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ABSTRACT Fuzzy c-Means (FCM) is a popular clustering algorithm that can partition a set of objects into
groups such that objects within a group are similar to each other and dissimilar to those in other groups.
A validity index, either external or internal, is required to validate a cluster quality formed by the FCM
algorithm. External validations require known class labels for measuring a cluster quality and serve as the
clustering ground truth. In real-world data with unknown class labels, a cluster quality can be validated
only via internal validations. A variety of internal validation measures with different scoring models have
been developed, including minimummodel, maximummodel, and range model with minimum to maximum
scores. No internal validation measure proposed thus far is associated with a model ranging from 0 to 1, like
the clustering ground truth (external validation). Therefore, a new internal validation, namely, the fuzzy
validity index (FVI), is proposed. Experimental results based on several cluster properties demonstrated
that the FVI is highly promising. Overall, the scores of the FVI were comparable to the scores obtained
by the external validity index, i.e., F-measure. Statistically, the correlation coefficient between the FVI and
F-measure was high (around 0.8 and above), indicating their similarity. Therefore, the FVI could potentially
serve as the ground truth for measuring the cluster quality of FCM.

INDEX TERMS Fuzzy clustering, fuzzy c-means, internal validity index, fuzzy validity index.

I. INTRODUCTION
Clustering refers to the problem of partitioning a set of objects
into groups such that objects within a group are similar
to each other and dissimilar to those in other groups [1].
It is an unsupervised learning technique categorized into
two broad classes: hard (also known as crisp) and soft (also
known as fuzzy) clustering approaches. In the hard-clustering
algorithm, an object is assigned to a cluster based on a parti-
tion matrix that contains {0,1}. A value of 1 indicates that the
object belongs to the cluster, whereas 0 indicates otherwise.
In the soft- or fuzzy-clustering approach, assigning an object
to a cluster is based on the fuzzy partition matrix values
as well. However, unlike the hard-clustering algorithm, the
value of the fuzzy partition matrix ranges from 0 to 1,
representing the degree of confidence that an object belongs
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to a cluster. Therefore, the closer the fuzzy membership
value to 1, the stronger the confidence in its membership for
that cluster [2], [3]. The FCM algorithm is widely used in
clustering numerical data. FCM is derived from the hard k-
means algorithm, which was introduced by MacQueen [4].
FCMwas initially introduced by Dunn [3] and later improved
upon by Bezdek [2]. It is based on fuzzy theory, which allows
for more flexibility in assigning the degree of membership
to each object. The algorithm depends on two parameters:
the number of clusters k and a parameter m (also known
as the weighting exponent or degree of fuzziness). The
parameter m controls the degree of membership assigned
to each object, allowing it to differentiate between hard-
and soft-clustering approaches. When m is greater than 1,
it indicates a greater degree of fuzziness, while m equal
to 1 indicates a crisp approach. In cluster analysis, two
validations are required in the context of FCM: validation for
determining the correct number of clusters k and validation
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for measuring the cluster quality [5], [6]. The first validation
aims to automatically detect the correct number of clusters
since one of the conditions of FCM is to specify the number of
clusters beforehand. The second validation aims to measure
the quality of the clusters formed by FCM, which generally
relies on three options as follows:

a) The validation is based only on external information
(known as external validity index) such as class labels
and the number of classes. The Rand index [7],
Fowlkes-Mallows index [8], and F-measure [9] are
some examples of commonly used external validity
indices.

b) The validation is based only on internal information
(known as internal validity index). It measures how
well the results fit between the data and the expected
structure using quantities and features inherent in
the dataset [1]. Many internal validity indices have
been reported, and the Silhouette index is one of the
commonly used internal validity indices to measure the
cluster quality formed by FCM.

c) The validation is based on external and internal validity
indices measured together.

The last option is more ideal and practical and is
extensively used by researchers for a wider spectrum of
evaluation. In this context, external and internal validations
complement each other for several reasons in particular
for known class labels. Furthermore, external validations
typically serve as the ground truth for measuring cluster
quality [10], [11], [12]. The ground truth refers to the actual
nature of clustering groups formed by any clustering model
to validate whether it is clustered accurately or inaccurately.
It assesses the degree to which the clustering solution
matches the external knowledge of the data, such as the
class labels assigned by experts in the domain. The ground
truth for clustering models is typically based on a confusion
matrix, which is introduced to measure classification results.
In essence, the matches between the clustering solution and
external knowledge (class labels) are calculated based on
supervised learning. For obtaining a clustering accuracy,
the number of positive objects that are correctly clustered
(true positive, TP) and the number of negative objects that
are correctly clustered, known as (true negative, TN) are
divided by all objects, including the positive objects that
are incorrectly clustered (false positive, FP) and the negative
objects that are incorrectly clustered (false negative, FN).
As a result, the clustering accuracy could be 0% (all objects
were incorrectly clustered), 100% (all objects were correctly
clustered), or any values in between 0% to 100%. Thus,
to benchmark a cluster quality, the external validations
typically report a score, which is based on a bounded index
from 0 to 1. Thus, this index serves as the ground truth for
measuring the cluster quality.

Nevertheless, in real-world applications, most data are
devoid of external information with no class labels. In this
case, internal validation is the only option for measuring
quality clusters, and therefore, the external validation is

out of scope. Basically, the internal validation measures
a cluster quality based on internal information of the
clustering itself, typically object’s distance. It measures the
degree of intra-cluster similarity, i.e., similarity between
objects within a cluster, known as compactness, and inter-
cluster similarity, known as separation. For a well-separated
cluster, internal validation is characterized by objects that are
significantly closer to other objects in the same cluster than
to objects in any other cluster. One of the popular internal
validity indices, which is associated to FCM is Silhouette
index [13]. The Silhouette utilizes objects’ average distance
in a cluster as its compactness measure and objects’ average
distance in different clusters as its separation measure.
Relatively, the Silhouette generates three scores: -1, 0, and
+1, corresponding to incorrect clustering, cluster overlap, and
adequate clustering. Thus, the Silhouette also based on the
bounded-index model that measures a cluster quality ranging
from a minimum of -1 to a maximum of +1.

Notably, external and internal validations are relatively
distinctive by nature. External validation is based on external
information, which is known class labels and then serves
as the ground truth. Internal validation is based on internal
information, which is inherent structure of data with unknown
class labels, cluster properties, and no ground truth. There-
fore, internal validations come with various scoring models
and are not standardized. Unlike external validations, internal
validations come with both bounded- and unbounded-index
models. In fact, the unbounded index comes with either
a minimum or maximum score and no boundary. That is,
to benchmark a cluster quality, the best clustering results will
be based on the highest minimum score obtained such as
that proposed by Fukuyama and Sugeno [14], VK index [15],
XB index [16], and partition entropy index [17] or the highest
maximum score, such as that proposed by Dunn index [3],
Calinski-Harabasz index [18], and Partition coefficient and
exponential separation [19]. Only a few internal validation
indices with the bounded-index model have been proposed
that are constrained within a minimum and a maximum
score such as the external validity indices, like the Silhouette
index, fuzzy Silhouette index [20], and generalized intra-inter
Silhouette index [21]. On the contrary, the Davies-Bouldin
index [22] is a bounded-index model with values from 1 to 0.
To the best of our knowledge, thus far, there are no other
internal validation indices for FCM with the bounded-index
model from 0 to 1, as characterized by external validations.

Motivated by the aforementioned, a new internal validity
index called fuzzy validity index (FVI) is proposed for FCM.
The FVI is based on the bounded-index from 0 to 1, similar
to external validity indices as it serves as the ground truth
for measuring a cluster quality. In summary, this study makes
the following four contributions to the domain of clustering,
particularly for clustering validation:

a) A novel internal validity index, namely, the fuzzy
validity index, or FVI, is introduced by using the
bounded-indexmodel, ranging from 0 to 1, likewise the
ground truth of the external validations.
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b) The FVI is primarily established by a new method
called the adjusted fuzzy membership matrix derived
from the fuzzy membership of FCM. This is because
the fuzzy membership matrix obtained by FCM may
not precisely be used for FVI to represent cluster
properties, especially for cluster overlap, elliptical or
mixture of shapes, unbalanced clusters, and unknown
cluster properties, such as real-world data.

c) The FVI is also derived from a new concept of
compactness and separation, defined by using fuzzy
membership values. This compactness-separation ratio
(CSR) is the underlying idea of the FVI and is defined
through three possibilities: the perfect case, best case,
and worst case.

d) The FVI could potentially serve as the ground truth
for internal validations to measure the cluster quality
of FCM regardless of missing class labels and cluster
properties.

The remainder of the paper is structured as follows.
Section II provides a critical review in particular for
validation methods commonly used for FCM. Section III
elaborates on the formalization of FCM as a preliminary
background to propose its validation method. Section IV
introduces the concept of CSR and formalizes the new
validity index. Section V describes tools, parameter setup,
datasets used for the experiments, and the evaluation
method chosen for comparison. SectionVI demonstrates and
discusses comprehensive results for each cluster property.
SectionVII presents the final discussions of the research, and
finally, section VIII discussed possible directions for further
improvement.

II. RELATED WORK
Many validation methods have been reported and used
for validating FCM. About six external validity indices
have been introduced and used for measuring the cluster
quality of FCM. Table 1 enumerates the external validity
indices with the bounded-index model from 0 to 1, except
adjusted Rand Index (ARI), with the bounded index from
−1 to 1.

TABLE 1. List of proposed external validity indices and used for
validating FCM.

To the best of our knowledge for the internal validity index,
about 16 validity indices have been commonly used for FCM
since 1973. Table 2 presents a list of internal validity indices
introduced for measuring the cluster quality of FCM. How-
ever, most of these indices are based on an unbounded index,
whether they use minimum or maximum values to indicate

a good cluster quality. Notably, only Silhouette index [13]
and Davies-Bouldin index [22] use a bounded-index model to
indicate the minimum to maximum cluster quality. However,
the ranges for both indices are different. The Silhouette index
utilizes a range of−1 to 1, whereas the Davies-Bouldin index
indicates that the minimum value is 1 and the maximum value
is 0. Thus, no internal validity index has been proposed for
FCM that uses the bounded index from 0 to 1 like the external
validity indices.

Table 3 lists some studies reported in the past decade
that have applied FCM and employed certain validity
indices for measuring the quality clusters. Notably, the
Silhouette index is the most popular method, particularly
for internal validation. This metric is somewhat synonymous
with the k-mean-type clustering algorithm traditionally used
to validate its clustering results. The Silhouette index is
motivated by distance-based scores and is derived from the
average distance of intra-cluster objects (compactness) and
the average distance of inter-cluster objects (separation).
A notable advantage of the Silhouette index is that it can also
be used to validate FCM by using distance objects and not the
fuzzy values.

Heretofore, only two validity indices are found to be related
directly to FCM with the attempt to manipulate fuzzy values
in order to validate the cluster quality as follows:

a) The fuzzy Silhouette Index (FSI) Campello and
Hruschka [13] proposed the FSI based on the frame-
work of the Silhouette index. The authors explicitly
implemented the idea of compactness and separation
via the fuzzy membership values associated with
objects. FSI introduces weightage by using the fuzzy
membership degree of the corresponding object to
its first and second best matching fuzzy cluster. The
FSI aims to improve the performance of its crisp
counterpart in detecting regions by focusing on objects
in the vicinity of a cluster rather than objects in an
overlapped area.

b) The generalize intra-inter Silhouette index (GIIS) The
GIIS was introduced by Rawashdeh and Ralescu [14].
It can be applied to both crisp and fuzzy approaches
as it combines the Silhouette index and fuzzy partition
matrix. In this context, the GIIS uses the intra-distance
measure (compactness) to any of the clusters and
inter-distance measure (separation) with respect to any
of the two clusters. GIIS uses Boolean conjunction
and disjunction to determine the intra- and inter-cluster
distance from the cluster assignment from the crisp and
fuzzy partition matrices.

In conclusion, FS and GIIS are internal validity indices
that aim to manipulate the fuzzy partition matrix to measure
the quality of clusters of FCM. Both indices inherit the
bounded index established by Silhouette, which is from
−1 to 1. However, it is found that the overall scores produced
by both indices are almost similar to the scores obtained by
the Silhouette index. In terms of scoring, both indices produce

VOLUME 12, 2024 85997



K. N. Ismail et al.: New Internal Validity Index for Fuzzy c-Means Algorithm

TABLE 2. List of internal validity indices for validating FCM.

TABLE 3. Publications related to FCM application and validity indices used within the last 10 years.

scores far lower than the scores of ground-truths set by any
external validity indices.

III. FCM ALGORITHM
FCM is a generalization of the classical k-means algorithm,
which moves from a hard partition to a soft partition. In other
words, FCM is a partitioning algorithm that offers a fuzzy
membership partition matrix in which objects can belong to
more than one cluster. In addition, FCM may be better than
k-means in terms of offering a globally optimized procedure
in its cost function. Therefore, to partition the dataset X such

that X = {X1,X2, . . . ,Xn}, FCMminimises the cost function
in Equation (1):

JFCM (µ,Z ) =

n∑
i=1

k∑
l=1

µm
il d (xi, zl) (1)

With respect to µ (a fuzzy k-partition matrix) and Z (a
set of cluster centers), where m is a weighting exponent
that satisfies, Zl is the centroid of cluster, µ the degree of
membership of object xi belonging to cluster l, d(xi, zl) is a
distance measure between object x and cluster center z, and k
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is the number of clusters. The fuzzy k partition matrix, µ is
subject to the following constraints:

a) µil = [0, 1] ∀ i, l.
b)

∑k
i=1 µil = 1, ∀ l and

c) 0 <
∑n

i=1 µil < n, ∀ i.
In general, the steps for FCM are as follows:

Step 1: Generate the initial center Zl (l = 1, 2, . . . , k).
Step 2: Compute the fuzzy partition matrix µil using

Equation (2).

µil =
1(∑k

l=1

(
d(xi,zc)
d(xi,zl )

) 2
(m−1)

) (2)

Step 3: Compute the fuzzy center Zl using Equation (3).

Zl =

∑n
i=1 µm

il xi∑n
i=1 µm

il
(3)

and update the fuzzymembershipmatrixµil to µ̃il
according to Equation (2).

Step 4: If maxil |µil − µ̃il | < ε, then stop, otherwise go to
Step 3, where ε is a termination criterion between
0 and 1.

IV. PROPOSED INTERNAL VALIDITY INDEX
A. COMPACTNESS-SEPARATION RATIO
The idea of the FVI is motivated by the underlying concept
of compactness and separation imposed by the Silhouette and
its variants (fuzzy validity indices based on the Silhouette
index). Unlike the Silhouette and its variants, the proposed
internal validity index measures compactness and separation
at the individual object level rather than at the cluster level.
In this context, compactness and separation are viewed
as complementary pairs that work together cohesively.
Therefore, this concept is referred to as the compactness-
separation ratio, or CSR.

Therefore, an object is considered to have a perfect CSR
when the degree of fuzzy membership assigned to its cluster
is 1. This means that the CSR is 100:0, which can be
interpreted as the percentage of compactness for that object
being 100% and the separation being 0%, resulting in well-
separated clusters. Consequently, this CSR may vary for
each object with regard to the degree of fuzzy membership.
In general, if an object has a degree of fuzzy membership of
0.92, it can be interpreted as a CSR of 92:8, meaning that
92% of the object belongs to that cluster and the remaining
8% belongs to other clusters. The ratio is based on a two-
cluster basis: the cluster that the object belongs to (in the
fuzzy context, the object with the highest degree of fuzzy
membership) and the other cluster with the highest degree
of membership among the object’s remaining membership
degree. For example, consider an object x with the degree
of its fuzzy membership in three clusters, namely C1,C2,
and C3 as 0.15, 0.80, and 0.05, respectively. As C2 has the
highest degree of membership, the object belongs to C2, with
a compactness ratio of 80%. On the other hand, the highest

degree of membership among the remaining clusters (C1 and
C3) is 0.15, indicating a CSR of 15%. Thus, its CSR is 80:15.
In this context, each object may fall into one of the following
ratio cases:

• Perfect-case - This occurs when an object has a
compact-separation ratio of 100:0. This scenario is not
a normal case in fuzzy clustering as it indicates a hard
(crisp) clustering.

• Best-case - This occurs when an object has a higher
percentage of compactness than the percentage of
separation. Relatively, the percentage of compactness
is greater than 50% but less than 100%, whereas the
percentage of separation is greater than 0% but less than
50%.

• Worst-case - This occurs when an object has the
percentage of compactness which is less than or equal
to 50% of the percentage of separation. Relatively, the
percentage of compactness may be less than or equal to
50% and its separation may be greater than or equal to
50%. However, the worst-case compact-separation ratio
is also dependent on the degree of fuzzy membership of
the object in that cluster and it must be the highest among
the degree of fuzzy membership of the other clusters.
For example, if there are three clusters and an object has
the degree of fuzzy membership of 0.40, 0.35, 0.25 for
C1,C2 andC3 respectively, the compact-separation ratio
is 40:35 and the object is assigned to Cluster 1 because
the degree of fuzzy membership is the highest.

Figure 1 depicts the concept of compactness and separation
at the object level for a particular CSR. For simplicity, this
example is based on three clusters, and the sum of fuzzy
membership values assigned to these three clusters must be
1 and distributed to each cluster according to Equation (2).
The circle denotes a single object, which is divided into
three sections based on its fuzzy membership values for each
cluster. In the crisp clustering context, the object belongs to
Cluster 1, which has the highest degree of fuzzy membership.
The CSR is directly adapted from the fuzzy membership
value with respect to the crisp cluster and the highest fuzzy
membership values for the remaining clusters. Therefore,
Figures 1(a) and 1(b) illustrate the best CSR in two cases with
the ratios of 95:3 and 75:15, respectively, while Figures 1(c)
and 1(d) illustrate the worst CSR in two cases with the ratios
of 50:40 and 40:35, respectively.

B. NEW FUZZY VALIDITY INDEX
The new FVI is primarily based on the concept of CSR,
as discussed above. This ratio can be computed for each
object as each has its own fuzzy membership that contributes
to cluster formation. FCM applies fuzzification by using
the reciprocal of the distance between objects and cluster
center to determine the degree of fuzzy membership for each
object and cluster, which is shown in Equation (2). By using
the distance between object and center as the base of the
power and 2

(m−1) as the exponent, the fuzzy membership
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FIGURE 1. Overall concept of CSR. (a) best compactness–separation case
with a ratio of 95:3. (b) best compactness-separation case with the ratio
of 75:15. (c) worst compactness-separation case with the ratio of 50:40,
and (d) worst compactness-separation case with the ratio of 40:35.

values decline rapidly when m increases. In this context, two
significant consequences are observed:

a) The fuzzy membership values obtained may only be
representative of that cluster if it is a well separated
cluster, but not for other cluster properties such
as cluster overlap, elliptical or mixture of shapes,
unbalance cluster and unknown cluster properties like
real-world data.

b) When the weighting exponent m increases toward
∞, the fuzzy membership values become fuzzier and
gradually move away from 1 (crisp cluster). Thus, it is
possible that the objects may not belong to a particular
cluster even if their fuzzy membership values indicate
otherwise. Therefore, it may not be ideal to rely solely
on fuzzy membership when formulating a new internal
cluster validity index.

Thus, an empirically adjusted fuzzy membership value
is required to overcome these issues. Here, the adjusted
fuzzy membership value is proposed to be used as the
primary input for formulating the FVI. The adjusted fuzzy
membership is obtained by using the fuzzy membership µ as
the base of the power and m

(m−1)−1 as the exponent, m− 1−1

is the exponent introduced by fuzzy k-modes [46] and the
k-approximate modal haplotypes clustering algorithm [47].
Figure 2 illustrates the effect of exponents that decline rapidly
for the exponent: 2

(m−1) (used by FCM) and also 1
(m−1) (used

by fuzzy k-modes). The exponent m
(m−1)−1 , proposed for the

adjusted fuzzy membership, increases steadily. By imposing
m over m− 1−1 , such that m

(m−1)−1 , the adjusted fuzzy

membership values are now more representative of whether
an object belongs to its cluster or other clusters, and therefore,
can resolve the two issues mentioned above. Although
the empirical analysis of the experimental results is very
promising, the theoretical aspect of this scenario needs to be
further investigated.

FIGURE 2. The effect of exponents declined rapidly for the exponents:
2

(m−1) , 1
(m−1) , and (m − 1)−1.

As a result of above explanation, the overall steps to obtain
the FVI shown as Figure 3.

Roughly, the steps based on Figure 3 describe as follows.
Step 1: Calculate adjusted fuzzy membership (AFM).

The AFM is a new method that is derived from
the fuzzy membership of FCM.

Step 2: Apply the concept of CSR by finding the highest
and the second highest AFM scores. The highest
score represents the degree of compactness,
whereas the second highest score represents the
degree of separation. In the case of the perfect-
case CSR, the degree of compactness is 1.0, and
the degree of separation will be 0. It follows for
the other scenarios of CSR discussed earlier.

Step 3: Calculate a standard deviation based on the CSR
above. The score is called standard deviation of
compactness–separation (SDCS).

Step 4: Assign a weightage score for each SDCS score.
If the SDCS score is greater or equal to 0.5 and
less than or equal to 1.0, the weightage is 1.0.
If the SDCS score is greater or equal to 0.1 and
less than 1.5, the weightage is the highest score
from AFM for that particular object. Otherwise,
the weightage is 0.

Step 5: Calculate the average of the weightage scores.
Step 6: Obtain the FVI, which is the average weightage

score.
The formalization of the FVI is described as follows.
Let δ = δ1, δ2, . . . , δn be a set of n × k AFM matrix,and

δi be represented with its clusters as [δi1, δi2, . . . , δik ];
therefore, to obtain δil as in Equation (4):

δil =
µil

m
(m−1)−1∑k

l=1 µil

m
(m−1)−1

(4)
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FIGURE 3. Steps for obtaining the FVI.

where,µil is the fuzzy partition matrix andm is the weighting
exponent of FCM and is subject to the constraints δil ϵ [0, 1]
and

∑k
l=1 δil = 1, for all i.

Next, the FVI can be obtained in Equation (5):

FVI =
1
n

n∑
i=1

γi, where 1 ≤ i ≤ n (5)

where, γ is a FVI weightage given for each object, xi
as denoted in Equation (6) and is subject to SDCS as
Equation (7):

γi =


1, if SDCSi ≥ 0.5 and SDCSi ≤ 1.0;
maxδil for 1≤l≤k , if SDCSi ≥ 0.1 and SDCSi < 0.5;
0, Otherwise;


(6)

SDCS i

=
2

√√√√√ 2∑
f=1

(qf − q̄ )2 (7)

q1 = maxδil (the highest AFM score that represents the
compactness), q2 = maxδit ; l ̸= t for 1 ≤ l ≤ k (the second

highest AFM score that represents the separation), and q̄ is
the mean for q1 and q2.
In this context, the CSR is represented by q1:q2. This

principle follows the Silhouette index, particularly the
principle of separation. The Silhouette index compares the
average distance of an object from a cluster, which is
usually called a, with the average distance of other objects
from the other clusters, which is called b, based on the
minimum distance. In the FVI context, compactness and
separation are based on the maximum fuzzy membership
values. Table 4 presents a simulation of adjusted fuzzy
membership values that represent the scenario regarding
SDCS and the weightage given based on cutoff points of 0.5
(represented by cases 1–9), 0.1 (represented by cases 10–43),
and 0 (represented by cases 44–52). The example is based
on three clusters, where Cluster 1 has the highest degree of
membership, and Cluster 2 has the second highest degree of
membership.

The weightage γ of FVI is derived from the concept of
compact-separation explained above, which is represented by
q1 (the highest value of the adjusted fuzzy membership) and
q2 (the highest value of the adjusted fuzzy membership of the
remaining clusters).

TABLE 4. Simulated values of SDCS and their cutoff values.

Table 5 shows an example of how these values are obtained.

TABLE 5. An example of µ, δ, SDCS, and γ of an object.

Table 5 provides a comprehensive example for each case
and shows the value of fuzzy membership, adjusted fuzzy
membership based on Equation (4), SDCS explained in
Equation (7) and γ that is obtained via Equation (6). It should
be noted that the m in this example is 2.0. For simplicity, all
objects belong to Cluster 1; therefore, q1 represents Cluster 1
and q2 represents Cluster 2. For object x1, the highest AFM
(0.500) belongs to q1 and the highest AFM of the remaining
clusters (0.495) belongs to q2, resulting in a CSR of roughly
50:50. The value of SDSC is 0.004 (based on Equation (7)).
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When the value of SDCS is less than 0.1, it falls under the
worst-case CSR and is assigned a weightage of 0. For object
x2, the highest AFM (0.657) is q1 and the highest AFM of the
remaining clusters (0.340) is q2, resulting in a CSR of roughly
65:34. The value of SDSC is 0.224. When the value of SDCS
is greater than or equal to 0.1, it falls under the best-case CSR
and is assigned a weightage of 0.657. For object x3 the highest
AFM (0.980) is q1 and the highest AFM of the remaining
clusters (0.012) is q2, resulting in a CSR of roughly 98:1. The
value of SDSC is 0.685. When the value of SDCS is greater
than or equal to 0.5, it falls under the perfect-case CSR and is
assigned a weightage of 1.

The pseudo code for obtaining the FVI is described as in
Algorithm 1.

Algorithm 1 FVI (X, k, m, µ)
Input: Dataset X , number of clusters k , weighting exponent
m, and fuzzy membership values µ.
Output: A new validity index, FVI.
1: for each Cl do
2: for each Xi do
3: Calculate δil as Equation 4
4: Calculate SDSC as Equation 7
5: Calculate γi as Equation 6
6: Calculate FVI as Equation 5
7: end for
8: end for

V. EXPERIMENTAL SETUP
The experiments were carried out using the MATLAB
built-in FCM with default clustering termination conditions,
except for the maximum number of iterations that were
set to 5000. The weighting exponent m was set for each
experiment from 1.1 to 2.5. The number of iterations was
set to 5000 to ensure that optimum clustering results were
obtained for each experiment. This option was initially
suggested by Steinley [48] and was recently applied by
Franti and Sieranoja [49] for their six clustering benchmark
experiments. The experiments were rigorously carried out
for m values ranging from 1.1 to 2.5. To simplify reports
and discussions, this study focused on a specific range of
values for m, which were 1.1, 1.5, 2.0, and 2.5. The results
for the other values of m are also provided in Appendix. For
the test cases, two categories of datasets, namely, synthetic
and real-world datasets, were used for the experiments.
During the experiments, FVI was calculated from the FCM
partition matrix, µ and evaluated along with F-measure
(FMI), Silhouette (SIL), and GIIS.

A. DATASET
Overall, 35 datasets were used in the experiments, with
Datasets 1 to 21 falling under the synthetic data category
and Datasets 24 to 35 falling under the real-world data
category. Table 6 provides a summary of these datasets.
The synthetic category comprises datasets proposed by [49]

for benchmarking the performance of k-mean clustering
algorithm. These datasets represent six basic properties that
can be applied methodologically for FCM to measure its
cluster quality. In total, seven cluster properties, including the
real-world datasets, were used for the experiments, which are
shown as follows:

a) Number of clusters (Datasets 1 - 13). For the number
of cluster property, an additional set of 10 datasets
(Datasets 1-10)was purposely created and derived from
the original dataset A1 by gradually increasing the
number of clusters by 1, starting from a minimum
of 2 clusters to 10 clusters, and another dataset had
15 clusters.

b) Cluster overlap (Dataset 14 - 17)
c) Dimensions and cluster overlap (Dataset 18 - 20)
d) Dimensions (Dataset 21)
e) Cluster structure (Dataset 22)
f) Unbalance data (Dataset 23)
g) Real-world datasets, 12 datasets (Dataset 24 - 35) were

chosen from UCI repository

B. EVALUATION METHOD
As discussed in the previous section, external validity indices,
such as FMI and others were used as ground truth to measure
cluster quality where known class labels are assigned to
each object and the number of clusters is set by FCM
beforehand. However, for unknown class labels, internal
validity indices such as the popular Silhouette index were
used to measure cluster quality. Since FVI is based on an
internal validity index, the Silhouette index was used as
the baseline benchmark for comparison. Another internal
validity index, which was the GIIS, was also included in the
comparison owing to its design based on fuzzy membership
values obtained by FCM that were similar to FVI. Ideally, the
scores of the internal cluster indices should be identical to the
ground truth benchmark of external validity scores. However,
this may not always be possible, and the aim is to close the
gap between the two.

Therefore, three benchmarks were set for comparing
FVI. The first benchmark was the ground truth benchmark
represented by the FMI. The FMI was chosen because (1)
It is the newest external validity index compared with
others such as Rand index, adjusted Rand index, and
Fowlkes–Mallows index and (2) It provides a balanced
evaluation by combining precision and recall with harmonic
mean in a single measure [57], [58]. The Fowlkes–Mallows
index also combines precision and recall but with geometric
mean, and our recent report [59] showed that FMI is
marginally higher than Fowlkes–Mallows index. The aim
was for the scores obtained by FVI to get closer to those
obtained by the FMI. The second benchmark was the baseline
benchmark represented by the Silhouette index. The aim was
for the scores obtained by FVI to be farther from the scores
obtained by the Silhouette index. The third benchmark was
the fuzzy-based validity benchmark represented by the GIIS.
The aim was for the scores obtained by FVI to be better than
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TABLE 6. Summary of datasets.

the scores obtained by GIIS. The description for each validity
index was shown as follows:

a) FMI
The FMI is based on the combination of precision and
recall shown in Equation (8) and (9):

recall,R(b, c) = nbc/nb (8)

precision,P(b, c) = nbc/nc (9)

where b is a class of the q classes, c is a cluster of the k
clusters, n is the number of objects, nbc is the number of
objects in class b, nc is the number of objects in cluster
c, and nbc is number of objects within class b in cluster
c. The FMI of cluster c and class b is then given in
Equation (10):

FMI (b, c) =
(2R(b, c)) . P(b, c)
R((b, c) + P(b, c)

(10)

b) SIL
The Silhouette index is the distance between
intra-cluster objects (compactness) and inter-cluster
objects (separation). The Silhouette score, i.e., SIL,
is calculated based on the Equation (11):

SIL =
bi − ai

max(bi − ai)
(11)

where ai is the average distance of an object to other
objects in the same cluster and bi is calculated by
finding the minimum average distance from the object
to other objects in other clusters.

c) GIIS

GIIS index is combination of SIL (intra and inter clusters
distance) and fuzzy partition matric µ. The intra-matrices for
each cluster µi is calculated in Equation (12) and (13):

IntraDist i = [intrai(djg)]|i = 1, . . . , c, (12)

intraidjg = µij AND µig (13)

The inter-matrices for each clusterµr andµs are calculated
in Equation (15) and (16):

InterDistrs = [interrs(djg)]|r, s = 1, . . . , c; r < s, (14)

interrs(djg) = (µrj AND µsg) OR (µsj AND µrg) (15)

where GIIS index score can be calculated and defined as aj
and bj as shown in Equation (17) and (18):

aj = min
{∑n

k=1 intrai(j, g) · d(j, g)∑n
k=1 intrai(j, g)

}
(16)

bj = min
{∑n

k=1 intrars(j, g) · d(j, g)∑n
k=1 intrars(j, g)

}
(17)
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VI. RESULTS AND DISCUSSION
This section demonstrates that the FVI is comparable to
the external validity index, i.e., FMI, in the current context,
which serves as the ground truth for benchmarking and
measuring cluster quality. Consequently, the scores obtained
by the FVI should also be higher than those obtained by
the SIL, which serves as the baseline benchmark. Another
benchmark is that the scores obtained by the FVI should
also be better than those obtained by the GIIS. These
scenarios provide evidence that the FVI could be used
independently without relying on the external validity index
to measure the cluster quality specifically for FCM. In the
following sub-sections, the results obtained by the FVI
based on the six clustering properties proposed by Franti
and Sieranoja [49] and additional case studies using real
world datasets are discussed. Line graphs are presented to
facilitate the comparison of FVI with the other validity
indices mentioned earlier, with the Y-Axis representing the
scores obtained by all indices ranging from 0 to 1 and the
X-Axis representing the datasets used in the case studies
based on the aforementioned categories. The results are
discussed based on the weighting exponent values of m =

1.1, 1.5, 2.0, and 2.5 only, and the results for the rest of the
weighting exponents can be found in Appendix.

A. NUMBER OF CLUSTERS
Figure 4 presents the experimental results obtained for the
‘‘number of clusters’’ property from a minimum of two
clusters to a maximum of 50 clusters using 13 datasets,
namely A1_2, A1_3, A1_4, A1_5, A1_6, A1_7, A1_8, A1_9,
A1_10, A1_15, A1, A2 and A3. Overall, the scores obtained
by the FVI (in red color) were markedly higher than the
scores obtained by the baseline benchmark, which was the
SIL index (in green color) for each m = 1.1, 1.5, 2.0, and
2.5. Furthermore, the scores obtained by FVI were slightly
lower than the scores obtained by FMI (in blue color). These
scenarios indicated that the FVI was effective when the scores
obtained by FVI were farther from the scores obtained by
the baseline benchmark (SIL) and were closer to the ground
truth benchmark (FMI). It could be concluded that the FVI
is comparable to the FMI for various numbers of clusters.
In fact, for eachm, the FVI gradually approached the patterns
of FMI, beginning from m = 1.5 (Figure 4(b)) and 2.0
(Figure 4(c)). Finally, for m = 2.5, the pattern was almost
identical to the FMI (Figure 4(d)). The GIIS (in yellow color)
was found to be irrelevant for comparison because its scores
were much lower than those obtained by the FVI.

B. CLUSTER OVERLAP
Figure 5 presents the experimental results for the ‘‘cluster
overlap’’ property, where four datasets (S1, S2, S3, and S4)
were used to represent various levels of overlap ranging from
9% to 44%. It was found that the last dataset (S4) had a strong
overlap. Overall, the scores obtained by FVI (in red color)
were higher than the scores obtained by the SIL scores (in
green) for each m = 1.1, 1.5, 2.0, and 2.5.

FIGURE 4. FVI scores by comparison with FMI, GIIS and SIL scores on
‘‘number of cluster’’ properties for a weighting exponent of: (a) m = 1.1,
(b) m = 1.5, (c) m = 2.0 and (d) m = 2.5.

Furthermore, the scores obtained by FVI were also slightly
lower than those obtained by the FMI scores (in blue). This
indicated that the FVI scores were significantly better than

86004 VOLUME 12, 2024



K. N. Ismail et al.: New Internal Validity Index for Fuzzy c-Means Algorithm

FIGURE 5. FVI scores by comparison with FMI, GIIS and SIL scores on
‘‘cluster overlap’’ properties for a weighting exponent of: (a) m = 1.1,
(b) m = 1.5, (c) m = 2.0 and (d) m = 2.5.

the SIL scores and were close to the FMI scores. It could
be concluded that the FVI scores were almost similar to

FIGURE 6. FVI scores by comparison with FMI, GIIS and SIL scores on
‘‘dimensionality’’ and ‘‘cluster overlap’’ properties for a weighting
exponent of: (a) m = 1.1, (b) m = 1.5, (c) m = 2.0 and (d) m = 2.5.

the scores obtained by the FMI for the ‘‘cluster overlap’’
properties. For m = 2.0, the scores obtained by FVI were
almost similar to the FMI scores (Figure 5(c)). However, for
m = 2.5, the scores dropped slightly for Datasets S3 and
S4, indicating that more cluster overlaps might slightly affect
the FVI scores. The GIIS scores (in yellow) were found to
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FIGURE 7. FVI scores by comparison with FMI, GIIS and SIL scores on
multidimensional, structure, and unbalanced data properties for a
weighting exponent of: (a) m = 1.1, (b) m = 1.5, (c) m = 2.0 and
(d) m = 2.5.

be irrelevant for comparison because their scores were much
lower than those obtained by the FVI and SIL.

C. DIMENSIONALITY AND CLUSTER OVERLAP
Figure 6 shows the experimental results for ‘‘dimensionality’’
and ‘‘cluster overlap’’ properties. This case study was

FIGURE 8. FVI scores by comparison with FMI, GIIS and SIL scores on
real-world data properties for a weighting exponent of: (a) m = 1.1,
(b) m = 1.5, (c) m = 2.0 and (d) m = 2.5.

based on datasets G2_2_30, G2_2_50, and G2_2_70, which
combined ‘‘cluster overlap’’ and ‘‘high dimensionality’’
(1024 dimensions). Overall, the scores obtained by FVI (in
red) were discernibly higher than the scores obtained by
the baseline benchmark (SIL). It also demonstrated that the
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FIGURE 9. FVI scores by comparison with FMI, GIIS and SIL scores on all
datasets for a weighting exponent of: (a) m = 1.1, (b) m = 1.5, (c) m =

2.0 and (d) m = 2.5.

scores obtained by FVI were also marginally lower than the
scores obtained by FMI. However, the pattern of FVI scores
exhibited a slight drop for m = 2.0 and 2.5, indicating that
the FVI maintained similar performances as the previous case
studies. In contrast, the scores obtained by GIIS (in yellow)
were far below compared with those obtained from FVI and
SIL. Thus, GIIS was irrelevant for comparison.

D. MULTIDIMENSIONAL, STRUCTURE AND UNBALANCE
DATA
Figure 7 shows the experimental results obtained for three
datasets: DIM32, unbalanced, and Birch1, which represent

FIGURE 10. The correlation coefficient of FVI and FMI for an exponent of:
(a) m=1.1, (b) m=1.5, (c) m=2.0 and (d) m=2.5.

multidimensional property, unbalanced property, and cluster
structure property, respectively. Overall, the scores obtained
by FVI were marginally lower than the scores obtained by
both benchmarks, namely, SIL and FMI, particularly for
m= 1.1 (Figure 7(a)) andm= 2.5 (Figure 7(d)). However, for
m = 2.0, the scores obtained by FVI seemed to be
almost similar to the scores obtained by both benchmarks
(Figure 7(c)). From another perspective, the scores obtained
by the GIIS were extremely inconsistent, especially for
m = 1.5.

E. REAL-WORLD DATA
Figure 8 shows the experimental results obtained for
12 real-world datasets. Unlike synthetic datasets, the cluster
properties such as cluster shape, overlap, and deviation of
these datasets are unknown. However, the results are still
important as they report the performances of FVI in handling
such datasets, particularly for future datasets. Overall, FVI
performed well in handling the unknown cluster properties
represented by these datasets for each value of m (as shown
in Figures 8(a) and 8(b)). This is in contrast to the results
obtained from synthetic data, where the FVI scores were
consistently slightly lower than the FMI scores. Figure 8
shows that the scores obtained by FVI were sometimes
higher than those obtained by FMI. However, the difference
was not significant, and it was, in fact, marginal. The
baseline benchmark represented by the SIL consistently
produced lower scores than those obtained by FVI and FMI.
Another baseline benchmark represented by the GIIS showed
inconsistent patterns and lower scores than those recorded by
the SIL and FVI.

F. OVERALL PERFORMANCES
This section aimed to conclude overall performances of
FVI throughout all datasets. Figure 9 shows the line graphs
based on all 33 datasets combined. At first glance, it was
evident that the scores obtained by FVI and FMI were almost
similar throughout all datasets. Therefore, the goal set for
the FVI was to achieve scores that were at least closer to
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TABLE 7. FVI, FMI, SIL, and GIIS scores for m = 1.1 to m = 2.5.
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TABLE 7. (Continued.)
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TABLE 7. (Continued.)

the scores obtained by FMI, which served as the ground
truth benchmark. FVI was able to achieve this goal fairly.
Furthermore, the scores obtained by FVI were expected to
be higher than those obtained by the SIL. In this context,
the FVI was able to achieve this goal. In most cases, the
FVI demonstrated significantly higher scores for each case.
Finally, the FVI scores were definitely better than the scores
obtained by the GIIS, which were not comparable to the FVI
scores.

For further analysis, the correlation coefficient was used
to measure the strength of a linear relationship between the
scores obtained by FVI and FMI. The results are shown in
Figure 10, where the r2 values were recorded above 0.9 for
m= 1.1, 1.5, 2.0, and 2.5. These results clearly indicated that
the scores obtained by FVI were 90% similar to the scores
obtained by FMI. Thus, this provides strong evidence that
the new internal validity index, FVI, can be used to measure
cluster quality, similar to external validity indices such as
FMI.

VII. CONCLUSION
Overall, the results showed that the FVI produced similar
scores compared to the external validity index. Therefore, the
following conclusions can be drawn:

a) The FVI could also serve as a ground truth for
measuring cluster quality such as FMI. By considering

various weighting exponents required by FCM (from a
minimum of 1.1 to amaximum of 2.5), the performance
of FVI was very promising. The experimental results
clearly demonstrated that the FVI could adequately
handle the exponents from 1.1 to 2.0, and there was
only a marginal difference when the exponents were
set to be greater than 2.0 toward 2.5.

b) The FVI was comparable to the FMI, which was
considered a ground-truth external validity index for
benchmarking cluster quality. Based on the statistical
analysis, it was proven that the correlation coefficient
between the FVI and FMI was mostly greater than 0.9.

c) The FVI could also serve as a ground truth from
an internal validation perspective. One advantage
of the FVI is its ability to validate clusters with
unknown labels, which aligns with real-world data and
applications.

VIII. FUTURE WORK
Furthermore, the FVI could be further investigated and
validated in two areas.

a) First, it could be examined if the scores obtained by
the FVI can come closer or be identical to the scores
obtained by any external validity indices, especially
when the weighting exponent m is chosen by users.
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TABLE 8. Correlation Coefficient Between FVI and FMI Reported for Each
Cluster Category.

b) Second, the underlying theory behind the adjusted
fuzzy matrix should also be further explored as it plays
a significant role in developing the FVI.

APPENDIX
FVI, FMI, SIL & GIIS SCORES FOR M = 1.1 TO M = 2.5
See Table 7.

CORRELATION COEFFICIENT BETWEEN FVI AND FMI
REPORTED FOR EACH CLUSTERING PROPERTY
See Table 8.
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