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ABSTRACT Compared to natural images, remote sensing images have the characteristics of high spatial
resolution, large target scale variation, dense target distribution, and complex background. Consequently,
there are challenges with insufficient detection accuracy and the inability to identify target locations
accurately. Therefore, this paper introduces the YOLOX-CA algorithm, based on the YOLOX model,
to address these challenges in remote sensing object detection. Firstly, the YOLOX-CA algorithm optimizes
the feature extraction network of the YOLOX model. This optimization employs large-kernel depthwise
separable convolution in the backbone network to enhance feature extraction capabilities, comprehensively
and accurately capturing information features. Secondly, the ACmix attention mechanism is introduced into
the backbone network to identify crucial features, enhance feature extraction capability, and expedite network
convergence. Lastly, a Contextual Feature Enhancement (CFE) module is constructed and employed in the
upsampling process of feature fusion, aiming to augment the model’s awareness of context. Experimental
results on the large-scale DIOR dataset for remote sensing object detection demonstrate performance
enhancements over the baseline model, with increases of 2.7% in mAP, 1.1% in mAP@0.5, and 2.2% in
Recall. The findings from the test dataset suggest that the proposed YOLOX-CA method is applicable and
practical for remote sensing object detection, improving detection accuracy while mitigating instances of
target omission.

INDEX TERMS Remote sensing images, object detection, attention mechanism, feature enhancement,
YOLOX.

I. INTRODUCTION
Remote sensing image target detection refers to identifying
and localizing points of interest in images captured from
high altitudes or space using remote sensing technology,
such as buildings, vehicles, aircraft, and ships. This research
topic has significant practical value and challenges involving
multiple fields, including computer vision, image processing,
machine learning, and deep learning. It is widely applied
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in civilian and military domains, including land use [1],
urban planning [2], disaster monitoring [3], and military
reconnaissance [4]. With the development of high-resolution
remote sensing satellites, large-scale, high-quality remote
sensing image data are continuously emerging, presenting
significant opportunities and challenges for remote sensing
target detection tasks. However, remote sensing images are
typically captured from high altitudes, resulting in smaller
target sizes and susceptibility to various factors such as
weather conditions, lighting, sea state, sensor parameters, etc.
Additionally, in remote sensing images, targets like airplanes,

84632

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0004-2137-1393
https://orcid.org/0000-0002-7551-7456
https://orcid.org/0000-0002-1355-2168


C. Wu, Z. Zeng: YOLOX-CA: A Remote Sensing Object Detection Model Based on CFE and Attention Mechanism

cars, etc., are often densely arranged, making it difficult
to separate them from the surrounding background, leading
to more challenging feature extraction and lower detection
accuracy.

Traditional object detection methods generally involve
three steps: region proposal, feature extraction, and classifier
classification. Firstly, potential regions containing objects are
selected from the image using methods like sliding windows
or selective search. Secondly, feature vectors are extracted
for each candidate region. Finally, a trained classifier is used
to classify each candidate region and determine whether it
contains an object, providing the object category. However,
traditional methods suffer from high computational complex-
ity and low efficiency. The rapid development of artificial
intelligence technology has led to its widespread adoption
in industries such as manufacturing, medicine [5], and
biology [6]. In particular, the advancement of deep learning
technology has revolutionized various image analysis tasks,
with the most representative being Convolutional Neural
Networks (CNNs), it has been widely applied in various
scenarios, including image recognition, speech recognition,
and natural language processing. In the field of object
detection, deep learning has become a mainstream method.

Currently, mainstream target detection algorithms can be
broadly classified into two categories: typical two-stage
algorithms include R-CNN [7], Fast R-CNN [8], Faster R-
CNN [9] and Mask R-CNN [10]. Compared to one-stage
target detection methods, two-stage methods generally
achieve higher detection accuracy but are slower, and they
may lose spatial information about the overall scene or
context of objects within the image. Typical one-stage
algorithms include the single-shot multibox detector(SSD)
[11], the YOLO (You Only Look Once) [12] series, etc. One-
stage algorithms exhibit average accuracy but have a faster
detection speed.

Scholars have extensively researched object detection for
remote sensing images. Li et al. [13] proposed an adaptive
attention mechanism to enhance the interaction of features
at different scales within the Feature Pyramid Network [14]
(FPN), aiming to improve the detection performance of
small and dense targets in remote sensing images. However,
the structure of the adaptive attention mechanism is overly
complex, and its parameter size is enormous, leading to a
decrease in detection speed. Zhang et al. [15] introduced
shallow information with an attention mechanism before the
feature fusion in YOLOv3 [16]. This was done to reduce
background interference and enhance the network’s represen-
tational capacity. Cheng et al. [17] proposed a multi-feature
fusion and attention network based on YOLOX [18]. This
approach involves fusing multiple branch convolutions and
attention mechanisms to enhance feature extraction for
objects of different sizes. Li et al. [19] proposed enhancing
the expressive power of the network model by modifying
the BottleNeckCSP structure. Liu et al. [20] proposed
the YOLO-extract method based on the YOLOv5 [21]
approach. By incorporating an ensemble of dilated con-

volutional structures, they enhanced the model’s capability
to extract features and positional information of objects
at different scales. This resulted in reduced computational
complexity and accelerated convergence speed. In summary,
deep learning methods have shown great value in the
field of object detection in remote sensing images and
have achieved significant advancements. However, despite
continuous improvements and enhancements in algorithms,
the unique challenges posed by remote sensing images have
not been fully addressed, further research is still needed to
improve the detection accuracy.

To further enhance the accuracy of object detection
in remote sensing images and address the performance
degradation caused by large variations in target scales, dense
objects, and complex backgrounds, this paper proposes a
novel remote sensing image object detection algorithm based
on the YOLOX framework. The algorithm aims to effectively
tackle the challenges of object detection in remote sensing
images, particularly by providing effective solutions to detect
targets with different scales. The significant contributions of
this paper are summarized as follows:

(1) We propose a novel YOLOX-CA algorithm for remote
sensing image object detection. We have improved the
basic building blocks of the backbone network, leading to
a significant increase in the effective receptive field. This
improvement strengthens the algorithm’s ability to extract
features from remote sensing images.

(2) By introducing the novel ACmix [22] mixed attention
module, we enhance the network’s sensitivity to small object
detection, thereby improving the accuracy of small object
detection.

(3) We introduce the Contextual Feature Enrichment Mod-
ule, which innovatively enhances the network’s perception of
targets at different scales. This module enables the model to
capture critical information in remote sensing images more
accurately.

(4) We conduct ablation and comparison experiments on
the DIOR dataset to evaluate the YOLOX-CA algorithm.
Compared to existing algorithms, the YOLOX-CA algorithm
significantly improves detection accuracy.

The rest of this paper is organized as follows: Section II
introduces attention mechanisms and multiscale feature
fusion. In Section III, the YOLOX-CA algorithm is described
in detail. Section IV presents experimental datasets, evalua-
tion metrics, parameter settings, and the results of ablation
experiments and comparison experiments. The proposed
algorithm is summarized, and future work is looked forward
to in Section V.

II. RELATED WORK
A. ATTENTION MECHANISM
Attention mechanisms have been proven effective in enhanc-
ing network performance, and in recent years, they have
received significant attention from researchers. The Convolu-
tional Block AttentionModule (CBAM) [23] improves object
detection performance by calculating channel and spatial
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attention at different scales. The Squeeze-and-Excitation
Network (SENet) [24] optimizes feature maps by learning
the importance of each channel. The Global Attention
Mechanism (GAM) [25] enhances deep neural network
performance by reducing information diffusion and strength-
ening global interactions. The Coordinate Attention (CA)
[26] mechanism embeds position information into channel
attention, allowing lightweight networks to perform attention
over more significant regions. Wu et al. [27] proposed
the Spatial Attention-Guided Upsampling network (SAGU-
Net) that utilizes spatial attention to guide cost volume and
disparity map upsampling, aiming to enhance the accuracy
and speed of stereo matching by emphasizing important
spatial information. Inspired by the CoAtNet [28] that
combines the advantages of transformers and convolutions,
this paper introduces a novel attention mechanism called
ACmix. By integrating global information from self-attention
and local information from convolutions, theACmix attention
mechanism captures critical features in images and adapts
well to different scenarios and tasks. Experimental results
demonstrate that ACmix performs exceptionally well in
remote sensing image object detection tasks.

B. MULTISCALE FEATURE FUSION
Multiscale feature fusion plays a crucial role in improving the
performance of object detection algorithms. By combining
features from different scales, the detection model can
capture both fine-grained details and high-level seman-
tic information, leading to better object localization and
classification. Lin et al. [14] proposed the classic Feature
Pyramid Network (FPN), which integrates features from
deep to shallow layers. To enhance the effectiveness of
information transmission from lower to higher layers in
FPN, PANet (Path Aggregation Network) [29] introduced a
further connection from bottom to top. Tan et al. proposed
the Bidirectional Feature Pyramid Network (BiFPN) [30],
which can bi-directionally fuse features and improve the
effectiveness of PANet’s connection method. Quan et al.
introduced a Centralized Feature Pyramid module [31] to
optimize global information and fully utilize information
at the same scale. Shi et al. [32] proposed a scene
categorization model that utilizes deep visually sensitive
features. Li et al. [33] proposed a video super-resolution
method that combines non-local and multi-scale features
to improve the performance of video super-resolution.
By fusing deep features from different convolutional layers,
the model achieves improved classification performance in
complex indoor scenes. However, these methods mainly
focus on feature fusion and transmission, while the uti-
lization of global information to optimize detection per-
formance has not been fully considered. To address this
issue, we propose a Context Feature Enhancement module
to capture contextual information in the scene, thereby
improving the model’s ability to recognize and localize
objects.

III. MODEL INTRODUCTION AND IMPROVEMENT
A. YOLOX MODEL INTRODUCTION
YOLOX is a one-stage object detection algorithm with six
versions: n, tiny, s, m, l, and x, each having different network
widths and depths. The YOLOX algorithm model comprises
four components: input, backbone extraction network, neck,
and detection head. In practical scenarios, edge devices
typically provide limited computational power. Therefore,
detection models should achieve as accurate results as
possible with minimal computational cost. Compared to
models like YOLOX-m, the YOLOX-s model has fewer
parameters, making it more suitable for scenarios with high
real-time requirements. Compared to models like YOLOX-
nano, YOLOX-s maintains a certain model size, resulting
in higher detection accuracy. However, due to the complex
backgrounds and numerous small objects in remote sensing
images, directly using it to detect objects will result in missed
and false detections. Therefore, based on the analysis of
YOLOX-s, this paper proposes the YOLOX-CA algorithm.

B. OVERALL STRUCTURE OF YOLOX-CA MODEL
The overall structure of the YOLOX-CA model consists of
three main components: the backbone network, the neck
network, and the detection network. The model structure
diagram of YOLOX-CA is illustrated in Fig.1.

The backbone network is primarily used to extract
features from the input image, employing the Darknet53
network structure with a Spatial Pyramid Pooling Fast
(SPPF) structure. We replaced the original CSPLayer in
the backbone network with CSPNLayr based on the basic
building unit CSPNextBlock and introduced the Channel
Attention module. In the last layer of the backbone network,
we utilized the ACmix attention mechanism to enhance the
capability to capture crucial information.

The neck network is mainly responsible for fusing
features from the three layers obtained by the backbone
network. It adopts the PANet model. In the neck network,
we introduced a Contextual Feature Enhancement (CFE)
module, which was applied in the downsampling process
of the neck network to enrich feature representation. These
improvements aim to enhance the performance of remote
sensing object detection, enabling the model to better adapt
to various complex scenarios.

The detection network performs classification and regres-
sion on the feature maps passed from the neck layer.
The YOLOX algorithm uses an anchor-free decoupled
detection head in this layer to address conflicts between
classification and regression tasks in object detection, thereby
improving the detection speed of the target detection network.
Subsequent sections will introduce each core component in
detail.

C. CSPNLAYER MODULE
In object detection, it is necessary to consider high-accuracy
detection results, real-time performance, and computational
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FIGURE 1. YOLOX-CA model structure diagram.

FIGURE 2. Convolution structure. (a) Basic block. (b) CSPNextBlock.

resources simultaneously to reduce redundant expressions
and computational resources. This paper introduces CSPN-
Layer to improve the performance of the model. The
structure of this module is shown in Fig.1, consisting of
three CBS (Conv2d, BatchNorm, SiLU activation function),
n CSPNextBlocks, and a Channel Attention module.

Inspired by RTMDet [34], CSPNLayer uses CSP-
NextBlock as the basic block, as shown in Fig.2 (b) which
has a larger receptive field than the traditional CSPLayer
and can learn more features in a single convolution module.
Compared to the original Basic Block (Fig.2 (a)), the
CSPNextBlock is simpler and more efficient. In contrast to
Transformer models, the computational complexity of using
the CSPNextBlock is lower as it focuses only on local regions,

making it suitable for large-scale data processing. Moreover,
the use of large-kernel depthwise separable convolutions
aids in extracting more shape features, which are crucial
for target recognition requiring high shape information. The
Channel Attention module consists of AdaptiveAvgPool2d
layer, Conv2d layer, and Hardsigmoid activation function,
allowing the detection network to concentrate on meaningful
features and reduce the interference of non-critical feature
information.

D. ACMIX ATTENTION MECHANISM
In remote sensing images, the similarity between targets and
the background, as well as the mutual interference among
targets, pose challenges for target detection. To address this,
this paper introduces ACmix, a hybrid convolutional and self-
attention mechanism.

ACmix Attention Mechanism aims to reduce redundant
information, extract crucial features, enhance the feature
representation of neural networks, and improve accuracy
and robustness. The structure of the ACmix Attention
Mechanism is illustrated in Fig.3. In the first stage, the
input tensor with dimensions H×W×C undergoes three 1×1
convolutions for projection and is reshaped into N, resulting
in an intermediate feature set containing 3N feature maps.
The second stage consists of self-attention and convolution
attention modules. In the self-attention module, ACmix
aggregates the intermediate features into N groups, each
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FIGURE 3. The structure of ACmix.

comprising three feature maps originating from the three 1×1
convolutions. These feature maps represent query (Q), key
(K), and value (V), following the conventional multi-head
self-attention model, as shown in formula (1).

gij =
N
∥
l=1

(
∑

a,b∈Nk (i,j)
A(Q(l)

ij ,K (l)
ab )V

(l)
ab ) (1)

gij represents the projected tensor corresponding to the
pixel (i, j), || denotes the concatenation of outputs from N
attention heads, Nk (i, j) represents the local region with (i, j)
as the center and a spatial range of k for pixel centers, and
A(Q(l)

ij ,K (l)
ab ) is the corresponding attention weight about the

inner features Nk (i, j). The magnitude of the value depends
on the similarity between the query and key. If the similarity
is higher, the assigned weight is correspondingly larger, and
vice versa.

In traditional convolutional modules, convolutions usingK
as the kernel are performed. As shown in formulas (2), (3),
these convolutions are connected through lightweight fully
connected layers to obtain k2 feature maps. These feature
maps are generated by moving and aggregating features,
processing input features in a convolutional manner, and
collecting information from local receptive fields, similar to
traditional receptive fields.

g(p,q)i,j = Shift(g̃(p,q)ij , p− [
k
2
, q− [

k
2
]]) (2)

gij =

∑
p,q

g(p,q)ij (3)

Finally, the two paths of the traditional convolutional
module and the self-attention module are summed, with
weights controlled by two learnable scalars, α and β,
as shown in formula (4). These parameters are optimized by
the mechanism to obtain the final feature representation.

Fout = αFatt + βFconv (4)

Fout represents the final output of the path, while Fatt
and Fconv correspond to the outputs of the self-attention
and convolutional attention branches, respectively. The
learnable scalar parameters α and β are initialized to 1. The

FIGURE 4. Contextual feature enrichment module.

ACmix attention module effectively utilizes both local and
global information, enhancing the neural network’s feature
representation.

E. CONTEXTUAL FEATURE ENHANCEMENT MODULE
Taking inspiration from the intricate visual systems of
humans and animals, renowned for their adeptness at con-
currently processing visual information across various scales,
our eyes and brains afford us a holistic understanding of our
surroundings, enabling sophisticated visual decision-making.
Harnessing the insights gained from this multi-scale percep-
tion mechanism observed in natural systems, we endeavor
to emulate it within the domain of computer vision. Hence,
we introduce a novel approach named the Contextual Feature
Enhancement(CFE) Module.

As shown in Fig.4, we apply dilated convolutions to the
feature map F with dilation rates d ∈ {1, 3, 5} and a 3 ×

3 convolution kernel. Following each convolution operation,
we introduce the Batch Normalization (BN) layer and the
Sigmoid-weighted Linear Unit (SiLU) activation function.

Batch Normalization contributes to stabilizing the training
process of the model, accelerating the convergence speed
of the network, and making the training process more
manageable. Meanwhile, SiLU, as a non-linear activation
function, introduces non-linear characteristics to the network,
facilitating the model in learning more complex data
distributions and features. This is crucial for enhancing the
model’s representational capacity.

Finally, we perform feature fusion on the three obtained
new feature maps, as shown in formula (5).

Fconcat = Concat(F1,BN ,SiLU ,F3,BN ,SiLU ,F5,BN ,SiLU ) (5)

where ‘‘Concat’’ denotes the concatenation operation.
In other words, the three obtained feature maps are con-
catenated along the channel dimension, forming a more
diverse and rich feature representation. This helps enhance
the model’s perceptual ability, feature expression, and
robustness, thereby improving the handling of contextual
information.

After connecting the output feature maps from dilated
convolutions with different dilation rates, we use the CBS
module (Conv, BN, SiLU) to reduce the channel count back
to the same as the input. This is done to decrease the com-
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putational cost of subsequent operations while maintaining
sufficient expressive power, ensuring that themodule’s output
seamlessly connects with subsequent network layers. This
approach helps maintain a well-connected and stable training
of the entire neural network.

F. LOSS FUNCTION
The model training is constrained by three different types
of loss functions: category prediction loss (Lcls), confidence
regression loss (Lobj), and bounding box regression loss
(Lreg). The category prediction loss is employed to evaluate
the model’s accuracy in classifying the target category, aiding
the model in learning to classify the target correctly. The
confidence regression loss is used to measure the accuracy
of the model in determining the presence or absence of the
target. Both of these losses utilize the binary cross-entropy
loss function (BCEWithLogitsLoss). The calculation method
is shown in formulas (6), (7):

l(x, y) = L = (l1, . . . , lN )T (6)

ln = −wn[yn · log σ (xn) + (1 − yn) · log(1 − σ (xn))]

(7)

x, y is the input tensor; N is the Batch Size; n is the number
of labels predicted in each batch; σ is the Sigmoid nonlinear
activation function.

The bounding box regression loss employs the Intersection
over Union loss (IoU loss) to measure the model’s accuracy
in localizing the target position. The calculation method is
shown in formula (8).

LIoU = 1 −
|b

⋂
bgt |

|b
⋃
bgt |

(8)

The final expression for the loss function is shown in
formula (9):

L = w1Lreg + w2Lcls + w3Lobj (9)

The weights for each loss function are denoted as w1, w2,
w3. In this context, the specific values assigned are w1 = 5.0,
w2 = 1.0, and w3 = 1.0.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL DATA
To validate the effectiveness of the YOLOX-CA algorithm
in detecting remote sensing images, experiments were
conducted using the DIOR dataset released by Northwestern
Polytechnical University to assess and test the algorithm’s
performance. This dataset encompasses 20 object classes,
including airplanes, airports, baseball fields, basketball
courts, bridges, chimneys, dams, highway service areas,
highway toll booths, golf courses, athletic fields, harbors,
overpasses, boats, stadiums, storage tanks, tennis courts,
train stations, vehicles, and windmills. The dataset comprises
23,463 images and 192,472 instances, divided into training,
testing, and validation sets. Specifically, the training and
validation sets, containing a total of 11,725 images, were

TABLE 1. Training parameters.

utilized for training, while the test set, comprising 11,738
images, was used for evaluation. The dataset is characterized
by its large scale in terms of target categories, target instance
quantities, and overall image count. It exhibits significant
variations in imaging conditions, weather, seasons, and image
quality, presenting high inter-class similarity and intra-class
diversity. This diversity allows the dataset to represent a wide
range of scenarios typical in remote sensing object detection
tasks.

B. EVALUATION INDICATORS
The evaluation metrics employed in this paper include
Precision, Recall, AP (Average Precision), mAP (mean
Average Precision), Params (number of parameters), FLOPs
(number of floating point operations) and FPS (frames per
second), where AP is the area under the Precision-Recall
curve, and mAP is the average of AP across all categories,
Recall represents the proportion of true positive targets that
the model can correctly detect. The mAP and Recall are
defined as formula (10), (11).

AP =

∫ 1

0
P(r)dr (10)

mAP =
1
n

∑n

i=1
APi (11)

Here, P(r) represents the maximum precision at a recall of
r , and dr represents the change in the Recall. n denotes the
number of categories, with n = 20 in this context, and APi
represents the average precision for the i-th category.

C. EXPERIMENTAL SETUP
The model training and performance evaluation experiments
were conducted on a GPU server with the following hardware
configuration: NVIDIA Tesla P100-PCIE-16GB graphics
card, Ubuntu 16.04 operating system, Python 3.8.17, PyTorch
1.10.0, and the MMYOLO toolbox [35]. The toolbox
version used was mmdet 3.1.0 and mmyolo 0.6.0. For fair
comparison, the experimental settings employed uniform
training parameters, as follows: the optimizer used standard
SGDwith a learning rate of 0.01, momentum of 0.9, Nesterov
functionality set to True, and a weight decay coefficient
of 0.0005. The learning rate scheduler utilized a cosine
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FIGURE 5. Loss function change curve.

FIGURE 6. mAP change curve.

annealing learning rate strategy, with the minimum learning
rate being 5% of the current learning rate, and a quadratic
equation was applied for warm-up during the first 5 epochs,
followed by a fixed minimum learning rate for the last
15 epochs. The batch size was set to 8, and the total number
of iterations was 300. As shown in Table 1.

During model training, the Mosaic data augmentation
strategy was employed. Four random images were selected,
scaled, and concatenated to create a new image. Random
geometric transformations, such as translation, rotation, and
scaling, were then applied to the new image to obtain
an augmented image of size 640 pixels × 640 pixels.
Subsequently, photometric distortion was used to randomly
adjust the brightness, contrast, saturation, and hue of the
image, resulting in the final augmented image of size
640 pixels × 640 pixels.

D. EXPERIMENTAL RESULTS AND ANALYSIS
The experimental process in this paper is as follows: the study
is divided into two stages, training and testing. In the training
stage, the model is trained for 300 epochs using the training
set and validation set. Subsequently, the trained model is
evaluated using the test set. Fig.5 illustrates the change
curves of total loss, category prediction loss, bounding box

FIGURE 7. Precision and recall curve.

FIGURE 8. Confusion matrix.

regression loss, and object existence probability loss during
the training process. These loss functions reflect the model
learning process and performance. As training progresses,
these losses gradually decrease, indicating that the improved
model becomes more accurate in object detection and
classification. Fig.6 presents the evaluation results of average
precision (mAP) on the test dataset for both the baseline
model and the improved model. Overall, the improved model
exhibits better performance improvement during training
compared to the baseline model, achieving a higher level of
accuracy.

The precision and recall curves of the proposed model
are depicted in Fig.7. The curves illustrate the variation in
accuracy as Recall increases. From the graph, it can be
observed that the precision and recall curves for different
categories of the proposed model are close to the upper-
right corner, indicating high precision and recall rates. The
large area under the precision and recall curves suggests the
excellent performance of ourmodel. Furthermore, the smooth
curves indicate a relatively stable relationship between the
model’s Recall and precision.
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TABLE 2. Ablation study on DIOR dataset.

TABLE 3. Comparative experiments based on the DIOR dataset.

The confusion matrix of the YOLOX-CA algorithm tested
on the DIOR dataset is illustrated in Fig.8. It showcases
the improved model’s precise predictions and the interrela-
tionships among the 20 categories in the dataset. The class
abbreviations are as follows: AL - airplane, AR - airport,
BF - baseball field, BC - basketball court, BR - bridge, CH -
chimney, DA - dam, ES - expressway service area, ET -
expressway toll station, GC - golf field, GT - ground track
field, HA - harbor, OV - overpass, SH - ship, ST - stadium,
SA - storage tank, TC - tennis court, TS - train station, VE -
vehicle, WM - windmill, and BG - background.

The confusion matrix is presented in a rectangular form,
where rows represent true labels and columns represent
predicted categories. The data on the diagonal indicates the
proportion of correct predictions, while the off-diagonal data
represents cases where the model incorrectly predicted one
category as another. As shown in Fig.8, it is evident that
the improved algorithm performs well in most classes, with
prediction accuracies exceeding 80% for classes such as
airplanes, airports, and baseball fields. However, the model
underperforms on some categories. For instance, due to the
complexity of the background, the model has relatively low
prediction accuracy for categories such as bridge, harbor, and
overpass. Additionally, because of the dense distribution of
targets, the model tends to miss detections for the vehicle
category. Moreover, due to the similarity between classes,
the model sometimes misclassifies stadium as ground track
field. These findings indicate that there is still room for
improvement in certain aspects of the enhanced algorithm,
necessitating further research and refinement in the future.

To validate the effectiveness and reliability of the proposed
YOLOX-CA algorithm, we conducted ablation experiments
by selectively removing certain components to assess their

impact on the experimental results. Table 2 presents the
results of these ablation experiments conducted on the DIOR
dataset. The detection results of the original YOLOX-s
algorithm are listed as the baseline for comparison in the
ablation experiments.

After adding CSPNLayer, attention mechanisms, and
contextual feature enhancement modules to the network,
although the parameter count and FLOPs increased slightly,
improvements were observed in mAP, mAP@0.5, and
Recall. The last row presents the improvement achieved
by simultaneously adding all three methods. After the
improvements, mAP, mAP@0.5, and Recall reached 58.8%,
83.3%, and 66.7%, respectively, representing increases of
2.7%, 1.1%, and 2.2%. These data results demonstrate that
the YOLOX-CA algorithm effectively enhances detection
accuracy and reduces the probability of target omissions. It is
important to acknowledge that these improvements come at
the cost of a slight decrease in FPS due to the increased
computational complexity introduced by the enhancement
modules. Nonetheless, the algorithm still maintains a satisfac-
tory FPS performance, making it suitable for real-time object
detection tasks in remote sensing applications.

To further validate the effectiveness of the YOLOX-CA
algorithm, we conducted several comparative experiments.
We compared the proposed model with a series of models,
using AP and mAP@0.5 metrics for 20 classes of objects as
evaluation criteria. The experimental comparison results are
shown in Table 3.
The comparison results show that our model exhibits

significant improvement compared to other models. Specifi-
cally, there is a notable enhancement in the detection accuracy
of objects such as airplanes, airports, dams, golf courses,
ground tracks, and train stations. There are also varying
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FIGURE 9. Comparison results of YOLOX-s and YOLOX-CA.

FIGURE 10. Thermal map visualization results of YOLOX-s and YOLOX-CA.

degrees of improvement in the detection accuracy of other
objects.

To validate the feasibility of the improved model,
we selected multiple images from the test dataset for visual
analysis. Fig.9 illustrates the detection results of the baseline

model and the improved model in complex backgrounds.
Fig.9(a) represents the ground truth bounding boxes for
the test images, Fig.9(b) represents the detection results of
YOLOX-s, and Fig.9(c) represents the detection results of
YOLOX-CA algorithm. It is evident that the improved model
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FIGURE 11. Test results of YOLOX-CA on DIOR dataset.

can more accurately locate targets such as golf courses and
airports, which align better with the real-world scenario.

Fig.10(a) and (b) respectively illustrate the visual feature
maps of the YOLOX-s algorithm and the YOLOX-CA
algorithm in different scenes. Through Fig.10, it can be
observed that the YOLOX-CA algorithm focuses more on
target categories, which helps enhance the accuracy and
robustness of target detection while reducing sensitivity to
background interference. This implies that in complex scenes,
the YOLOX-CA algorithm can more accurately identify and
locate targets without being affected by the surrounding
environment.

Fig.11 showcases the detection results of the YOLOX-CA
algorithm on different categories of targets. It can be seen that
targets from various categories are accurately detected and
located without significant omissions or false detections. This
indicates that the improved model exhibits good generality
and stability in remote sensing image target detection tasks
and is capable of adapting to various object categories.

V. CONCLUSION
In this work, we conducted an in-depth analysis of the charac-
teristics of optical remote sensing images. We optimized the
model results by focusing on feature extraction and feature
fusion. We proposed the YOLOX-CA algorithm, a novel
framework that introduces large kernel depth-wise separable
convolution, ACmix attention mechanism, and context fea-
ture enhancement module. This framework improves both the
detection accuracy and the speed of the model. Experimental
results demonstrate that our method significantly enhances
the ability to overcome interference factors such as complex
backgrounds and small, dense targets in remote sensing
images, thereby improving object detection performance.
While our method performs well in handling complex
backgrounds and small, dense targets, it may experience a

decline in detection performance under extreme conditions,
such as extremely low illumination or high occlusion. This
could potentially require more computational resources and
time. Furthermore, it may exhibit certain preferences for
specific types of targets or scenes. In future research, we will
attempt to embed more lightweight modules and residual
frameworks into the YOLOX-CA object detection algorithm
to reduce network size and improve detection accuracy.
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