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ABSTRACT Renewable distributed generations are associated with generation intermittency. Exacerbated
by the consumption and demand uncertainty and their resulting mismatch, its energy trading suffers
similar uncertainty. The situation is severe in the standalone distributed generations (SDG) for lacking
transaction access to the utility grid. This paper proposes the energy transaction time determination and
minimization algorithm for consumers in the SDG arena. First, blockchain technology is adopted for
transaction enhancement and transaction data acquisition. The acquired blockchain data includes the hourly
nodes (number of blockchain members), transaction sizes, and corresponding transaction durations. Next,
the blockchain-recorded transaction data are fitted using the linear regression (LR) algorithm to obtain
their fitting formula. The fitting formula was subsequently optimized in hourly intervals to obtain the
optimal transaction time (energy delivery time) using particle swarm optimization (PSO). Finally, the optimal
results are presented in a decision tree (DT) to energy consumers in the blockchain platform. Consequently,
their transaction decision-making is guided by the result against the inherent transaction time uncertainty.
Consumers can thus correctly adjust their transaction habits to suitably adapt to the transaction duration
fluctuations in the energy trading arena. Energy transaction delays and transaction costs are consequently
minimized leading to greater penetration of renewables and bridging the generation and consumption gap.

INDEX TERMS Blockchain technology, decision tree (DT), linear regression (LR), number of nodes,
particle swarm optimization (PSO), peer-to-peer energy trading, standalone distributed generations (SDG),
transaction size, transaction time.

NOMENCLATURE

Acronyms
BTC Bitcoin.
DT Decision Tree.
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IDE Integrated Development Environment.
LR Linear Regresssion.
MG Microgriid.
PSO Particle Swarm Optimization.
P2P Peer-to-Peer.
SDG Standalone Distributed Generation.
Parameters
N Number of nodes.
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T Transaction time (Transaction latency).
Z Block size.
t Time interval.
N_x Number of nodes at xth time interval.
T_x Transaction time at xth time interval.
Z_x Block size at xth time interval.
c1, c2 Acceleration coefficients of each particle.
I Number of iterations.
Pb Particle’s local best position.
Pg Particle’s global best position.
Pb-Xi Cognitive component of each particle.
Pg-Xi Social component of each particle.
r1, r2 Random numbers.
r2 score Coefficient of determination.
Vi Initial velocity of each particle.
Vi+1 New velocity of each particle.
ω Particle’s weight of inertia.
ωVi Inertia component of each particle.
Xi Particle’s initial position.
Xi+1 Particle’s new position.

I. INTRODUCTION
A. ENERGY AVAILABILITY IN THE STANDALONE
DISTRIBUTED GENERATION ARENA
At each instance in the utility grid, the energy buying and
selling prices are ideally given [1]. Grid-connected micro-
grids (MGs) and distributed generations uphold these prices
in the energy transactions with the utility grid. This ideally
implies that energy is available to the consumers at all times
and at will. As a result, the utility grid steadily assists the
grid-connected distributed generations in achieving supply
reliability and availability timeliness [2]. When the utility
grid is, however, located too far from consumers’ locality, the
grid remains unconnected due to the corresponding high cost
of electricity transmission over a very long distance [3]. Also,
even the grid-connected MGs become islanded when a fault
of high magnitude is encountered in the main grid [4], [5].
This is to keep the consumers in the MG unaffected. During
this time, energy consumption is dependent on the localized
and distributed generation sourced as well as their availability
timeliness. In standalone distributed generations (SDG), the
grid-connected energy supply reliability and its availability
timeliness benefits are however unobtainable. This leads to
uncertainties in energy reliability and availability timeliness.

The blockchain is thus introduced to address this problem
and enhance the peer-to-peer (P2P) energy transaction expe-
rience. Blockchain technology offers rapid transaction access
and convenience in a peer-to-peer transaction association [6].
Originating from the financial sector, it was introduced in the
distributed energy generation market to enhance the transac-
tion methodology amongst energy prosumers and consumers.
Other promising features of its adoption include [7] high
security, transaction transparency, record-keeping of trans-
action details, etc. The blockchain, however, is associated
with transaction time delay and its delay duration variability

and uncertainty [8]. This is due to its limited transaction
bandwidth [9].

B. BLOCKCHAIN TRANSACTION TIME LATENCY AND
UNCERTAINTY
Transaction delays are experienced with blockchain tech-
nology for several reasons. First, each initiated transaction
ideally goes through a two-step security check protocol
before it is admitted [10], [11]. It is first verified by the
miners. Secondly, the verified transaction is forwarded to
the entire blockchain members for validation before it is
finally admitted and added to the growing chain. However,
in the verification process, due to the growing number of
transactions, the first-step verification by miners is far more
delayed during periods of high transaction traffic. Miners
are individuals who are responsible for approving initiated
blockchain transactions by solving a computational puzzle
with high-end computers [12] Every approved transaction is
stored in a transaction block until it is filled. The block is
subsequently sent to the blockchain members for approval
thereafter it is added to the chain. Thus, the total transaction
delay is a drawback factor.

Furthermore, sometimes transactions get stuck in themem-
pool after a long period of delay in the transaction queue [13],
[14]. This could eventually be reversed. In addition, in some
circumstances, more than one transaction block might be
approved concurrently during which only one block is nor-
mally allowed to be appended. Others, known as lossy blocks
are not added leading to much more delays. This is such
because only one block can be sent at a time. Meanwhile,
each transaction block has a content size limit to pass through
a given transaction bandwidth [15]. This restricts the total
individual transactions to this size thus limiting the average
transaction time. In addition, as a security measure, each
transaction block has a minimum time duration that must
be exhausted before it is added to the chain. For example,
in Bitcoin, it is 10 minutes [16]. These collectively increase
the transaction delays. Delays in energy purchase could prop-
agate generation-load imbalance and the consequent power
variations [17] resulting in fluctuations in voltage/frequency
(V/F) [18].
Also, the cost of transactions is increased during periods

of high transaction traffic [19]. The miners are basically
paid from the reward attached to each block that is added
to the chain by them [20]. Another source of payment to
miners is transaction tokens that the consumers attach to each
of their initiated transactions to earn higher priority during
approval [21]. The higher the token received from a consumer
the higher the chances of being attended to earlier. This is
because miners want to earn higher tokens. Thus, during high
transaction traffic, consumers append much higher tokens to
their initiated transactions to earn higher priority. A higher
transaction token during a low transaction traffic leads to the
least transaction latency. Conversely, the maximum transac-
tion latency is experienced when a low token is paid during
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FIGURE 1. A sample of blockchain transaction record.

a high transaction traffic [22]. Consequently, such survival-
of-the-fittest exercise amongst the energy traders leads to
a high cost of energy transactions. Meanwhile, transaction
reward on each block in some blockchains is designed to be
reduced as more transactions take place or as time goes on.
For instance, the transaction reward in Bitcoin is designed to
be reduced to half every four years or every new 210,000
blocks [23], [24]. It was halved to 6.25 bitcoin (BTC) in
the year 2020. Thus, it is expected to be 3.125 BTC in the
year 2024 or at the creation of additional 210, 000 blocks,
whichever comes first. Hence, miners would develop greater
interest in the higher transaction tokens received from each
transaction.

It was successfully established in our paper in [6] that
blockchain transaction delay is directly affected by the grow-
ing transaction size and the number of nodes. The number
of nodes is the number of blockchain members. Since their
magnitude is uncertain at any point in time, the transaction
time remains uncertain. It was adduced that transaction time
is directly proportional to transaction size and the number of
nodes. Thus, an equation can be obtained relating the three
quantities. On the other hand, blockchain characteristically
hosts a data record of each completed transaction [25], [26].
The record includes transaction size, the associated number
of nodes, the transaction time duration, the address of the
transactors, etc. Taking advantage of the blockchain trans-
action record-keeping feature, we propose a transaction time
minimization approach. This is to increase transaction speed,
reduce transaction costs (transaction fees), and foster greater
integration of renewables. Consequently, theminimumvalues
of transaction sizes and number of nodes can be obtained for
each hourly interval.

C. RESEARCH CONTRIBUTIONS
Researchers have made substantial achievements in the effort
to transaction time enhancement. Literature [6] proposed a
blockchain-adopted method for transaction enhancement in
peer-to-peer electricity trading. It however did not consider
the optimization approach in the transaction time man-
agement. The transaction time manipulation approach was
demonstrated in [8]. Consequently, a user-friendly method
was proposed for comfortably deciding the consortium P2P
transaction time in advance by adjusting the transaction size
and number of members. However, a method to minimize

FIGURE 2. A blockchain transaction block.

the transaction time was not covered. A secure method of
remote data transmission was successfully proposed in [27]
using blockchain. However, a collective optimization of the
transfer time is not within its scope. The real-time transaction
time optimization and subsequent increase in the penetra-
tion of renewables however remained a necessity in the
blockchain-integrated energy trading arena. This paper, thus,
proposes a method for achieving P2P energy transactions at
minimal delay. Consequently, the following contributions are
made:

i. Blockchain technology is integrated into the energy-to-
consumer platform to achieve enhanced, secure, and
low-cost electrical energy accessibility to consumers
in the SDG arena. Next, a relationship between the
blockchain transaction time, transaction size, and the
number of nodes is determined leading to real-time
energy transaction duration awareness.

ii. Subsequently, the obtained relationship equation is
optimized by minimizing the transaction time (trans-
action delay) in each hourly interval. This deciphered
the transaction time fluctuation pattern.

iii. Finally, the optimized result is fitted and displayed
on a decision tree (DT) for ease of accessibility. This
presents hourly periods of low transaction time for
the energy traders to take advantage of. Consequently,
energy generation is made more available to consumers
at minimal delay and minimal transaction cost.

II. ENERGY-TRADING ECOSYSTEM
A. DISTRIBUTED ENERGY SYSTEM
The distributed energy system is characterized by modu-
lar energy generations spanned over a range of distances
along with individual storages. Depending on the climatic
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FIGURE 3. A blockchain transaction chain.

characteristics of the location, various generation sources
are adopted with each environment taking advantage of its
feature. For instance, photovoltaic generation is common in
locations that are characterized by high peak sun hours (PSH).
While some electricity users are non-generating consumers,
some generate at insufficient capacities that do not surpass
personal consumption requirements. Others generate in com-
mercial quantity. Due to the variability of renewable sources
and the energy characteristics of the SDG arena, producers
tend to store the generated energy. The stored energy serves
two major purposes. One is for future consumption and the
other is for trading to achieve remuneration benefits. Hence,
a dispatch mechanism is initiated through P2P energy trad-
ing. To enhance the ease with which the energy reaches the
consumers during the trading process, blockchain technology
is integrated into the trading system.

B. BLOCKCHAIN TECHNOLOGY IN ENERGY MARKET
Blockchain technology was adopted in the electrical engi-
neering discipline from the financial sector [28]. It was
introduced in the electrical energy-trading domain to enhance
the ease with which the generated energy is dispatched
and transacted amongst peers. Various breakthroughs have
been achieved with the welcomed technology such as decen-
tralized transaction architecture [29]. This eliminated the
middleman bottleneck that is associated with the central-
ized architecture. Thus, members could initiate transactions
directly with one another thereby achieving faster P2P trans-
actions. Also, the detail of each completed transaction is
stored on the network with a copy of it sent to each member.
Hence, transparent transactions are promised [30]. Before
the advent of blockchain, transactions were typically man-
aged by a middleman intervention. This makes transaction
associates remain dependent on the successful approval and
processing of their submitted transaction requests. Thus, the
effect of any delay or inefficiency with the middleman is
transferred among the energy traders. With the decentral-
ized feature of blockchain, such shortcoming is jettisoned.
In addition to a reduced transaction time, greater transparency
is realized as the members now transact directly with one
another [31]. Furthermore, each completed transaction is

tied to the immediate-preceding transaction using an alpha-
numeric key [32]. Hence, before a transaction is successfully
altered, the adversary must know the alpha-numeric keys of
all completed transactions. This is almost impossible. Thus,
a secured transaction architecture is upheld.

Also, blockchain’s high-security feature accounts for the
increased acceptability of the crypto. The sequence of trans-
action protocol that accounts for the high security in the
blockchain is as follows:

i. Consumers initiate and send energy transaction
requests to the energy producers/sellers or marketers
as shown in Fig. 1.

ii. The requested transactions are subsequently sent to
the miners for validation via a mechanism called the
proof-of-work.

iii. The validated transactions are stored in a block by
miners as shown in Fig. 2 until the block is filled to
the maximum allowable limit in megabytes.

iv. The filled block is returned to blockchain nodes for
validation for approval in a consensus mechanism.

v. The approved block is finally added to the chain by a
high-security mechanism. This is as shown in Fig. 3 for
block A, block B, and block C. In some cases, step iv
might be truncated depending on the members-agreed
protocol that is programmed in the smart contract in
which case the block would directly be added to the
chain.

vi. The blocks are added to the chain by digitally locking
each added block to both the preceding block and the
next block. Such a lock is achieved by an alphanumeric
key known as Hash [33]. Consequently, each block
contains two different hashes in which one is tied to
the immediate preceding block and the other to the
immediate next block [34]. By this means, the security
of the blockchain network is guaranteed [35], [36].

III. METHODOLOGY OF SIMULATION
The simulation methodology involves three simulation steps,
namely: transaction time simulation, optimization of results
obtained from transaction time simulations, and fitting of the
optimal results on a DT for ease of data visualization. To aid
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FIGURE 4. A flowchart of the research path and simulations.

comprehension, the path to the various simulations performed
is given in the flowchart in Fig. 4. First, the linear regression
(LR) algorithm is used to determine the relationship between
the blockchain transaction block sizes, the number of nodes,
and the transaction time.

A. TRANSACTION TIME SIMULATION
Transaction time simulation involves modeling the P2P trans-
action duration in the blockchain-integrated energy market.
Three parameters were utilized namely: the transaction size
(Z), the number of nodes (N), and transaction time (T). The
transaction size (Z), also regarded as block size, is the size
of completed transactions that were recorded at any given
time interval. It is measured in kilobytes (KB). The num-
ber of nodes represents the number of registered blockchain
members. Transaction time is the duration between when an
energy transaction request is initiated to when the transac-
tion is completed. Blockchain records its transaction details.
Thus, the three data: T, Z, and N; can be obtained from the
blockchain-recorded data.

1) TRANSACTION TIME DATA FORMULATION
To obtain the equation of the relationship between Z, N, and
T, the blockchain transaction time data in our paper in [6]
is considered. It was obtained using the network simulator 3
(NS3) to simulate the relative variations in the three quan-
tities. NS3 is a network simulator for discrete events used
in academic research to investigate how node-oriented net-
work discrete quantities vary with one another. First, N was
kept constant while Z was gradually increased from 10 KB
to 3590 KB at the rate of 10 KB per step increment. The
corresponding transaction time was measured and recorded
in each increment. In the second phase, Z was kept constant

TABLE 1. Seed values for blockchain transaction time data generation.

while N was gradually increased from 2 to 500. Similarly, the
corresponding values of T were recorded. In this paper, the
data was required for 24-hour intervals. This is to represent
the blockchain transaction time data for each hourly interval
and be able to use the transaction time in each hour to make
appropriate energy trading (buying and selling) decisions.
Consequently, the existing one-hour data is emulated 23 times
by generating them 23 times using a random number gen-
erator. This represents the remaining 23 hourly blockchain
transaction time data. In the random number generation, the
ranges of the entire 23 hourly data were maintained the same
as those of the existing data. The range of the existing data
for Z, N, and T are given in (1), (2), and (3), respectively.

10 ≤ Z ≤ 3590 (1)

2 ≤ N ≤ 500 (2)

0.86 ≤ T ≤ 115.16 (3)

To enable the reproducibility of the simulation, a seed value
is used for the random number generation in each of the
23 hours. This is to make the random values unchanging and
thus regeneratable thereby enabling the reproducibility of our
research paper simulations. The seed values that were used
for the data generation in each of the hourly intervals are given
in Table 1.
Fifteen random values were generated for each of Z, N,

and T. This is to achieve an adequate quantity of data values
with which the regression simulation would be performed to
obtain the fitting formula on the data. The Z variable consists
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FIGURE 5. Python code for N_2 data generation in the 2nd-hour interval.

FIGURE 6. Python code for T_24 data generation in the 24-hour interval.

FIGURE 7. Data relationship between Z, N, and T in the 2nd-hour interval.

FIGURE 8. Data relationship between Z, N, and T in the 24th-hour interval.

of continuous values and is thus a 2-decimal float. This is
because data transaction size in KB could assume decimal
values. The N variable consists of discrete values since it
represents the number of blockchain members. Hence they
are positive integers. The T variable comprises 2-decimal
float values. Thus, the random number generation adheres
to these distinctive features of Z, N, and T variables. For
example, the Python code for generating nodes (N_2) in the
2nd hour interval is given in Fig. 5 and the Python code for
generating transaction time (T_24) in the 24th hour interval
is given in Fig. 6. Line 2 generates the random data using
the respective hour seed values given in Table 1. Line 3
generates the data in 15 samples. Line 4 prints the generated
values within the data range stated in equations (2) and (3).
For visualization purposes, the relationship in the generated
transaction data (Z, N, and T) in interval 2 and interval 24 is

given in Fig. 7 and Fig. 8, respectively. Subsequently, the data
are fitted to obtain the fitting formula in each of the 24 hourly
intervals.

2) TRANSACTION TIME SIMULATION AND EQUATION
FORMULATION
To confirm the linearity of the obtained data, the data samples
in the 2nd-hour interval (Z_2, N_2, T_2) and the 24th-hour
interval (Z_24, N_24, T_24) were plotted. The graphs
obtained are shown in Fig. 6 and Fig. 7, respectively. Follow-
ing the linear relationship in the blockchain transaction time
data, the LR algorithm was utilized to model the data and
perform the simulation. Consequently, each of the data was
divided into a 90% train set and a 10% test set in the Jupyter
Notebook IDE of Python Programming language. The system
information used for the simulations includes Dell running
an operating system of Microsoft Windows 11 Pro with
i5-12600K 3700MHz processor, 32 GBRAM, and 1TB local
disk storage. The selection of the test set was done by a
random number seed of 90 (random_state = 90). This is to
make the selected test data unchanging and the simulation
reproducible. The regression accuracymetric, r2_score (coef-
ficient of determination) on the test data, presented a value
of 0.99 which is approximately 1. Zero is the least regressor
prediction accuracy and 1 is the maximum accuracy. Subse-
quently, the individual 24 hourly fitting formulas obtained are
presented in (4) ∼ (27). Each of the equations is in the form
given in (28), where m1 and m2 are the slopes of the Z and N
lines, respectively. k is the intercept of Z and N lines on the T
axis, i.e., the value of T when the values of Z and N are zero.

T1 = 0.012Z + 0.1393N + 1.23 (4)

T2 = 0.0315Z + 0.0028N + 0.5353 (5)

T3 = 0.0317Z + 0.0019N + 0.5397 (6)

T4 = 0.0317Z + 0.0015N + 0.5404 (7)

T5 = 0.0320Z + 0.0008N + 0.5410 (8)

T6 = 0.0321Z + 0.0015N + 0.5421 (9)

T7 = 0.0322Z + 0.0017N + 0.5412 (10)

T8 = 0.0314Z + 0.0039N + 0.5378 (11)

T9 = 0.0320Z + 0.0003N + 0.5389 (12)

T10 = 0.0327Z + 0.0052N + 0.5440 (13)

T11 = 0.0319Z + 0.0003N + 0.5373 (14)

T12 = 0.0318Z + 0.0007N + 0.5410 (15)

T13 = 0.0321Z + 0.0010N + 0.5392 (16)

T14 = 0.0322Z + 0.0019N + 0.5419 (17)

T15 = 0.0322Z + 0.0017N + 0.5387 (18)

T16 = 0.0324Z + 0.0031N + 0.5446 (19)

T17 = 0.0320Z + 0.0004N + 0.5432 (20)

T18 = 0.0329Z + 0.0068N + 0.5440 (21)

T19 = 0.0320Z + 0.0004N + 0.5399 (22)

T20 = 0.0317Z + 0.0020N + 0.5386 (23)
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T21 = 0.0318Z + 0.0007N + 0.5425 (24)

T22 = 0.0322Z + 0.0016N + 0.5407 (25)

T23 = 0.0321Z + 0.0012N + 0.5401 (26)

T24 = 0.0325Z + 0.0042N + 0.5465 (27)

T = m1Z + m2N + k (28)

B. TRANSACTION TIME OPTIMIZATION
To optimize the transaction time, (4) ∼ (27) are minimized
in the 24 hourly intervals, respectively. Consequently, the
format of the objective function of the optimization equation
is given in (29) and the constraints are given in (30). The
right-hand sides of (4) ∼ (27) are objective functions of the
transaction time optimization which are subsequently opti-
mized. The optimization simulation was performed in each
of the 24 hourly intervals of the day.

Min [m1Z + m2N + k] (29){
Zmin

≤ Z ≤ Zmax

Nmin
≤ N ≤ Nmax

}
(30)

To obtain the minimum transaction time in each time
interval, each of the equations is optimized by minimization.
Due to the heuristic characteristic of the transaction time
dynamism in the blockchain trading platform, a search-based
algorithm, the particle swarm optimization (PSO) algorithm,
was utilized for the simulation. Consequently, the minimum
transaction time T_1 to T_24 was achieved via optimizations
of the objective functions in the 24 hourly intervals. To find
the optimal converging point, search particles were deployed.
The initial position of each particle is represented with Xi.
In the search process, after each movement by each particle,
the next position of each particle is updated as Xi+1. This is
given in (31).

Xi+1 = Xi + Vi+1 (31)

where Vi+1 is the new velocity defined in (32).

Vi+1 = wVi + c1r1(Pb − Xi) + c2r2(Pg − Xi) (32)

where w = particle’s weight of inertia. It signifies the ten-
dency of the particle to change its direction of swarm.Vi is the
initial velocity of each particle. Pb is the local best position
of each particle, Pg is the global best position amongst entire
particles. c1 and c2 are the acceleration coefficients of each
particle. c1 is the tendency of a particle’s movement to be
influenced by its personal best solution. c2 is the tendency
of a particle’s movement to be influenced by the global best
solution, r1 and r2 are random numbers ranging from 0 to
1 with which the particles’ positions are tuned for conver-
gence. The random numbers, r1 and r2, were generated with
a random seed of 30 to aid reproducibility of this simulation.
wVi is the inertia component of each particle, (Pb −Xi) is the
cognitive component of each particle, and Pg−Xi is the social
component of each particle. Other tuning parameters are n,w,
c1, c2, and I, where n is the number of particles selected and
I is the number of iterations performed in each simulation.

Through iterations, the optimal number of particles was found
to be 20.

IV. RESULTS AND ANALYSIS
A. TRANSACTION TIME OPTIMIZATION RESULTS AND
ANALYSIS
In the simulation tuning process, several values of the tuning
parameters were used in a bootstrapping process until the
particles converged to a global optimum (minimum). This is
the position where ‘‘all the Pb = Pg’’ within the given search
space (minimum and maximum bounds). The values of the
tuning parameters that were used to achieve convergence of
the particles in the 2-head and 2-tail intervals are given in
Table 2 along with the optimized results. The 2-head interval
represents the first two hourly intervals (intervals 1 and 2)
while the 2-tail interval is the last two hourly intervals (inter-
vals 23 and 24). For sampling and data visualization purposes,
the particles’ swarm graphical positions in the 2-head and
2-tail intervals are given in Fig. 9 ∼ Fig. 12. The three vari-
ous graphical positions of the 20 particles during the swarm
movement in each of interval 1, interval 2, interval 23, and
interval 24 are given in Fig. 9, Fig. 10, Fig. 11, and Fig. 12,
respectively in the form of food-searching birds. It can be seen
that the birds remained scattered in the first position of the
swarm when the number of iterations was one. In the second
position, the number of iterations was increased to three at
each time hourly interval, and other tuning parameters were
also readjusted. This got the birds closer to one another since
they moved toward the lead bird whose position is Pb, i.e. the
bird whose position is the closest to the food location. The
lead bird is designated as the bird with the largest body size.

In the third position of the swarm, the search parameters
were tuned further and the iteration was increased to 10.
It was found at this point that all the birds in each hourly
interval converged to a common position, Pb. This happened
at the left bottom edge of the search space. It is circled in
blue for easy identification. It is the position where the food
lies. It is the position where the transaction time recorded an
optimal value (minimum value). The optimal swarm position
and the corresponding objective function value (transaction
time) were obtained in each of the 24 hourly intervals and
are approximately given in Table 3 and Table 4, respectively.
This could also be done in a similar manner for eachminute or
second of the day, other than hourly intervals, leading to more
precise transaction time information. However, an hourly
interval was selected to reduce the complexity of the simu-
lations and results.

Following the result obtained from the optimization sim-
ulation, it was observed that the data was nonlinear across
the hourly time intervals (1∼24). This is as seen in Table 4.
Hence, this necessitated the decision to model the result of
the optimization using a non-linear model. The aim is to
recognize the non-linear pattern in the data movement from
time interval 1 ∼ 24 and obtain its fitting model. With the
intent to graphically present the result on a DT for clarity,
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TABLE 2. PSO tuning parameter and optimization results in the 2-head and 2-tail intervals.

FIGURE 9. Positions of particles’ swarm in the 1st-hour interval (a) iteration 1, (b) iteration 3, and (c) iteration 10 (convergence).

FIGURE 10. Positions of particles’ swarm in the 2nd-hour interval (a) iteration 1, (b) iteration 3, and (c) iteration 10 (convergence).

the DT regressor, a nonlinear algorithm, was selected for the
simulation.

B. DATA FITTING AND VISUALIZATION OF THE OPTIMIZED
RESULTS
To enable easier visualization of the obtained results,
the transaction time is displayed on the DT. For quick

referencing, the magnitude of the transaction time is
presented in a color band whose scale spans between white
and orange. The white color represents the minimum trans-
action time and the orange color represents the maximum
transaction time as shown in a scale in Fig. 13. Between the
two extremes of the scale is the increasing or decreasing trans-
action time. Viewing the tree at any time, an observer can,
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FIGURE 11. Positions of particles’ swarm in the 23rd-hour interval (a) iteration 1, (b) iteration 3, and (c) iteration 10 (convergence).

FIGURE 12. Positions of particles’ swarm in the 24th-hour interval (a) iteration 1, (b) iteration 3, and (c) iteration 10 (convergence).

FIGURE 13. Transaction time alert notification color band.

thus, quickly identify the minimum or maximum transaction
time at anymoment in amatter of seconds based on theweight
of the orange color. The lighter the orange color, the lower the
transaction time, and vice versa. For instance, in the tree in
Fig. 14, the minimum transaction time can easily be spotted
by the whitish color in the middle right of the figure to be
0.96 seconds which took place at about a time interval that is
greater than 23.5 hrs. This is exactly at 24:00 hrs in Table 4.
Meanwhile, it is important to recall that 23.5 hrs is equivalent
to 23:30 hrs in the ideal time scale. Similarly, the whitish
color in the middle of the tree presented another very low
transaction time of 1.22 seconds at about a time less than or

equal to (≤) 13:30 hrs. This was recorded at exactly 13:00 hrs.
In comparison, the maximum transaction time can be spotted
by the high weight of its orange coloration at about themiddle
of the figure to be 21.58 seconds. This occurred at about
≤ 10:30 hrs. In the tree, the first node at the topmost part is
known as the root node. The last nodes that have no branches
are known as the leaf nodes or terminal nodes. In between the
root node and the leaf nodes are decision nodes that connect
the root node to the leaf nodes. Each decision node has two
sub-nodes. The information in the left side sub-node holds
if the condition stated in its parent decision node is true.
Otherwise, the information in the right side sub-node holds if

111978 VOLUME 12, 2024



M. O. Okoye et al.: Optimizing the Transaction Latency in the Energy-Trading Platform

FIGURE 14. Data visualization of optimal transaction time on the decision tree.

TABLE 3. Optimal particles’ positions in 24 hourly intervals.

the condition stated in its parent decision node is false. Also
the same goes for the root node’s immediate subnodes as it is
seen stated.

It is important to recall that the specific uncertainties con-
sidered in this simulation process are the stochasticity in
the transaction block size and the number of nodes, Thus,
as the transactions proceed, these quantities change and the
scale color is updated by the changing transaction values

TABLE 4. Optimal transaction time in 24 hourly intervals.

(transaction size, number of nodes, and their correspond-
ing transaction time). Thus, the corresponding color weights
would keep being updated for rapid identification of the peri-
ods of very low transaction time. During this time, a general
reminder notification could be dispatched to all members to
encourage more transactions. Similarly, a warning notifica-
tion may be sent in vice versa. A notification alarm system
could be triggered in addition to the color notification during
the very low transaction time signals. The most important
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TABLE 5. Comparison of our methodology with other works.

highlight of the proposed approach is interdependency and
synergy in the simulation steps that result in a dynamic update
in the displayed results as the input data stochastically varies.
This ranges from data capturing, down to data regression and
optimizations and finally data fitting, all interconnected in
functionality.

V. CONCLUSION
With the convenience of knowing the transaction situation
from the comfort of electricity consumers’ domicile, a more
articulated trading decision can be reached. From the transac-
tion time optimization simulations, the minimum transaction
timewas found to be 0.96 seconds. This occurred at 24:00 hrs.
Consequently, the peaks in the transaction time can be
more easily leveled. That is, transactions can be comfortably
shifted to the hours when the transaction duration is at a
minimum. This is achieved through the consumers’ adaptive
trading responses to the changing transaction time. In addi-
tion to the relieved stress and increased trading convenience,
the consumers achieve a reduced trading cost. The usual extra
charges levied on interested consumers at high-traffic hours
byminers for quicker transaction services are eliminated. The
chances of shedding critical loads due to the supply shortage
caused by delayed transactions are minimized. In sole pro-
ducers and prosumers, generations can thus be more correctly
matched to the consumptions. Since the initiated transac-
tions are now smoothly completed, energy producers can
more accurately predict energy consumption linearly. This
effect collectively bridges the gap between generation and
consumption and realizes higher and more rapid penetration
of renewables. This achievement could be proposed to the
utility grid company as a method to tune down generations
from fossil sources as the penetration of renewables increases.
We opine that future research would be about methods to real-
ize rapid renewable generations through weather forecasts so
that new energy generations would match the various demand
magnitudes made as a result of successful transaction time
minimization and transaction cost minimization. The aim is
to jettison the fossil sources and embrace a pollution-free
generation.
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