
Received 23 May 2024, accepted 10 June 2024, date of publication 14 June 2024, date of current version 24 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3414590

A Denoising Method for Loaded Coal-Rock
Charge Signals Based on a Joint
Algorithm of IWT and
ICEEMDAN
XIN LI1, JINGRAN BU 1, ZHEN YANG 1, HAO LI 1, HUI ZUO2, YUNING WANG 3,
AND JING ZHOU 1
1Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China
2Taxation Bureau of Gongchangling District, State Administration of Taxation, Liaoyang 111008, China
3Dalian Vocational Technical College, Dalian 116035, China

Corresponding author: Jingran Bu (15041880263@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51204087 and Grant 51604141, in part
by Liaoning BaiQianWan Talents Program under Grant 2021921083, in part by the Scientific Research Funding Project of Liaoning
Provincial Department of Education under Grant LJKZZ 20220046, and in part by Liaoning Technical University under
Grant LNTU20TD-29.

ABSTRACT The electromagnetic radiation signal generated by loaded coal and rock is widely used to predict
coal and rock dynamic disasters. However, due to the presence of significant electromagnetic interference
at the coal mine site, the accuracy of the collected signals is insufficient. For the collected noisy charge
induction signals, the wavelet threshold function of traditional denoising methods has problems such as
non-progressiveness and discontinuity at the threshold. In order to achieve a better signal noise reduction
effect, this paper proposes a collection based on an improved wavelet threshold (IWT) function and an
improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) combined
denoising algorithm. It overcomes mode aliasing and optimizes signal smoothness. Firstly, the algorithm
is used to decompose the noisy signal and calculate the intrinsic mode function (IMF) and correlation
coefficient of each order to distinguish the noise from the correlated signal. Then, the IMF component
dominated by the signal is reconstructed to complete the denoising. The simulation and experimental results
show that this algorithm can effectively remove noise in charge induction signals, and its signal-to-noise ratio
(SNR) is improved by 2.3482 and 0.095 compared to six algorithms such as IWT and VMD, respectively.
Compared with four algorithms, including the improved threshold function and the improved threshold
function combined with Ensemble Empirical Mode Decomposition (EEMD), its noise-to-noise ratio (Rnn)
decreased by 3.112, showing good noise reduction performance. The results presented in this paper provide
a new method for collecting real charge induction signals.

INDEX TERMS Charge induction signal, improved complete ensemble empirical mode decomposition with
adaptive noise, improved wavelet threshold, combined denoising.

I. INTRODUCTION
As a major source of energy, coal mining safety issues
have become increasingly prominent in its mining process.
In order to reduce the occurrence of such disasters, coal
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and rock dynamic disaster prediction has received a lot of
attention. There is a clear signature of charge-induced sig-
nals in the fracture process of the coal-rock. However, the
charge-induced signals collected in coal mining are char-
acterized by randomness, abruptness, and wide frequency
bands. As a result, the collected charge-induced signal is
often mixed with various noise disturbances, which affects
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the realism of signal extraction [1]. In this complex form,
conventional denoising techniques have struggled to meet the
requirements. In order to accurately study the variation law of
the charge-induced signal during coal fracture and to better
obtain the predictive properties of the signal, it is necessary
to explore denoising algorithms with higher SNR. Therefore,
the study of new denoising methods has become an inevitable
trend.

At present, the most commonly used signal decomposi-
tion method with wavelet decomposition [2] and empirical
mode decomposition (EMD) [3]. Among them,wavelet trans-
form methods can provide the time-frequency localization
properties of signals. But the choice of wavelet basis func-
tions and thresholds is problematic. Due to the wide and
complex sources of signal noise. This can easily lead to
certain limitations in its adaptability when processing com-
plex engineering signals [4], [5]. Compared with wavelet
transform method, EMD method does not need to select
wavelet basis function or decomposition layer, but it has
some problems such as false mode components and mode
aliasing, so it has some limitations in practical application.
EEMD improves the pattern confusion problem of EMD
algorithms by repeatedly adding different white noise to the
original signal [6], [7], however, the added white noise can
lead to reconstruction errors. CEEMD can introduce reverse
white noise into the target signal, thus effectively reducing
the reconstruction error of EEMD. However, if the white
noise added is not appropriate in amplitude and number of
iterations, the result will be not accurate [8], [9]. There-
fore, domestic and foreign scholars have carried out a lot
of research on signal denoising methods on this basis, and
achieved certain theoretical results: Xie et al. [10] inves-
tigated a modified wavelet threshold calculation method
and threshold treatment function. This prevents the usual
bias caused by traditional soft thresholding methods and
reduces the bias due to inaccurate thresholds. Moreover,
it solves the discontinuity of the traditional hard threshold
function. Li et al. [11] employed different decomposition
layers, analyzed the denoising effect of different decompo-
sition layers, compared the SNR and the mean values, and
finally obtained the optimal denoising layer as 4 layers, which
can achieve good denoising effect. Gu et al. [12] proposed a
hybrid algorithm based on wavelet packet transformation-BP
neural network, which used wavelet packet transform to
filter the energy feature extraction and decomposition and
reconstruction capabilities of the signal, and then carried
out preliminary decomposition and reconstruction of the
transient electromagnetic signal to obtain the final tran-
sient electromagnetic signal. Bayer et al. [13] introduced an
adaptive filtering procedure called SpcShrink that can signif-
icantly distinguish the wavelet coefficients of the signal of
interest. Deng and Zhang [14] proposed an improved thresh-
old function, which was compared with hard threshold, soft
threshold and existing threshold functions, and concluded
that the function had superior mathematical characteristics.

The superiority of the algorithm was verified by the objective
evaluation method of peak SNR and MSE. Zhang et al. [15]
adopted a method to remove image noise, mainly using the
improved threshold function to apply the wavelet coeffi-
cient to the high-frequency part of threshold processing, and
then obtain the de-noised image to reconstruct the image.
Kumar et al. [16] studied the denoising technology using
stationary wavelet transform, which retained more ECG sig-
nal components and was superior to other ECG denoising
methods. Zhong et al. [17] proposed a method to select
threshold parameters or the number of decomposition layers
without human intervention in order to achieve the denoising
effect of electrical signals. Hou and Guo [18] proposed a
denoising method based on modified complementary inte-
grated empirical mode decomposition (MCEEMD), which
has good adaptability and can suppress the mode aliasing
of EMD to a certain extent. Jia et al. [19] proposed a
new method of vibration signal denoising based on EEMD
and grey theory, called EEMD-Gray, which can effectively
remove noise and retain useful information. Jin et al. [20]
adopted a novel adaptive integrated empirical mode decom-
position (NAEEMD) denoising method based on partial
discharge, which has good denoising effect and effectiveness.
Cheng et al. [21] adopted the EEMD method to distinguish
the intrinsic mode function (IMF) of noise and signal, and
removed the IMF whose main component was noise, and
then used the SVD-LWT method to remove the noise in
the IMF component containing signal, so as to extract sig-
nal in a fine manner. Dao et al. [22] proposed an adaptive
modulation interval threshold denoising algorithm based on
empirical mode decomposition, and finally raised the SNR
by 1-3dB. Compared with direct empirical mode decompo-
sition denoising method and traditional threshold denoising
method, the root-mean-square error was reduced by 10-25%.
Zhang et al. [23] proposed a new denoising method based on
convolutional neural network with long short-term memory
(CNN-LSTM) and CEEMD, which improved the accuracy
of signal measurement. Li et al. [24] adopted an adap-
tive denoising method based on the combination of wavelet
threshold based on EEMD and singular spectrum analysis
(SSA). This method can significantly reduce the MSE, and
the overall denoising effect is better than EEMD and wavelet
threshold denoising algorithms. Xiong et al. [25] proposed a
denoising method based on variational mode decomposition
(VMD) and wavelet threshold for speech signals with noise.
Sun et al. [26] improved the wavelet threshold method and
combined it with EEMDalgorithm for denoising to ensure the
availability of signals. Feng et al. [27] adopted ICEEMDAN
and improved wavelet Threshold (IWT) hierarchical decom-
position to improve the signal separation effect and achieve
signal noise reduction. The above studies have improved
the wavelet thresholding algorithm and the EMD algorithm.
These can overcome the drawbacks of poor selectivity and
universality of wavelet bases, as well as mode aliasing in
EMD. However, due to the complex environment of the mine
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site, the electromagnetic signals are greatly affected during
the collection process, resulting in their reduced quality. Con-
tinued improvement of the noise reduction performance of the
signal is still necessary in order to make the precursor sig-
nal of electromagnetic radiation more accurate in predicting
dynamical disasters in coal rocks.

The electromagnetic radiation method, as one of the
existing geophysical monitoring methods, is helpful for
predicting coal rock dynamic disasters [28]. Due to the
complex coal mine environment, electromagnetic signals are
severely disturbed during signal acquisition. This increases
the difficulty of extracting the signal features and drasti-
cally reduces its predictive performance. Currently, scholars
have achieved some results in the study of noise reduc-
tion of electromagnetic radiation signals: Huang et al. [29]
uses the iterative thresholding approach of the wavelet
transform for denoising. The noise is removed from the
signal by thresholding. Based on this, an analysis of the
generation law of electromagnetic radiation during the fail-
ure of sandstone impacts was performed. Yang et al. [30]
proposed a new electromagnetic radiation signal denoising
algorithm that combines Adaptive Ensemble Empirical Mode
Decomposition (AEEMD) and Improved Wavelet Transform
(IWT). This algorithm optimizes both soft and hard thresh-
old formulations, overcomes the wavelet basis selection and
decomposition layer problems, and has certain advantages.
Safta et al. [31] used wavelet functions to denoise the
electromagnetic radiation signals generated by microcon-
trollers under harsh conditions and obtained good physical
data. Wu et al. [32] proposed a noise denoising algorithm
based on variational Bayesian-based adaptive Kalman fil-
ter (VBAKF) for electromagnetic data subjected to mixed
noise interference. It effectively suppresses noise in the data.
Chen and Wang [33] proposed a method of EEMD adaptive
morphological filters to eliminate electromagnetic signals
collected by coal rock dynamic disaster systems, in order
to improve the accuracy of electromagnetic signals. The
above algorithm sets the stage for studying the denoising
of electromagnetic radiation signals. However, there is still
relatively little research on related content at this stage.
In particular, the research on denoising methods for pre-
dicting the signal of dynamical disasters in coal and rocks
is not yet mature. This is not conducive to the develop-
ment of coal and rock dynamic disaster prevention and
control.

In view of the above shortcomings, in order to better
remove the noise in charge induction signals, this paper
proposes an improved wavelet threshold combined with
ICEEMDAN algorithm, and then uses simulation signals and
experimental signals to verify its denoising effect. At the
same time, SNR and RMSE are used to compare the denois-
ing effect of this algorithm with other algorithms, and further
verify the superiority of this algorithm. The research results
can be used for better processing of noisy signals and provide
technical support for the research of coal and rock dynamic
disaster prevention methods.

II. IWT AND ICEEMDAD ALGORITHM
A. IMPROVED THRESHOLD DENOISING ALGORITHM
The principle of wavelet threshold denoising is to determine
a limit value and distinguish the noise from the original signal
by comparing the size with the wavelet coefficient: when
the wavelet coefficient is numerically high, it is considered
effective, and the hard threshold method gives it the origi-
nal value retention processing, and the soft threshold gives
it the contraction to 0 according to certain rules. On the
contrary, it is considered to represent noise and should be
disposed of [34] and [35]. In order not to change the overall
trend of the signal, the wavelet coefficients generally keep
the low-frequency part of the signal and only process the
high-frequency part of each layer.

After the hard threshold is processed, the wavelet
coefficient is denoted as

ω̂c,k =

{
ωc,k

∣∣ωc,k ∣∣ ≥ λ

0 else
(1)

After soft threshold processing, the wavelet coefficient is
denoted as

ω̂c,k =

{
sign

(
ωc,k

) (∣∣ωc,k ∣∣− λ
) ∣∣ωc,k ∣∣ ≥ λ

0 else
(2)

where ωc,k is the wavelet coefficient corresponding to the
high frequency band after each layer wavelet decomposition;
ω̂c,k is the estimated wavelet coefficient of the real signal;
sign( ) is a symbolic function; λ is a threshold.

Although the hard threshold denoising can effectively
retain the original data of the wavelet coefficients, so as to
completely restore the local details of the signal, the smooth-
ness of the reconstructed signal is poor, which increases the
difficulty of calculation. The soft threshold algorithm has
continuity and ensures the smoothness of image edges, but
it compresses the amplitude of effective wavelet coefficients,
resulting in the loss of some high-frequency signals. To solve
these problems, a new threshold function between hard and
soft thresholds is constructed. The expression of the new
threshold function is

ω̂c,k =

{
sign

(
ωc,k

) (∣∣ωc,k ∣∣n − λn
) 1
n ωc,k ≥ λ

0 ωc,k < λ
(3)

where n ≥ 1.
The threshold function (3) is continuous like the soft

threshold function and is higher-order derivable when∣∣ωc,k ∣∣ > λ. Examining the function

g(t) = sign(t)
(
|t|N − λN

) 1
N

(4)

where N is the total number of wavelet coefficients.
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Calculate the oblique asymptote of the function, and when
t>0, the calculation result is

t > 0



k = lim
t→+∞

g(t)
t

= lim
t→+∞

(
|t|N − λN

) 1
N

t

= lim
t→+∞

(
1 − (

λ

t
)N
) 1

N

= 1

b = lim
t→+∞

(g(t) − t)

= lim
t→+∞

((
|t|N − λN

) 1
N

− t
)

= 0

(5)

Similarly, when t<0 is calculated, it is

t < 0

 k = lim
t→−∞

g(t)
t

= 1

b = lim
t→−∞

(g(t) − t) = 0
(6)

From functions (5) and (6), it can be concluded that func-
tion (4) takes the line y = t as its asymptote, so the threshold
function (3) is asymptote to ω̂c,k = ωc,k . With the increase
of ωc,k , ω̂c,k can converge to ωc,k indefinitely, which solves
the problem of constant deviation of ωc,k and ω̂c,k in the soft
threshold denoising method, and improves the reconstruction
accuracy.

Also, when N → +∞, if
∣∣ωc,k ∣∣ > λ then

lim
N→+∞

ω̂c,k = sign
(
ωc,k

)
×
∣∣ωc,k ∣∣ lim

N→+∞

1 −

(
λ∣∣ωc,k ∣∣

)N
1
N

= sign
(
ωc,k

)
×
∣∣ωc,k ∣∣ = ωc,k (7)

Therefore, when N→ +∞, the IWT function is equivalent
to the hard threshold function, and when N= 1, the IWT
function is equivalent to the soft threshold function. It can be
seen that the improved threshold function is a function that
can adjust changes between the hard threshold function and
the soft threshold function. When

∣∣ωc,k ∣∣ = λ, ω̂c,k = 0, and
when

∣∣ωc,k ∣∣ → λ, then,
∣∣ωc,k ∣∣ → 0, that is, ω̂c,k is continuous

at
∣∣ωc,k ∣∣ = λ and the deviation between ω̂c,k and

∣∣ωc,k ∣∣
decreases gradually as

∣∣ωc,k ∣∣ gradually increases. Therefore,
the IWT function has better denoising effect compared to hard
and soft thresholds, achieving higher signal reconstruction
accuracy.

The specific steps to the IWT function denoising are as
follows:

1) Wavelet basis selection: Performing orthogonal
wavelet transform on noisy signals to determine a
suitable set of wavelet decomposition coefficients ω̂c,k .

2) Determine threshold λ: On the basis of calculating the
standard deviation of noise, the threshold is obtained
by solving.

λ = δ
√
2 lnN (8)

δ =
αD

y
(9)

where δ is the noise standard deviation; αD is the noise
standard deviation.
(3) Threshold processing: with λ Perform threshold pro-

cessing on ωc,k for the threshold, and obtain the
estimated value ω̂c,k of the wavelet coefficients through
formula (3).

(4) Wavelet reconstruction: Using an improved threshold
function to reconstruct the unprocessed low-frequency
band and the wavelet coefficients of ω̂c,k , obtaining the
final reconstructed signal.

Through the analysis, the graph of the IWT function is
obtained and compared with the soft threshold and hard
threshold function, as shown in Figure 1, it can be found that
the hard threshold function is interrupted between −λ and
λ which leads to poorer smoothing and increased computa-
tion after signal reconstruction. The soft threshold function
improves the intermittent shortcomings of the hard thresh-
old function, reducing the computational effort and ensuring
smoothness of the reconstructed signal. However, the disad-
vantage is that the coefficient amplitude of the effective signal
is compressed, resulting in the loss of high-frequency signal,
with a fixed difference between ωc,k and ω̂c,k , and its con-
traction to 0 according to the rule will make the details of the
signal not be restored, and the signal distortion occurs [36],
[37], [38], [39]. In contrast, the IWT function smoothes the
curves without interruption and preserves the signal intact.
But its selection of threshold is important, and the denoising
effect will be limited by it.

FIGURE 1. IWT function graph.

B. IMPROVED ADAPTIVE NOISE SET EMPIRICAL MODE
DECOMPOSITION
EMDalgorithm decomposes non-stationary nonlinear signals
into intrinsic mode functions (IMF) with smooth character-
istics from high to low, but IMF may have mode confusion
caused by abnormal events. EEMD algorithm is an improve-
ment of EMD algorithm, by adding several orders of white
noise to the original signal, and EMD for the combined
message, but it is found that the decomposition result is
incomplete. The complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) algorithm can
not only reduce the number of screening, In addition,
ICEEMDAN also avoids the problem that the difference of
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IMF decomposition results among groups in CEEMD makes
it difficult to align the final set average, but at the same time,
there are shortcomings, and ICEEMDAN solves the problem
of residual noise and pseudo-modes in CEEMDAN.

ICEEMDAN employs adaptive noise and full integration
strategy to improve the stability and accuracy of the decom-
position. In this algorithm, the initial signal is decomposed
into multiple IMFs, and each IMF is denoised using an
adaptive denoising algorithm. The final denoised IMFs are
integrated to obtain the resolved signal.

The ICEEMDAN algorithm can decompose the signal into
several more accurate IMF components, which selects the kth
IMF component of the Gaussian white noise decomposed by
EMD in the decomposition process, denoted by Ek (·); while
the first IMF1 is related to the residuals by the equation [40]:

IMF1 = x − R1 (10)

where, x is the original signal; R1 is a first-order residual,
whose expression is:

R1 =

〈
N (x(i))

〉
(11)

where N (·) denotes the operator for solving the local mean
of the signal; ⟨·⟩ is the operator for averaging throughout the
computation; and x(i) is the signal after the addition of white
noise, which is expressed as:

x(i) = x + β0E1(ω(i) [n]) (12)

where ω(i) [n] refers to the ith Gaussian white noise added
(i=1,2,3,. . . i); βk is the SNR of the k stage.
Continue to add white noise, using the local mean

decomposition to calculate the residual of the second stage
as:

R2 =

〈
N
(
R1 + β1E2

(
ω(i)

))〉
(13)

and define the second modal component of the signal IMF2
as:

IMF2 = R1 − R2 = R1 −

〈
N
(
R1 + β1E2

(
ω(i) [n]

))〉
(14)

calculate the kth residual as:

Rk =

〈
N
(
Rk−1 + βk−1Ek

(
ω(i) [n]

))〉
(15)

and calculate the kth mode component as:

IMFk = Rk−1 − Rk (16)

according to the above process, all modes and residuals
are obtained until the end of decomposition. The specific
decomposition procedure of the algorithm is shown in Fig. 2:

FIGURE 2. Flowchart of ICEEMD algorithm.

III. STUDY OF JOINT EMR SIGNAL PROCESSING BY IWT
AND ICEEMDAN
A. JOINT IWT AND ICEEMDAN DENOISING ALGORITHM
The ICEEMDANalgorithm can effectively improve themode
aliasing phenomenon in the EMD algorithm, and adaptive
signal processing has also been implemented [40]. The IWT
denoising algorithm optimizes both the traditional soft and
hard thresholds, allowing threshold denoising to achieve sig-
nal adaptation as well. The combination of the two can
overcome the pickiness of wavelet bases and solve the prob-
lem of choosing and decomposing wavelet bases. Compared
to the existing algorithms, the joint algorithm of IWT and
ICEEMDAN for coal and rock signals has a significant
advantage in protecting the peaks and abrupt signals of charge
induction signals. It is suitable for denoising transient signals
generated by coal rock fractures, and it can effectively distin-
guish high-frequency effective signals from high-frequency
noise without missing high-frequency signals. Therefore,
the joint algorithm of IWT and ICEEMDAN for charge
induction signal denoising achieves significantly better
performance.

The specific computational steps of the joint denoising
algorithm of the IWT function and ICEEMDAN are as
follows:

1) Perform ICEEMDAN decomposition of the
noise-containing signal to obtain the IMF components of each
order.

2) Calculate the correlation coefficient R of each order IMF
component and noise-containing signal, establish the correla-
tion coefficient curve, and set the order corresponding to the
first local minima in the graph as k-order, and the components
before k-order are mainly noise-dominated signals, and the
components after k-order are mainly effective signals.

R(y(t), IMFj) =
cov(y(t), IMFj)
σy(t) × σIMFj

(17)

where cov(y(t), IMFj) is the covariance between the
noise-containing signal and each modal function; σy(t) and
σIMFj are their standard deviations.

3) The IMF components of each order are sequentially
processedwith improved threshold function to obtain the IMF
components of each order after denoising.
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FIGURE 3. Flow chart of joint denoising algorithm.

4) Signal reconstruction is performed on the effective sig-
nal components after the kth order to obtain the denoised
signal.

The flowchart of the joint denoising algorithm is shown in
Figure 3, and the reconstructed signal is:

f̄k (t) =

k∑
j=1

IMF
′′

j (t) +

n∑
j=k+1

IMF ′
j (t) + R′

e(t) (18)

where IMF
′′

j (t) is the signal function of the noise dominated
signal after denoising by the joint algorithm; IMF ′

j (t) is the
effective signal function; R′

e(t) is the residual.

B. DE-NOISING SIMULATION VERIFICATION OF ADDITIVE
NOISE SIGNAL.
When verifying the feasibility and superiority of the IWT
function and ICEEMDAN joint denoising algorithm, for the
convenience of observation, the waveform is continuous and
periodic sinusoidal function signal is used for simulation, and
its signal expression is:

x(t) = 2.5 sin (2π f1t) + 3 sin (2π f2t) (19)

where f1 is 0.7, f2 is 0.05, the total number of sampling points
is 3000, the wavelet basis function is sym6, and the number
of solving layers is 3 layers. Due to the complexity of the
noise generated by the environmental interference during the
acquisition process, in order to verify the applicability of
the algorithm in this paper, the noise-containing signal y(t)
obtained after adding random white noise n(t) to the original
signal is

y(t) = x(t) + n(t) (20)

The simulation diagrams of the original signal and the
noise added signal are shown below:

As can be seen from Fig.6, ICEEMDAN algorithm decom-
poses the noisy signal into 9 IMF components and a trend
term (res). The results for each component are clear and there
is nomode aliasing. Among them, IMF1 to IMF4 components

FIGURE 4. Original signal diagram.

FIGURE 5. Noise signal map.

contain obvious noise, IMF5-IMF9 components contain less
noise, which is closer to the real signal. The improved thresh-
old function processing was carried out for each component,
and the correlation coefficient between the processed IMF
component and the noisy signal was calculated, and the cor-
relation coefficient variation chart as shown in Fig. 7 was
obtained. From Fig. 7, it can be seen that the image exhibits
a fluctuating trend. The correlation coefficient of IMF5 is
0.5628, which serves as a boundary point to extract the fifth
and subsequent IMF components for reconstruction. Finally,
a smooth curve with periodic fluctuations is obtained, that is,
the signal after noise removal.

In order to further demonstrate the accuracy and supe-
riority of the denoising performance of IWT function and
ICEEMDAN combined algorithm, IWT function, VMD
algorithm, IWT and EMD combined algorithm, IWT and
EEMDcombined algorithm, and IWT and ICEEMDANcom-
bined algorithm are respectively used to denoise the same
simulation signal, and their denoising effects are compared.
Figure 8 shows the comparison of the de-noising effects of
the six algorithms. From the comparison of Figures 8 (a) - (f),
it can be seen that the denoising effect of each algorithm
gradually strengthens. The effect of denoising using the IWT
and VMD algorithms is not ideal. There are still multiple
burrs and oscillations in the signal. Comparing Fig 8 (a) and
Fig 8 (c), it can be seen that the joint algorithm has a better
denoising effect. After denoising using the joint algorithm
of IWT and ICEEMDAN, it is evident that most of the
signal spikes are filtered out. The smoothness of the signal
is improved, making it closer to the original signal. And two
evaluation criteria, SNR and mean square error (RMSE), are
used to evaluate the denoising performance of the signal [41].
The calculation formula is as follows:

SNR = 10 × lg


n∑
i=1

(yi)2

n∑
i=1

(yi − xi)2

 (21)
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FIGURE 6. ICEEMDAN exploded view.

FIGURE 7. Changes in IMF correlation coefficients.

RMSE =

√√√√√ n∑
i=1

(yi − xi)2

n
(22)

where, yi denotes the noise-containing signal; xi denotes
the signal after denoising; n denotes the number of signal
samples; SNR denotes the ratio of the effective part to the
noise part of the signal; and RMSE denotes the difference
between the signals before and after denoising; In general, the
larger the SNRvalue and the smaller the RMSE value, the bet-
ter the denoising effect of the algorithm. Table 1 shows the
comparison of the six denoising methods. Table 1 shows
the comparison table of six denoising methods, from which
we can see that the SNR of 16.8064 of the joint denoising
algorithm is higher than that of other algorithms, and the
value of RMSE is also gradually reduced to 0.2367, which
indicates that the denoising performance is better.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENT AND SIGNAL ACQUISITION METHOD
In order to verify the superiority and practicability of the
combined denoising algorithm for charge induction signals
in the process of coal rock fracture, uniaxial compression
experiments are conducted on coal rock. The test samples

are roof sandstone, coal body, and floor sandstone pro-
cessed in the laboratory. As required by the International
Society of Rock Mechanics for experimental purposes, the
composite coal-rock sample was bonded in a 1:1 ratio to a
cylindrical shape with a diameter of 50 mm and a height
of 100 mm, as shown in Fig. 9. The experimental loading
system is composed of SANS universal test press (maximum
load is 300 KN), dynamic signal acquisition system, com-
puter, control cabinet, and data acquisition system. A self-
developed charge meter was used for charge acquisition, and
its charge-voltage conversion ratio was 80∼100mV/pC. The
experiment was conducted in a self-made electromagnetic
shielding chamber, and the experimental system is shown in
Fig. 10.
The charge induction signals were collected and analyzed

through uniaxial loading experiments on composite coal rock
specimens. In order to ensure the universality and accuracy
of the experimental results, a total of 21 specimens were
made in this study, which were noted as f1-f21, and equally
divided into 3 groups, and the experiments were carried out
using 3 different loading rates. The loading rates and the
corresponding specimen groupings are: 0.1 mm/min (f1-f7),
0.3 mm/min (f8-f14), and 1.0 mm/min (f15-f21).

(1) The composite coal rock sample is fixed between lay-
ers; the sample is placed in the shield; the shield is placed on
the press test bench; and the charge meter probe is placed in
the shield, in the middle of the coal body part, 5 mm away
from the sample surface.

(2) Before starting the experiment, power off electrical
equipment unrelated to the experiment and other equipment
requiring power, and close the laboratory doors and windows
to avoid unnecessary movement of personnel so as not to
affect the data results.

(3) Turn on the power supply, set the loading rate to
0.1 mm/min, 0.3 mm/min, and 1.0 mm/min, respectively,
start the load, charge induction acquisition system, and
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FIGURE 8. Comparison of six denoising algorithms. (a) IWT function
denoising. (b) VMD denoising. (c) Joint denoising of IWT and EMD.
(d) IEEMDAN denoising. (e) Joint denoising by IWT and EEMD. (f) Joint
denoising by IWT function and ICEEMDAN.

electromagnetic radiation acquisition system first, then start
the press, start the loading, and record the stress, strain, and
charge data.

(4) Observe the loading of coal and rock samples, shut
down the experimental system, and save the data after the coal
and rock are broken.

B. ANALYSIS OF EXPERIMENTAL RESULTS
In the experiments, multiple sets of specimens were used
for uniaxial loading experiments, and the stress curves of
specimens f1, f8 and f15 were selected at uniaxial loading
rates of 0.1 mm/min, 0.3 mm/min and 1.0 mm/min. From

TABLE 1. Comparison table of six denoising methods.

FIGURE 9. Composite coal and rock sample.

FIGURE 10. Experimental system.

FIGURE 11. Coal rock force diagram at loading rate of 1.0mm/min.

Fig. 11, it can be seen that the fracture trends are similar
for each coal sample, so only the charge induction signal
collected at a loading rate of 0.3 mm/min is shown. As shown
in Fig. 14.

As can be seen in Fig. 14, there are more burrs in
the original charge-induced signal, which contains serious
interference and makes the signal features less pronounced.
By combining the signal with the stress data, the variation
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FIGURE 12. Coal rock force diagram at loading rate of 0.1mm/min.

FIGURE 13. Coal rock force diagram at loading rate of 0.3mm/min.

FIGURE 14. Charge induction signal curve.

law of the charge signal generated in the process of coal
rock fracture cannot be obtained. This is not conducive to
the prediction of dynamical disasters in coal and rocks.
In order to remove the noise from the signal and to validate
the algorithm, improved thresholding algorithm, improved
thresholding function and EEMD combined algorithm are
used, AEEMD-IWT denoising algorithm, improved thresh-
old function and ICEEMDAN joint algorithm are used to
process the charge induction signals, and the results are
shown in Fig. 15:
Compared with Fig. 15, it can be seen that the burrs of the

charge-induced signal are gradually reduced after denoising,
and the overall picture is smoother. The improved threshold
function shown in Fig. 15 (a) still contains a lot of noise
after de-noising, which cannot accurately reflect the varia-
tion trend of signal with loading stress. It can be seen from
Fig. 15 (b) - (c) that the denoising effect of the improved
threshold function combined with the EEMD algorithm and
the AEEMD-IWT denoising algorithm is improved. How-
ever, they have the disadvantage that the effective signal
is lost and the obtained signal is incomplete. This has a
significant impact on analyzing the characteristics of charge

FIGURE 15. Denoising result of charge induced signal. (a) IWT algorithm.
(b) IWT function combined with EEMD for denoising. (c) AEEMD-IWT
denoising. (d) Joint algorithm of IWT function and ICEEMDAN.

induction signals during the process of coal rock fracture
under load. As shown in Fig. 15 (d), the signal denoised
by the improved threshold function combined with ICEEM-
DAN is clear and complete, and the prediction characteristics
of charge signal are obvious. The sudden increase of the
charge-induced signal just a few seconds before the peak
loading stress of the coal rock can be taken as an omen of
the coal rock breaking. Therefore, this algorithm has the best
denoising effect and is able to recover the charge-induced
signal more accurately.

In order to more intuitively show the superiority of the
joint algorithm highlighted in this paper, the noise-to-noise
ratio (Rnn) is calculated on the signal [42], and the results are
shown in Table 2. The noise-to-noise ratio is the relationship
between the removed noise and the original noise. When the
noise-to-noise ratio is greater than 0, it indicates that the
noise in the signal is not cleanly removed; when the noise-
to-noise ratio is less than 0, it indicates that the signal is in
a distorted state. Only when the noise-to-noise ratio is close
to 0, it indicates that the noise in the signal is removed cleanly
and the denoising effect is better.

By comparison, it can be seen that all the above four
methods have a denoising effect on the charge induc-
tion signals, and their denoising ability is from small
to large, as in Improved Threshold Function Denoising,
Improved Threshold Function and EEMDCombined Denois-
ing, AEEMD-IWT Denoising Algorithm, and IWT Function
and Combined Denoising in the order of smallest to largest.
There are more burrs in the original charge induction signal,
and after a single improved threshold and improved threshold
function combined denoising process with EEMD, the signal
interference is significantly reduced, but it does not meet the
expectations. The charge induction signal is filtered out of
most of the burrs in the signal by the AEEMD-IWT joint
denoising, and at this time, the noise-to-noise ratio of the
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TABLE 2. Comparison table of four denoising methods.

FIGURE 16. On-site signal.

algorithm is 0.254, whereas after the improved threshold
function and the ICEEMDAN joint denoising algorithm, the
burrs in the signal are greatly reduced, and the noise-to-noise
ratio is only 0.129, which is smaller than the other three
denoising algorithms and close to 0. It can be seen that the
joint denoising algorithm proposed in this paper has a very
good noise reduction effect.

As shown in Fig. 15(d), the improved algorithm signifi-
cantly reduces the noise content in the signal after denoising,
and the charge induction signal is relatively stable during the
early stages of coal-rock loading until a significant increase
occurs just before coal-rock fracture. Based on the stress
curve, it can be seen that the stress peaks at 836s and the
coal-rock sample cracks. The charge induction signal is sig-
nificantly increased in the seconds before the fracture, which
can serve as a precursor to the fracture.

By comparison, it can be seen that the proposed algorithm
achieves excellent denoising performance on the noisy sig-
nals measured in the experiment. Due to the fact that
the interference of the signals collected in the compound
coal-rock loading experiment mainly comes from the exper-
imental environment, the sources of interference are limited
compared to the coal mine site and the signal is less affected.
The signals obtained from on-site monitoring in coal mines
are affected by multiple factors such as dust, vibrations and
electromagnetic interference, resulting in a high noise content
in the signals. To verify the reliability and stability of themod-
ified algorithm, the field signal of a section of coal rock before
fracture was selected for de-noising verification, as shown
in Fig. 16. The denoising results are shown in Fig. 17. The
effectiveness of the modified threshold function and the joint
ICEEMDAN algorithm is again verified by comparison.

Four denoising algorithms are used to denoise the on-site
signal. It can be seen from Fig. 17(a)-(d) that the amplitude
change of the charge-induced signal of the four algorithms

FIGURE 17. On-site charge induction signal denoising result diagram.
(a) IWT algorithm. (b) IWT function combined with EEMD for denoising.
(c) AEEMD-IWT denoising. (d) Joint algorithm of IWT function and
ICEEMDAN.

TABLE 3. Comparison of standard deviations of four denoising
algorithms.

gradually decreases. In order to more clearly compare the
denoising results of the on-site signals, their standard devi-
ations are calculated as shown in Table 3. After combining
the modified threshold function with ICEEMDAN, the signal
standard deviation is minimized, the signal is clearer and
smoother, and the denoising is better. The charge-induced
signal is less affected during the stress in the coal rock, which
is in a normal state with no fracture features. The denoising
results of the on-site signals are in good agreement with those
collected in the coal and rock loading experiments, which can
further verify the effectiveness and accuracy of the combined
algorithm.

V. CONCLUSION
(1) A combined denoising algorithm based on the improved
threshold function and ICEEMDAN is proposed, which
solves the mode aliasing phenomenon of the EMD algorithm
and is adaptive to the signal. At the same time, the compu-
tation amount and signal smoothness of the hard threshold
are optimized, and the signal distortion of the soft threshold
function is solved.

(2) The improved threshold function and ICEEMDAN
joint denoising algorithm have good noise reduction
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performance for simulation signals. By using six methods
such as the IWT function, CEEMD, IWT, and EMD joint
denoising algorithms for denoising comparison verification,
The results show that the SNR of the combined algorithm
is 16.8064. Compared with other algorithms, the SNR has
the maximum increase of 16.2%, the RMSE of 0.2307, and
the RMSE of other algorithms has the maximum decrease
of 29.2%, and the denoising effect is the best among the
comparison algorithms.

(3) By conducting uniaxial compression experiments on
coal rock samples and comparing the denoising effects of
various algorithms on electromagnetic radiation signals gen-
erated during the coal rock fracture process. It is found
that the noise ratio of the improved threshold function and
ICEEMDAN combined algorithm is the smallest, close to 0,
and has an obvious denoising effect on simulation signals,
which validates the feasibility of this algorithm.
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