network
architecture reported many limitations related to network
performance and scalability. Deploying multiple controllers
can be a promising solution, which works in coordination
to control a network and address the centralized, networking
problems of scalability. The primary goal is to dynamically
select a controller, along with its network location and
configuration, in response to evolving network conditions.
This aims to minimize communication overhead and reduce
flow setup time. They considered a large-sized network
i.e. WAN to deploy multiple controllers where the network
framework itself adjust the number of active controllers
dynamically and assign the subset of OpenFlow enabled
switches according to the dynamic nature of the network.
It further ensures to optimize the communication overhead
and flow setup time. For placing the multiple controllers, they
proposed an approach that is dynamic controller provisioning
problem (DCPP), in which, controller placement changing
over time depending on the current number of flows in
the network. They formulated the problem as an Integer
Linear Program with different heuristic algorithms to solve
it for a large instance of the problem. The flow setup time
and minimal communication overhead network metrics are
considered. However, controller or failure of network or a
combination of multiple objective such as, 770 ~Balance o
gMax_Latency ¢ not addressed in their work.

The literature for the controller placement problem pri-
marily considers three issues in given network topology: (1)
the number of controllers, (2) the location of the controller
in-network, (3) allocation of switches to the controller, the
goal is to optimize network objectives such as shortening
the network latency [9], [20], [21], [22], enhancing the
network reliability [23], [24], [25], increasing the network
energy efficiency [26], [27], and so on. There is some
work on CPP with different approaches and method. For
example, Heller et al. [9] primarily focus on propagation
latency the problem is formulated as a facility location
problem and K-centre method adopted to tackle this problem.
Yao et al. [28] focus one step ahead with a capacity of the
controller along with propagation latency, thus it is regarded
as capacitated K-centre problem [29]. The trade-off between
propagation latency and the traffic load investigated by
Hu et al. [30], the results depicted that a little increment
of delay can balance the load on the control plane.
Han et al. [31] the different approach investigated as
to maximize the number of controlled switches within a
bounded latency instead minimizing the propagation latency.

In the existing literature, the importance of network
latency, encompassing queue and propagation latency, has
been duly acknowledged. Various approaches have been
introduced to mitigate these latencies, aiming for efficient
network functionality. Nonetheless, it’s essential to recognize
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that latency is just one component of comprehensive network
metrics. Load balance and resilience are equally vital
aspects to be considered alongside latency for optimal
network performance. A comprehensive quantitative analysis
of latency and load balancing for each controller has been
insufficiently explored in existing literature.

This paper delves into latency while also considering load
balance, aiming to minimize these metrics in a large-scale
network. We put forward an approach to assess the placement
of controllers according to predefined multiobjectives for
a specific number of controllers. EQSSA based on elite
opposition learning and principles of quantum physics is
employed instead of brute force search for the evaluation
of entire solution space. EQSSA is computationally fast and
efficient, to evaluate the controller’s placement in the net-
work. Efficiently determining the controller configuration for
a given network, while considering constraints such as propa-
gation latency between switches, inter-controller latency, and
load balancing, was a notable achievement. These objectives
exhibit a competitive relationship. For instance, optimizing
controller placement to reduce inter-controller latency may
increase propagation latency between switches and con-
trollers. This interplay among the objectives underscores the
importance of exploring a Pareto-based optimal approach for
controller placement, allowing for the examination of various
controller placements and the selection of the best solution.

Ill. THE PROPOSED COOPERATIVE MODEL ALGORITHM
In this section, we introduce a hybridization that combines
quantum computing principles, SASSA, and elite opposition
learning. We leverage an EQSSA-based representation of
solutions to improve the searchability of individual Salp
and enhance population diversity. Additionally, we enhance
SSA’s exploitative capabilities by promoting collaboration
among followers through EOL. The subsequent sub-sections
provide a detailed account of this hybridization.

A. MAIN IDEA

As mentioned earlier, the SSA algorithm is an iterative
swarm-based algorithm that operates until it meets a
predefined stopping condition. This condition can include
reaching a specified number of iterations, encountering a
local minimum (indicating algorithm stagnation), or even
identifying a known global optimum. The SSA algorithm
has been proven to be an efficient tool for optimization [18],
[19]. However, it still has limitations when dealing with
complex optimization problems, particularly those with
numerous local optima. Additionally, like most swarm-based
algorithms, SSA is time-consuming due to its stochastic
characteristics.

The CMSSO algorithm proposed in this section is a
cooperative model of four evolutionary algorithms which
includes the principles of quantum physics, and elite
opposition-learning as described in the previous section.
The standard SSA is modified to aggrandize the algorithm’s
overall performance, including a good search strategy,
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convergence speed, avoiding trapping into local or deceptive
optima, and balancing the exploring and exploiting propen-
sities of the algorithm. We have formed the Salp chain using
the same equation introduced in the standard SSA during the
optimization process of CMSSO. Algorithm 1 presents
the pseudo-code of CMSSO. This embedding approach
is evaluated on the well-known unimodal and multimodal
benchmark problems for global optimization, and for the
multiobjective controller placement problem.

Our work is inspired by several contributions from
literature on cooperative model, EOL and quantum-inspired
algorithms. This proposed idea including the idea to boost
the exploiting and exploring propensities of the evolutionary
algorithm using the cooperative model in [7] and to enhance
the overall execution of particle swarm optimization (PSO)
using the principles of quantum physics in [32]. The coop-
erative model of SSA, combined with quantum computing,
offers a promising approach to enhance SSA’s performance.
On one hand, the elite opposition-based learning strategy
promotes better coordination among follower Salp, while
ensuring diversity within the current population. It further
avoids re-initialization of the population that initiates severe
depletion of data. On the other side, representation of solution
based on the principles of quantum computing balances the
exploring and exploiting tendency while boosting the overall
searchability of CMSSO.

Analysis of the trajectory of PSO indicates that,
in every approach of the PSO algorithm, each particle
(X') converges to its local point P; which coordinates are
(Py, Py, P3, ... Py)[36].

P, — (ria * Pia + raa * Pgq) 0

Tld + T'd

all particles gradually move towards point P; as their
kinetic energy decreases to zero. As per equation (1), the
previous best positions of all particles converge to a global
best position, if r;y and rp; are random numbers evenly
distributed in the range [0,1]. To ensure convergence while
avoiding particle dispersion and guaranteeing that particles
remain within bounds, they move within a potential attraction
field centered on P,. In the context of Newtonian physics,
each particle in the standard PSO oscillates within this
potential attraction field, thus maintaining their bound state.
In accordance with the definition of a potential field, it must
satisfy Laplace’s equation, often expressed as a partial
differential equation (2):

V2 =00r Vf =0 )

Elite Opposition Quantum-inspired SSA (EQSSA) incor-
porates the concept inspired by the approach used in PSO,
where it focuses on the movements of Salp concerning a
central point Ay, that is, following the upgraded equation (7)
established on the food position (F) specified in the standard
SSA as the best location [37]. In quantum computing, there
is a potential field model like the Delta potential well and
the quantum oscillator to determine the motion of particles in
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Algorithm 1 Pseudo Code of Cooperative Model SSO

1. Initialize the Salp Population as per the rule of CEC2022
competition [7]

2. while MaxIter do

3 ifl=1

4 Build Salp chain using Standard SSA
5. end

6. X = rouletteFun ()

7 Switch (x)

8 Case 1: EOSSA

9. Function Calling EOSSA () [5]

10. Case 2: DEIDE

11. Function Calling DEIDE () [7]

12. Case 3: EQSSA

13. Calculate contraction-expansion coefficient
14. for each Salp xj"k do

15. Calculate BestMean

16. for each Salp position do

17. Calculate center point

18. Evaluate Logistic chaotic map
19. Measure Salp position

20. end for

21. Update position of Salp using EOSSA
22. end for

23. Case 4: SASSA

24. Function Calling SASSA () [8]

25. end switch

26. Validate in bound state and re-calculate the fitness
27. end while

28. Return best solution

a bound state. In this paper, we employed the Delta potential
well model for the convergence of every Salp having quantum
behaviour for the same reason as stated for the particles
in [32].

B. DELTA POTENTIAL FIELD WELL MODEL
In the realm of quantum physics, the delta potential well
model is described using the Dirac delta function, which
is a mathematical function that exhibits a unique property
of being zero everywhere except at a single point where
it becomes infinitely large. Each Salp position (X') is
associated with a quantum state, which is represented by
the wavefunction W(x, 7). We assume that each Salp moves
within a Delta potential well in the search space, with the
center point denoted as A;. This concept is derived from an
analysis of how Salp movements relate to the center point A,;.
For the sake of simplicity, we will consider a one-
dimensional space with the center point A, and the Delta
potential can be depicted as below equation (3):

Zx)=—yd(x —A)=—ys®) 3

when y is a continuous positive value, and yé (y) indicates
the Dirac delta function for y = (x — A).

C. SALP POSITION MEASUREMENT

There are various algorithms which provide very good results
on part of problems. This cooperative model of Evolutionary
Algorithms applied four different approaches from different
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variant of SSA optimization methods and an adaptive version
of DE. The selection is based on the best values obtained
by the algorithms on different problems during previous
experiments.

1) Elite Opposition Learning based SSA (EOSSA):

A Reverse Learning or Elite Opposition Learning
(EOL) approach is introduced to boost the standard
SSA’s performance for numerical optimization prob-
lems [5]. The main objective of this hybridization is to
improve the exploration and evaluation capabilities of
the original SSA. The idea behind EOL is to introduce
an opposing individual that might be closer to the
optimal solution for each member of the population
during the optimization process. This simple strategy
provides the benefit of being cost-effective and highly
efficient, as it enhances population diversity and
prevents entrapment in local optima. The EOSSA
algorithm employs the following elite reverse learning
equation (4):

X={a (Uy—Lo)-x) @

in the equation, ¢; represents a randomly generated
number from a uniform distribution in the range [0, 1].
Xj" 1 corresponds to an elite opposite-based solution,
and in signifies the current position of Salp.

2) Elite Opposition based Quantum Computing Strategy
in Standard SSA (EQSSA):
Salp confined within the Delta potential well undergoes
changes akin to particles in PSO, maintaining a bound
state. The evaluation of each Salp fitness depends on
its position. However, the probability distribution of
each Salp position (X?) can only be inferred from
the probability density function |W(x, )|, i.., Salp
appears at position x related to point A. Therefore, it is
necessary to measure the position of Salp using the
method called collapse, which is a transformation of the
quantum state to the classic state. This measurement
process can be simulated using the Monte Carlo
Method procedure.
We utilize the following iterative position update equa-
tions to evaluate each Salp’s position. This equation
is derived from the principles of quantum-inspired
Particle Swarm Optimization (PSO) and the Salp
Swarm Algorithm (SSA). The combination of these
algorithms ensures efficient navigation through the
solution space, enhancing the overall optimization
performance [32], [38].

k rd
Ag + B * ‘BestMeanl - X ‘ * In (—)

Uug
K cs >0
Xjp1 = } ra
Ag — By % ‘BestMeanl — XJ ‘ xIn{—
Ud
cs4 <0
(5
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3)

in this context, we assume the initial iteration (I = 0)
within a total iteration limit (L). The variables r; and uy
represent uniformly distributed random numbers in the
range [0, 1] in the d — dimensional space. B; is defined
by equation (6) and acts as a contraction-expansion
factor that dynamically adjusts during iterations to
respond to individual Salp convergence speed and
algorithm performance. A4, outlined in equation (7),
is a local center point for Salp, serving as a reference
point for their oscillations, BestMean;, as described
by equation (8), represents the mathematical mean of
individual best positions. X¥ represents the k — th Salp

in the j-dimension, while X 1 denotes the new position

of a Salp.
B — 05« L — D
T\ 05

in this context, 1 corresponds to the current iteration,
while L represents the maximum allowable number of
iterations.

(6)

(”ld S Xjk + raa * Fj)

g + rid
where ri4 and rpy are uniformly distributed random
numbers in the range [0, 1]. F; is the food position and
assumed as the best location.

Ag =

N

d
1
BestMean; = I ~Z"IXk’ 0]
j=

®)
where N is the maximum number of the population.

Different Evolution with Individual Independent (IDA-
DE):

In 2015, Tang et al. introduced a variant of DE with
an individual-dependent approach (IDA). The search
process is divided into exploration and exploitation
stages. All individuals in the population are ranked
according to the value of the objective function. Those
sorted are divided into two sets - higher S (lower
cost function) and lower I (higher cost function). The
original IDE algorithm utilizes a two-phase mutation
strategy, utilizing the current base individual in the
exploration phase and a randomly selected base vector
in the second phase. This mutation strategy regulates
the convergence speed throughout the search process.
The mutation takes place in IDE-DE through the below
equation (9).

xk

P Xy + Fo % Xp — Xol % X2 — X3 0 €1

©))

where o denotes the base vector, indices r1 # r2 #
r3 # 0 are selected randomly from [1, N], and b is a
randomly selected index from the superior part of the
population S.

[X0+F0*|Xrl — Xol % X2 — Xp3] 0€ S
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4)

Self-adaptive SSA (SASSA):

Self-adaptive control parameter technique with
multi-population mechanism is proposed as an efficient
approach for solving the DOPs, where the control
parameters of an algorithm are adapting itself accord-
ing to the progress of optimization process, multi-
population with ageing strategy helps in searching and
tracking ever-changing global optima [8]. In SA-SSA,
the positions of both the leader and the followers are
computed using equations (10) and (11) respectively
throughout the optimization process.

¥l — Sj+C1ﬂj (Sj—le *Cz,j k3 <0
/ Sj— Ci.j (S/— X')*Coj) ks =0
(10)

g frtea ()

k2 % (x]?*‘_xjﬂ)) (11)
here, theCy j, C3 j, Ci’ +1 represent self-adaptive
parameters. X /.1 denotes the position of the first Salp
(leader) in the jM dimension, while S; represents
the position vector of the food source in the search
space, serving as the target for the Salp swarm in the
j™ dimension. Additionally, k> and k3 are uniformly
generated random values within the range [0, 1], and
k3 determines whether the next position in the j"th
dimension moves towards positive or negative infinity.

The proposed above cooperative model is based on the
following approach - The initial generation of the algorithm
involves formulating a Salp chain for a population P of indi-
viduals. This is accomplished through one of the employed
algorithms, determined by a roulette wheel with equal
probabilities initially. The method that yields superior results,
particularly in terms of new-good solutions, is given pref-
erence in subsequent generations. This selection mechanism
was inspired by the competitive DE variant [3]. The flowchart
of the proposed algorithm shown in flow chart Figure 2.

1y

2)

3)

Initialization - The initial population is created through
uniform random initialization within the variable
range, adhering to the guidelines set by the CEC2022
competition rules.

Cooperative Model Strategies - There are various
algorithms which provide very good results on part
of problems. This cooperative model of Evolutionary
Algorithms applied four different approaches from
different variant of SSA optimization methods and an
adaptive version of DE. The selection is based on the
best values obtained by the algorithms on different
problems during previous experiments.

Salp within boundary Reevaluation of fitness - Evalu-
ated each Salp position and adjusted within the upper
and lower bound provided for CEC 2022 benchmark
problems. Fitness revaluated to find the optimum solu-
tion and update the population for the next generation.
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Start

4

Initialize the Salp Population as per
the rule of CEC2022 competition
requirement and Build the Salp Chain

Max-
Iteration?
No

Select & execute algorithm
X =roulette (), using Switch case

Validate Salp with-in boundary
and Evaluate the Fitness

Calling ... EOSSA (); Break
Calling ... DEIDE (); Break
Yes
Calling ... EQSSA (); Break
Calling ... SASSA (); Break

< r

Global Solution

Il
End

FIGURE 2. Flowchart of cooperative model of SSO.

4) Termination Criteria - CMSSO algorithm stops when
the maximum number of fitness function evaluations
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is reached. This is according to the guidelines of CEC
2022 competition.
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FIGURE 3. Position of controllers k = 4 in OS3E network topology [40].
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D. COMPUTATIONAL COMPLEXITY OF COOPERATIVE
MODEL ALGORITHM

The computational complexity or cost of the proposed
CMSSO algorithm is denoted as O(I(d x h + Of * h)) +
O(H), where d represents the dimension, /4 is the number of
solutions, Of is the objective function cost, / is the number of
iterations, and H is a constant. The computational complexity
of the CMSSO algorithm closely resembles that of SSA with
basic EOL operations. The overall time complexity of the
algorithm is O(K * P % D x I), where K is a constant, and
P, D, I are the population size, dimension, and the maximum
number of iterations, respectively.

E. THE MULTIOBJECTIVE CONTROLLER PLACEMENT
PROBLEM

In the realm of software-defined networking (SDN), the
control plane is disentangled from forwarding elements,
leading to the emergence of the controller placement
problem. While minimizing propagation latency is a pivotal
concern in controller placement, various other objectives
demand attention, including inter-controller latency, fault
tolerance, load balancing, and controller capacity, along with
the intricate relationships between these objectives [39]. This
study utilizes the proposed CMSSO algorithm to tackle
the multiobjective controller placement problem, which
involves conflicting objectives like minimizing propagation
latency between controllers and forwarding elements, inter-
controller latency, and load balancing. To facilitate eval-
uation, we employ a weighted sum approach to combine
these objectives into a single scalar value, allowing for a
comprehensive analysis of the optimization landscape lever-
aging CMSSO. The adoption of a multiobjective approach
provides a clearer depiction of the intricate trade-offs among
competing objectives. Moreover, available alternatives are
always preferable concerning the different objectives of the
decision makers [41].

Motivated by the diverse competing objectives inherent in
evaluating controller placement, the initial and paramount
step in the placement of a controller involves problem
representation. Essentially, the problem must be formulated
in a manner conducive to optimization [39]. The network
under consideration in this study is denotedas G = (V, E),
where V is the set of nodes or switches, and E is the set
of physical links among the switches. The set of nodes
V comprises a set of forwarding elements S and a set of
controllers C. The set of controllers can be expressed as C
={Cy, Cp, C3, C4.... Cy}, and the set of switches as S =
{81, S2, 83, S4.... S,}, where m denotes the total number
of controllers, and n indicates the total number of forwarding
elements (or routers), i.e., V =8 UC. Thus, C; represents the
i controller, and S; represents the i" forwarding element or
router. To represent the shortest path latencies between each
pair of forwarding elements and controllers, a distance matrix
d(s, c)isrequired.

The given quantity of controllers, denoted as k, to be
placed for a specific placement can be represented as
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|C;| = k. For the sake of simplicity, let’s assume C =
{C1, C3, C3, C4.... Cy}represents all potential controller
locations. Determining the location of the controller C; € C,
where i represents the i controller, is cast as an optimization
problem with the objective of optimizing a metric. The most
used network metric for the controller placement problem is
the latency between the controller and forwarding elements.
This metric is defined as the average distance between the
switches (or routers) and their associated controller. The
computational equation for calculating the average latency is
expressed as:

1
l—[Average Latency C) = in d(s, 12
©) = évc“é“&- (.0 (12

here, d(s, c¢) denotes the shortest path from forwarding
element s to its associated controller ¢ € C;. Like the
node-to-controller latency, the inter-controller latency for a
given placement C € 2!V!, and any pair of controllers ¢ and
¢ in this placement, can be characterized as inter-controller
latency H/évmge Latency(C) between ¢ and ¢;:

H/éverage Latency (C) =

> de ) (13)

('g') c1, C € C

The metrics defined in equations (12) and (13) aim
to establish the shortest communication paths during the
controller placement process. In addition to achieving reliable
controller placement, controller load balance serves as
another crucial metric. Network imbalance is introduced as
a minimization problem to align with the problem definition
in this paper. For each placement C and controller c, the total
number of switches assigned to ¢ when each switch connects
to its nearest controller is denoted as r.. The imbalance metric
[]imbalance giopifies the difference in r. between the two
controllers with the lowest and highest number of assigned
nodes, respectively. Moreover, in the presence of failures,
imbalance can be assessed by scrutinizing the disparity in
assignments for corrective measures.

[1mbalanee () = max r, — min re (14)
ceC ceC

The objective of employing CMSSO for addressing the
controller placement problem is to achieve minimal values
for the average latency and imbalance metrics, outlined
in objective equations (12), (13), and (14). In essence,
it strives to identify a controller placement that strikes a
suitable balance between the objectives pertinent to a specific
use case. The application of CMSSO for multiobjective
controller placement demonstrates efficacy in generating
practical solutions by systematically exploring the search
space. By providing the Pareto-optimal set, CMSSO offers
decision-makers a range of alternatives, thereby enhancing
the efficiency of network operations.

A Lat
F =wy * l—[Average Latency(c) +wy % l—[cverage a ency(C)

+ w3 * l—[imbalance(c) (15)
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F. METHODOLOGY FOR MULTIOBJECTIVE OPTIMIZATION
The proposed CMSSO algorithm for the multiobjective
controller placement problem effectively generates feasible
solutions within specified time constraints by exploring a
subset of the search space and identifying the Pareto frontier.
This problem falls within the domain of multiobjective com-
binatorial optimization problem (MOCOP), where various
approaches exist in the literature. Our method, inspired
by CMSSO, adopts a multiobjective perspective, leveraging
Matlab implementation to produce a Pareto frontier of
explored solutions. Additionally, CMSSO ensures that the
output maintains a high degree of dispersion, capturing
Pareto optima across diverse objectives. The technique
involves transforming the multiobjective vector into a single
objective by linearly combining the objective functions with
a predetermined weight vector wi, wy, and w3 to define
the objective function F for S2C latency, C2C latency and
imbalance respectively, as shown in equation (15). This
systematic approach enhances decision-making in complex
optimization scenarios, offering insights into the trade-offs
inherent in multiobjective optimization. This system of
implementation is like the mechanism of precision and
recall [42]. Finally, the proposed CMSSO algorithm does not
require passing a parameter with any time constraints, and
it can run to provide solutions at any time as the objective
functions are unconstraint.

G. HOW CMSSO IS GENERATING THE PARETO FRONT?
The methodology adopted in this study for CMSSO is
based on the algorithm outlined in the pseudo-code format
in Algorithm 1. CMSSO receives inputs in two primary
categories: (1) Problem-specific data such as the network
topology graph G and the anticipated number of controllers
to be deployed, denoted as k, and (2) CMSSO-specific
parameters including the number of placements to be
evaluated per iteration, the total number of iterations, and
other algorithmic control parameters. Initially, algorithmic
variables are initialized, and a set of random placements,
each comprising k elements, is generated. Random weights
are then assigned to each combination of placement and
objective, facilitating the algorithm’s capacity to achieve
dispersion. Subsequently, fitness is computed based on the
specified multiobjective function, enabling the identification
of Pareto optima within the objective space. Throughout
the procedure, the Pareto front of the examined controller
placements and their relative placements are continuously
updated to reflect the evolving optimization process.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the pro-
posed algorithm CMSSO through two experiments. The
first experiment assesses CMSSO’s ability to solve global
optimization problems, comparing its performance with
the original SSA. The second experiment addresses the
multiobjective controller placement problem in SDN, seeking
optimal positions for controllers in a given network topology
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to minimize average propagation latency, inter-controller
latency, and imbalance.

A. COMPUTER ENVIRONMENT SETUP
The CMSSO is developed and evaluated in the following
development environments:

e MacOS Ventura 13.0

o Apple M1

« 8GB DDR4 RAM

o The CMSSO is implemented in MATLAB R2022b

B. CEC2022 BENCHMARK PROBLEMS

CEC2022 Single Objective Bound Constrained Optimization
Competition introduced 12 benchmark problems F1 —
F12 with two dimensions d = 10, d = 20. The searches
space has been defined with ranges of decision variables and
limited in [—100, 100] for all benchmark problems.

C. NUMERICAL RESULTS AND ANALYSIS
The numerical results and comparisons of the experiment
with different components of algorithms are succinctly
presented in Table 1 and Table 2. These tables encapsulate
the outcomes derived from the application of the proposed
CMSSO in optimizing the benchmark functions discussed
in the paper. The proposed CMSSO algorithm can solve
nine CEC2022 benchmark problems of single-objective
optimization as highlighted in blue as a result of the Min
value in Table 1. The achieved value is measured as O if
the difference between the best solution obtained by the
algorithm and the optimal solution found by the method is
le — 8 or less. The obtained results of F6, F9, F12 are
worst results. However, the problem F11 is executed with
good accuracy for d = 10. F9 — F12 functions are
defined as composition benchmark problems. CMSSO can
achieve the expected results when the d = 10 and
makes a good attempt for the higher dimension as well.
Also, CMSSO is giving better results on 23 benchmark
functions compared to the state-of the art algorithms, where
EQSSA is giving better results on 1 benchmark function
only. Thus, the devised CMSSO strategy adeptly navigates
the most promising regions within the search space, striking
a harmonious balance between exploration and exploitation.
The former metrics show how good this algorithm per-
forms on average, and the latter indicates how stable CMSSO
is during all the runs. These two metrics measure the overall
achievement of CMSSO. However, to measure and compare
each analysis individually and check for significance, the
Wilcoxon rank-sum test is performed at a 95% confidence
interval (or 5% level of significance), where p-values less
than 0.05 is regarded as solid testimony in contrast to the
null hypothesis. This statistical test is performed by selecting
the best algorithm for each benchmark function and matched
with another algorithm individually. For example, for the best
algorithm, CMSSO pairwise comparison is made between
CMSSO/EQSSA and CMSSO/SSA.
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TABLE 1. Obtained error values on benchmark problems.

Cooperative Model of Salp Swarm Optimization for CEC 2022 Single Objective Numerical Optimization
Dimension Function Min Max Median Mean sp
10 1 0.00E+00 9.71E-09 8.63E-09 8.30E-09 1.69E-09
10 2 0.00E+00 9.43E+01 1.78E-03 9.50E+00 2.98E+01
10 3 0.00E+00 9.43E+01 1.78E-03 9.50E+00 2.98E+01
10 4 3.28E+01 1.52E+02 5.01E+01 7.36E+01 4.72E+01
10 s 0.00E+00 9.85E-09 8.94E-09 8.69E-09 1.10E-09
10 6 6.03E+02 1.54E+09 L18E+04 1.54E+08 4.86E+08
10 7 1.64E+01 3.14E+02 2.70E+01 5.39E+01 9.15E+01
10 8 2.82E+01 5.27E+02 3.18E+01 8.09E+01 LSTE+02
10 9 2.29E+02 1.67E+03 2.36E+02 5.60E+02 5.24E+02
10 10 1.00E+02 2.53E+03 LOIE+02 3.43E+02 7.67E+02
10 1 0.00E+00 2.75E+00 9.56E-09 2.77E-01 8.69E-01
10 12 1.63E+02 1.86E+02 1.65E+02 1.69E+02 9.00E+00
20 1 1.33E+04 4.53E+06 3.68E+04 7.74E+05 L5TE+06
20 2 0.00E+00 6.71E+03 4.97E+01 131E+03 2.67E+03
20 3 0.00E+00 L61E+02 3.28E-01 4.45E+01 7.17E+01
20 4 9.81E+01 1.56E+02 L41E+02 1.34E+02 L97E+01
20 5 0.00E+00 9.61E-09 9.18E-09 8.98E-09 6.12E-10
20 6 245E+05 L77E+07 141E+06 5.02E+06 632E+06
20 7 9.13E+01 1.92E+02 1.24E+02 1.26E+02 3.18E+01
20 8 3.57E+01 1.70E+02 6.37E+01 6.97E+01 3.83E+01
20 9 1.81E+02 2.25E+03 1.82E+02 5.18E+02 730E+02
20 10 1.O1E+02 3.16E+02 LOIE+02 1.23E+02 6.79E+01
20 11 0.00E+00 8.74E+03 3.20E+02 1.50E+03 2.75E+03
20 12 233E+02 7.41E+02 243E+02 2.92E+02 1.58E+02

D. CMSSO FOR THE MULTIOBJECTIVE CONTROLLER
PLACEMENT PROBLEM
To assess the effectiveness of CMSSO in tackling the con-
troller placement problem in SDN, we opted for the widely
utilized Internet2 OS3E topology. This topology comprises
34 nodes, and the goal is to determine a controller placement
(k) within the network, adhering to constraints that minimize
latencies and imbalance, as outlined in Section II (E).
Assessing all potential controller placements for a pre-
determined number of controllers in a network topology to
find the optimal set of positions is a laborious and resource-
intensive task. This exhaustive process often encounters
resource limitations, such as exceeding the RAM capac-
ity [39]. The complete search space involves combinations
of controllers (k) with network nodes (n), aiming to identify
the optimal positions for k controllers, encompassing all
conceivable placements using equation (15).

n n!
(k) ~ Kl —k)! (16)

hence, for a moderately sized network with a limited
number of nodes (), the quantity rises significantly with
an augmentation in the number of controllers (k). As an
illustration, in a network topology featuring 34 nodes and

2 controllers, the total placements amount to (324 ) = 561.

Expanding to (354) = 27,825,056 placements exemplify
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TABLE 2. Comparison with component algorithms of CMSSO.

Comparison with Component Algorithm on 10-D

Function CMSSO EQSSA SSA

- Mean 8.30E-09 1.22E+04 3.72E+05
Std. 1.69E-09 1.69E+04 5.29E+05

2 Mean 9.50E+00 1.14E+03 6.31E+03
Std. 2.98E+01 1.09E+03 2.71E+03

Mean 9.50E+00 3.89E+01 1.49E+02

3 Std. 2.98E+01 4.58E+01 9.66E+00
F4 Mean 7.36E+01 7.96E+01 2.44E+02
Std. 4.72E+01 2.52E+01 2.11E+01

Mean 8.69E-09 6.94E+02 1.04E+04

s Std. 1.10E-09 9.41E+02 1.98E+03
F6 Mean 1.54E+08 8.05E+08 4.68E+09
Std. 4.86E+08 9.44E+08 2.3TE+08

Mean 5.39E+01 1.12E+02 4.35E+02

F Std. 9.15E+01 6.08E+01 1.03E+01
Mean 8.09E+01 8.96E+03 2.81E+06

e Std. 1.57E+02 2.78E+04 1.88E+06
Mean 5.60E+02 5.22E+02 2.26E+03

i Std. 5.24E+02 2.67TE+02 1.05E+03
F10 Mean 343E+02 4.67E+02 2.58E+03
Std. 7.67E+02 6.97TE+02 L.79E+02

Fi1 Mean 2.77E-01 1.12E+03 6.25E+03
Std. 8.69E-01 1.14E+03 1.31E+03

F12 Mean L69E+02 1.93E+02 2.37TE+02
Std. 9.00E+00 3.93E+01 4.25E+01

Comparison with Component Algorithm on 20-D

Function CMSSO EQSSA SSA
Fl Mean T.T4E+05 6.1TE+05 3.66E+07
Sud. 1.57E+06 1.76E+06 4.71E+07
. Mean 1.31E+03 3.39E+03 3.90E+04
2 Std. 2.67E+03 4.44E+03 6.35E+03
Mean 445E+01 6.92E+01 2.01E+02
3 Std. 7.17E+01 6.10E+01 1.45E+01
Mean 1.34E+02 2.01E+02 5.48E+02
F4 Std. 1.97E+01 6.26E+01 4.82E+01
Mean 8.98E-09 2.73E+03 3.04E+04
Fs Std. 6.12E-10 5.20E+03 5.10E+03
6 Mean 5.02E+06 2.38E+09 238E+10
Std. 6.32E+06 3.96E+09 4.55E+09
1 Mean 1.26E+02 3.61E+02 5.95E+02
Std. 3.18E+01 1.43E+02 647TE+01
F8 Mean 6.9TE+01 1.64E+03 3.04E+06
Std. 3.83E+01 3.03E+03 1.82E+06
Mean 5.18E+02 64TE+02 7.02E+03
o Std. 7.30E+02 T.69E+02 1.85E+03
F10 Mean 1.23E+02 2.52E+03 5.34E+03
Sud. 6.79E+01 2.71E+03 8.40E+02
i Mean 1.50E+03 3.82E+03 2.73E+04
Std. 2.75E+03 4.67E+03 6.12E+03
12 Mean 2.92E+02 4.98E+02 1.0SE+03
Fi Std. 1.58E+02 2.01E+02 3.46E+02

the substantial escalation. This notable increase in potential
placements demands meticulous evaluation, requiring sub-
stantial computational resources and time. However, time
stands as a critical and limiting factor in the dynamic
and adaptable network scenario, where swift adaptations to
alterations in the network environment are imperative.

The CMSSO algorithm was employed to evaluate potential
placements within the Internet2 OS3E network topology,
comprising 34 nodes (n = 34), for a designated number
of controllers (k = 4), as detailed in Table 3. The
evaluation encompassed factors such as average latency
between switches and controllers, inter-controller latency,
and imbalance, conducted over 30 independent runs. Optimal
placements emerged during specific iterations: the 60
iteration minimized average latency, resulting in controllers
positioned at Seattle, Denver, Jackson, and Pittsburgh; the
16" iteration minimized imbalance, leading to placements
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TABLE 3. Possible placement of k = 4 controllers.

SSA’s overall performance. Experimental results underscore
the efficacy of this embedded approach, demonstrating
substantial performance enhancements in terms of both mean
value and standard deviation compared to the original SSA.

Moreover, in the context of software-defined networks,
where controller placement is pivotal, this study defines
the multiobjective controller placement problem. It priori-
tizes minimizing switch-to-controller (S2C) latency, inter-
controller (C2C) latency, and imbalance, thereby elucidating
the trade-offs between these competing objectives and

Possible
Placement Avg. AVE;
Run # Nodes Latency Latency Imbalance
(k=4) (S2C) (C2C)

1 [30 25 15 5] 0.077428 0.29018 0.32353
2 [3 26 19 33] 0.1333 0.37628 0.38235
3 [8 24 17 22] 0.1805 0.12419 0.41176
4 [28 19 32 24] 0.13178 0.36008 0.32353
5 [4 24 27 34] 0.1631 0.12835 0.35294
6 [6 33 31 12] 0.0651 0.34158 0.20588
T [10 5 29 13] 0.077277 0.29 0.26471
8 [11 5 10 8] 0.10497 0.21326 0.23529
9 [1 9 20 23] 0.15567 0.25155 0.61765
10 [2 24 20 6] 0.092294 0.20724 0.17647
11 [13 22 1 21] 0.080024 0.39579 0.20588
12 [22 3 16 9] 0.11127 0.35896 0.32353
13 [32 26 23 3] 0.10985 0.45325 0.5
14 [9 21 11 30] 0.085294 0.3657 0.23529
15 [31 17 30 33] 0.10046 0.29351 0.26471
16 [12 33 25 30] 0.08699 0.33859 0.088235
17 [18 34 31 7] 0.14033 0.15325 0.26471
18 [32 31 13 23] 0.1192 0.28553 0.38235
19 [9 5 31 25] 0.11522 0.26863 0.44118
20 [20 11 32 7] 0.10465 0.2696 0.41176]
21 [28 16 33 29] 0.082158 0.41546 0.35294
22 [13 32 15 25] 0.13526 0.28986 0.5
23 [1 16 22 26] 0.11157 0.39042 0.44118
24 [28 11 29 13] 0.079472 0.28546 0.11765
25 [10 33 11 29] 0.070679 0.38951 0.29412
26 [31 16 26 24] 0.18177 0.15181 0.5
27 [10 26 1 30] 0.12317 0.37919 0.41176
28 [6 17 18 20] 0.10211 0.17906 0.26471
29 [25 6 18 2] 0.10109 0.18922 0.17647
30 [26 10 30 12] 0.27146 0.084195 0.67647

at Seattle, Pittsburgh, Houston, and Cleveland; and the
30™ iteration minimized inter-controller latency, yielding
positions at Cleveland, Pittsburgh, Boston, and Washington.
These optimal configurations are distinctly marked in the
table and visually represented in Figure 3. The CMSSO
algorithm demonstrated its effectiveness in strategically plac-
ing controllers, considering various objectives for enhanced
network performance.

V. CONCLUSION AND FUTURE WORK
This study proposes an enhanced algorithm, CMSSO, a novel
variant of the standard SSA designed for tackling both
CEC2022 Benchmark Problems and real-world optimization
challenges. Through collaboration with four algorithms —
Salp Swarm Algorithm (SSA), Elite opposition learning
based Salp Swarm Algorithm (EOSSA), Elite opposition
Quantum-inspired Salp Swarm Algorithm (EQSSA), and
Individual dependent approach for Differential Evolution
(IDA-DE) — CMSSO offers a comprehensive solution for
single objective numerical optimization, and for the multiob-
jective controller placement problem.

Within the CMSSO framework, adjustments to the
Salp placement, inspired by quantum computing and elite
opposition learning principles, aim to significantly boost
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offering decision-makers alternative perspectives.

In future research, we intend to further explore the
application of CMSSO proposed in this study to tackle
additional real-world optimization challenges. Additionally,
we plan to conduct a comparative analysis of CMSSO with
existing multiobjective meta-heuristics algorithms.
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