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ABSTRACT Automatic creation of real-time, emotion-based piano music pieces remains a challenge for
deep learning models. While Generative Adversarial Networks (GANs) have shown promise, existing meth-
ods can struggle with generating musically coherent pieces and often require complex manual configuration.
This paper proposes a novel model called Learning Automata-based Self-Attention Generative Adversarial
Network (LA-SAGAN) to address these limitations. The proposed model uses a Generative Adversarial
Network (GAN), combined with Self-Attention (SA) mechanism to reach this goal. The benefits of using
SA modules in GAN architecture is twofold: First, SA mechanism results in generating music pieces
with homogenous structure, which means long-distance dependencies in generated outputs are considered.
Second, the SA mechanism utilizes the emotional features of the input to produce output pieces. This results
in generating music pieces with desired genre or theme. In order to control the complexity of the proposed
model, and optimize its structure, a set of Learning Automata (LA) models have been used to determine the
activity state of each SAmodule. To do this, an iterative algorithm based on cooperation of LAs is introduced
which optimizes the model by deactivating unnecessary SA modules. The efficiency of the proposed model
in generating piano music has been evaluated. Evaluations demonstrate LA-SAGAN’s effectiveness: at least
14.47% improvement in entropy (diversity) and improvements in precision (at least 2.47%) and recall (at
least 2.13%). Moreover, human evaluation confirms superior musical coherence and adherence to emotional
cues.

INDEX TERMS Real-time music generation, generative adversarial network, self-attention mechanism,
reinforcement learning, learning automata, emotion-based music.

I. INTRODUCTION
The rapid development of Artificial Intelligence (AI) tech-
niques has led to its widespread use in solving various
problems. With the introduction of deep learning techniques,
this progress has been accelerated and its application has
been extended to more complex problems [1]. Generating
music by computer is one of the issues that AI experts have
been trying to achieve over the years [2], [3]. With the
introduction of some deep learning models such as Gener-
ative Adversarial Networks (GAN) [4] during recent years,
significant steps have been taken in this direction; but nev-
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ertheless, there is still a significant distance from achieving
ideal results [5]. On the other hand, the problem of automatic
music generation is a broad issue, and to solve it, several
factors must be taken into account, such as the sound char-
acteristics of each instrument or harmony in the produced
pieces [6].

To achieve the desired results faster, this broad problem
can be broken down into more detailed sub-problems. For
example, we can solve the problem of automatic music gener-
ation for each instrument (e.g. piano, guitar etc.), separately.
Most of the research done for piano music production are
based on deep learning strategies, such as GANs [7]. How-
ever, current GAN-based methods often face challenges in
achieving:
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• Musical Coherence: In the synthesized music, a har-
mony and connection between different sections is
observed, which is necessary to avoid a disordered or
incoherent sound.

• Optimal Model Configuration: Configuring the high-
level deep learning models, particularly those which use
attention mechanisms, is a tough task. This arrange-
ment method can be time-consuming and might need
advanced knowledge.

Due to the complexity of the structure, deep learning mod-
els such as GAN require precise configuration, which is
a time-consuming process. The complexity of this process
doubles when the model is combined with other computa-
tional techniques such as the attention mechanism. On the
other hand, determining the arrangement of components in
the deep model often requires examining numerous situations
that depend on the problem conditions and each of them can
affect the performance of the model. To solve this challenge,
the versatility of reinforcement learning models can be used
and by automatically configuring the deep model through it,
the existing concerns regarding the complexity of the model
can be solved. This problem is considered as one of the goals
of the current research.

In this paper, a new model called Learning Automata-
based Self-Attention Generative Adversarial Network (LA-
SAGAN) has been introduced for automatic piano music
generation which tries to fill the mentioned research gaps.
LA-SAGAN leverages the strengths of both Self-Attention
mechanism and Learning Automata to achieve:

• EnhancedMusical Coherence: SAs helpwith long-range
dependencies, which are taken into account by LA-
SAGAN, thus enabling it to generate more structured
and cohesive pieces. Also, SAs have the ability to use
emotional features of the input to create music that sets
the mood or the genre that is needed.

• Automated Model Configuration: LA-SAGAN uses
LAs which act as a driving force for an iterative opti-
mization progress. With these LAs the underlying SA
modules of the model are automatically configured.
Therefore, the complexity of the system is significantly
reduced and the quality of the piano music output in real
time is greatly improved.

By addressing these research questions, LA-SAGAN pro-
vides an alternative to the current methods of automatic music
generation, which are costly, time-consuming, and ineffective
in creating emotionally-driven piano pieces.

The contribution of this paper is twofold:

• First, in this research a new architecture for gener-
ating piano music is introduced which is based on
combination of GAN and SA mechanism. Adding SA
modules to the structure of GAN is useful in considering
long-distant dependencies of outputs, along with gener-
ating pieces with the same emotional features of themes.

• Secondly, this paper introduces a new iterative mecha-
nism based on cooperation of LAmodels to optimize the

activity state of SA modules in proposed model. This,
will result in forming a model with less complexity and
higher accuracy.

The above cases have not been addressed in previous
researches and can be considered as the novelties of the
proposed method. The remainder of the paper is structured as
follows: In section II, some of the recent remarkable works
about music generation have been studied. In section III,
the proposed method has been described in detail, and
in section IV, the implementation results are discussed.
In section V, the findings of the research are summarized and
several suggestions have been provided for future researches.

A. DEEP LEARNING AND GENERATIVE ADVERSARIAL
NETWORKS
Deep learning is a branch of artificial intelligence in which
neural network models with multiple hidden layers are used
to more efficiently solve complex problems such as pattern
recognition, prediction, artificial data construction, etc. [8].
The many advantages of deep learning have caused its tech-
niques to be recognized as one of the most widely used fields
of artificial intelligence in recent years. One of the most key
concepts of Deep Neural Networks (DNNs) is convolution.
Using this operator, two signals can be combined to create
a new signal [9]. In fact, the convolution result shows how
the first signal has changed under the influence of the second
signal. In DNNs, some layers named convolution layers, use
convolution operator to extract feature maps from data [10].
Convolution layers are widely used in different architectures
of DNNs such as convolutional neural networks (CNNs) and
GANs.

GAN is one of the prominent deep learning architectures
for generating artificial data such as image, sound, video and
so on. The purpose of GAN is to generate artificial data
in a way that cannot be distinguished from real data. The
GANmodel uses two modules in its architecture to fulfill this
goal: generator and discriminator. The purpose of the gen-
erator component is to create new data based on previously
observed samples, and the purpose of the discriminator is to
distinguish artificial samples from real samples. Thus, in the
GAN architecture, first the generator component creates a
number of artificial samples and then the generated samples
are classified by the discriminator. Then the generation and
discrimination losses are applied to these components and the
mentioned process is repeated [11]. The use of two compo-
nents with seemingly contradictory interests in GAN makes
it possible to generate artificial data that, firstly, is difficult
to distinguish from real data (based on the purpose of the
generator) and secondly, real data is not used in them (based
on the purpose of the discriminator).

B. LEARNING AUTOMATA
Learning automata is one of the efficient reinforcement
learning techniques to determine the decision strategy with-
out having prior knowledge of the environment. Learning
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automata performs the learning process through continuous
interaction with the environment and evaluating the quality of
its choices. The simplicity of the structure and computational
efficiency are considered to be the most important advantages
of learning automata. A learning automata can be described
through two sets of actions and probabilities. The set of
actions includes all possible choices to be applied to the
environment by the learning automata. On the other hand,
the set of probabilities specifies the probability (or value)
of choosing each action of the learning automata. Thus, in a
learning automata, the two mentioned sets have the same size
and their members correspond to each other [12]. In general,
the learning automata has no knowledge of the environment
at the moment of starting and all its actions have the same
probability. In such a situation, the learning automata chooses
one of the actions randomly and waits for the environment’s
response. The positive response of the environment indicates
the selection of an appropriate action, and if it is received,
the probability of the selected action increases by using the
reward operator. On the other hand, the negative response
of the environment specifies the choice of an inappropriate
action, which, if received, the learning automata will reduce
the probability of the chosen action using penalty opera-
tor [13]. This simple process allows the learning automata
to achieve an appropriate strategy in choosing actions during
interaction with the environment.

C. MUSICAL INSTRUMENT DIGITAL INTERFACE (MIDI)
MIDI is one of the main communication formats for record-
ing and playing musical data between a computer and an
electronic instrument. MIDI can contain up to 16 channels
of information from different instruments.

The main use of MIDI format is in music. In specialized
music software, the files can be stored and retrieved in a
specializedmanner, the same software and the commonMIDI
file format. In fact, a MIDI file contains musical notes, the
tension of each note, volume control, breaks, and all special-
ized music information such as volume, which means high
amount and a momentary sound or pan means the left and
right direction of the sound is coded. The playback of a MIDI
file depends on the preset sounds in the audio source, so the
playback of a MIDI file on different digital devices may be
played with different qualities and types [14].
MIDI files take up very little space and this is an advantage

for storing them. The reason is that these files only contain the
information of the notes in the form of short codes and do not
contain the sampled information of the instrument or human
voice.

II. LITERATURE REVIEW
During recent years, various approaches for generating music
has been proposed. This section, reviews some notable
researches in this regard. In [15], a model called Musika has
been introduced to generate music based on deep learning
models. In this technique, first the music files are described
as spectrogram matrices. These features are fed to a GAN

in order to reconstruct an artificial spectrogram. Then, the
reconstructed spectrogram is converted to audio signal using
inverse Short-Time Fourier Transform (iSTFT). Using spec-
trogram inmusic generation leads to difficulties for analyzing
simultaneous sound of instruments. Research in [16], is an
attempt to generatemusic using deep learning. In thismethod,
Long Short-Term Memory (LSTM) has been used for music
generation and dropout coefficients have been considered
for optimizing the model. This method also uses an itera-
tive mechanism for tuning hyper-parameters of the model.
Despite the simplicity of the structure, this model requires
the use of a very large data set to produce acceptable results.

The method presented in [17], is a guitar-focused music
generation system based on symbolic music representation.
Symbolic representation, can provide additional music infor-
mation such as rhythm and pitch, in addition to expressive
techniques for string instruments such as guitar. This model
uses transformer model for music generation which has lim-
itations such as context fragmentation and memory issues
which occur while handling long sequences. Researchers
in [18], have introduced a library for generating and analyzing
symbolic music. This python-based library in addition to
containing several generation models, provides several tools
for representation and visualization of music files. In [19],
a method based on deep learning techniques for producing
MIDI files has been proposed. This method has targeted Jazz
music genre and uses LSTM for generating music. In this
method, first the unique notes are determined and partitioned
into sequences. Then, based on the sequences of dataset, the
LSTM-based model is trained and the trained model is used
for generating Jazz music. Finally, output is converted to
MIDI format. High complexity and needing a large training
dataset for effective learning are limitations of the LSTM
model used in this research.

In [20], a new diffusion model has been introduced
to generate multi-track symphonic music. This model is
named DiffuseRoll and uses LSTM for generating music.
Then, represents generated music in piano-roll format and
uses a diffusion model to convert it into MIDI format.
DiffuseRoll has a more complex structure than conven-
tional RNN-based models which makes its training time
consuming.

AMuseNet [21], is a piano music generation model which
tries to compose melodies based on harmony. This system
models right and left hand with two separate networks and the
pattern of left hand is formed based on right hand. AMuseNet
produces outputs in MIDI format. AMuseNet need numerous
parameters to be tuned manually according to the specifica-
tion of training data, which makes this model complicated.
Research in [22], has used transformer GAN to generate
multi-track music files. The generator part of this network
is composed of two parts. The first part which is called
single-track generator, is designed to control the relationships
in each sequence; while the second part (called multi-track
generator), is responsible for controlling the relationship
between each track with others. The transformer model in
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this approach, limits the generator model in handling long
sequences.

Research in [23], uses GAN as a base model for generating
music and combines it with a deep chord recurrent neural
network to form the DCG_GANmodel. The generated music
files are dual track and generated based on real music which
have been fed to generator section of DCG_GAN. However,
the problem of sensitivity of GAN to its hyper-parameters has
not been addressed in this paper. Research in [24], introduced
a deep learning-based model for automatic generation of
MIDI files. The researchers have modeled the music genera-
tion problem as a sequence-to-sequence task and introduced
a learning model based on LSTM-RNN architecture. The
resulting model is complicated and need high number of
samples for training.

Research in [25], presented a dynamic GAN model for
generating videos of sign language from skeletal poses. This
model generates artificial samples by random noise vectors
and uses VGG-19 to classify them. Then, a new technique
is used for improvement of quality in generated samples.
Finally, real or fake state of samples is recognized by dis-
criminator. In [26], a deep learning-based framework for
sign language was presented which is capable of recogniz-
ing, translating and generating sign language videos. This
research uses the combination of natural machine translation
and GAN for generating sign language videos from sen-
tences.

A problem with music production is to make the quality
high enough while the process is fast enough. Lam et al. [27]
present MeLoDy, a system that seeks to address the issue of
computational complexity by using an existing high-fidelity
model (MusicLM) while reducing the number of operations
needed for music production. MeLoDy has implemented the
diffusion model with MusicLM that has ensured fast sam-
pling times and continuous generation of music.

Along with this, a great deal of attention is needed
to enhance the quality of continuous music passages.
Muhamed et al. [28] conducted a research that exploited
GANs for Transformer-based models. The GANs can in fact
train a model to create music that is both realistic and is also
continuous over longer periods. First, their method employs a
pre-trained language model which gives the model the ability
to be more stable. Secondly, they integrate their training with
techniques that are able to deal with the memory limitations
during the training process.

The characteristic to developmusic of the variable duration
is also an element of great importance. Sung and Li [29]
presented INCO-GAN, a conditional GAN that deploys an
inception model architecture. With this method, music length
is automatically determined by the model, whereas quality is
preserved. Their research reveals that the pieces created by
the AI are almost indistinguishable from the music produced
by humans.

Thematic development, the other important element
in music composition, is another point to consider.

FIGURE 1. The architecture of the proposed model for generating piano
music.

Shih et al. [30] introduce Theme Transformer which is a
model focused on including a user-defined theme into the
generated music. This method involves contrastive learning
for the purpose of identifying the thematic patterns and a
unique attention mechanism to make sure the generated song
agrees with the preset one. This allows for the creation of
music that is based on the concept of a thematic structure and
includes varying elements.

Table 1, summarizes the reviewed literature.

III. PROPOSED METHOD
In this research, a new model based on Generative Adver-
sarial Networks (GANs) has been introduced for generating
piano music. The proposed GAN model uses the GAN33
basic architecture and combines it with Self Attention (SA)
mechanism [31]. GAN33 refers to a specific GAN archi-
tecture including total 33 layers (encoder, decoder, skip
connections) used as the foundation for our proposed model.
Using SA mechanism results in generating notes which its
distant sections are compatible with each other. Since the
SA mechanism may complicate the GAN model, the pro-
posed method uses a Learning Automata (LA) to determine
the active state of each SA module in the deep neural
network model. Accordingly, the resulting model is called
LA-SAGAN. Based on the general structure of GANs, the
proposedmodel consists of ‘‘generator’’ and ‘‘discriminator’’
parts. The architecture of the proposed model for generating
piano music is illustrated in Figure 1.

As shown in figure 1, the generator part of LA-SAGAN
is first fed by a real piano piece with limited duration.
In proposed method, each real piano song is decomposed into
several sections with fixed duration (for example L). Thus,
generator attempts to reconstruct the next section of the piano
piece (T + 1) using its current section (T). Then, the recon-
structed piece and the real one is fed to the discriminator part
of LA-SAGAN, which is responsible for evaluating recon-
struction error. The error value is used for refining generator
and discriminator through backpropagation process. Table 2
lists the definition of the parameters used in this research.
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TABLE 1. Summary of the reviewed literature. TABLE 2. List of the parameters.

A. LA-SAGAN ARCHITECTURE
Decomposing piano pieces into sections and attempting to
reconstruct next section of input in each iteration, is effective
in generating creative pieces which are compatible with the
real piece, in terms of genre and theme. In proposed method,
each input sample is described in a matrix structure similar
to piano-roll. In this case, the number of rows of this matrix
corresponds to the number of notes that can be played on
piano (88 notes), and the columns of the matrix specify
the order of playing the notes. Each element of this matrix
includes 2 numbers: The first number represents the velocity
of pressing the key (velocity sensitivity) and described in
scale of 1 and 5 (zero means silence); while the second
number represents the note duration and described as a real
positive number.

Thus, each input piano piece in the proposed method is
structures as a matrix with dimensions of 88 × L × 2 where
L represents the duration of piece, in terms of number of
keys pressed. The proposed 3D structure of matrix, provides
a more compatible input for deep learning models, compared
to widely used representations such as piano-roll or spectro-
grams. The structure of the generator part of the proposed
LA-SAGAN model is illustrated in Figure 2. Also, the struc-
ture of the discriminator part in LA-SAGAN is presented in
Figure 3.
As shown in Figures 2 and 3, LA-SAGAN design

is based on encoder-decoder architecture of GANs. The
encoder/generator part, is responsible for generating artificial
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FIGURE 2. The structure of the generator part of the proposed LA-SAGAN
model.

FIGURE 3. The structure of the discriminator part of the proposed
LA-SAGAN model.

piano notes; while the decoder/discriminator part is used to
evaluate the error of reconstruction process.

The generator of LA-SAGAN itself is based on UNet
architecture and can be decomposed into encoder and decoder
sections. The encoder of generator is composed of four con-
volution layers with dimensions of 4∗4. Also, the decoder of
generator includes four deconvolution layers with the same
size of encoder part and in the same-level skip connections,
in addition to two dropout layers set to 0.5. All convolu-
tion layers are followed by Batch Normalization (BN) and
activation function layers. The convolution layers of encoder
section of generator, use LeakyReLU function; and ReLU
functions is considered for deconvolution layers of decoder
section. Also, the last convolution layer for reconstructing the
output of generator uses tanh activation function.

The reconstructed output of generator, in addition to input
notes are fed to the discriminator part of the LA-SAGAN and
uses 3 decoders.

The SA mechanism, allows GAN model to utilize
attention-driven long-distant dependencies in generating
data. This, will result in generating music pieces with
homogenous structure. On the other hand, the SAmechanism
utilizes the emotional features of the input to produce output

FIGURE 4. The structure of SA module in LA-SAGAN.

pieces. This features also, results in generating music pieces
with desired genre or theme. These benefits, have led to
considering seven SA module in the proposed architecture.

Five SA modules are used in the generator part of
LA-SAGAN; while the remaining 2 modules are used in
discriminator. The number of SA modules (7) was chosen
based on an empirical evaluation of the model’s performance
with different configurations. We investigated configurations
with varying numbers of SA modules and found that 7 SA
modules achieved the best balance between accuracy and
computational complexity. The architecture of each SA mod-
ule is illustrated in Figure 4.

Each SA module uses three convolution layers with size of
1∗1 to separate input feature maps which are obtained from
previous convolution layers. The mechanism of self-attention
is applied on the results obtained from three transformation
functions: f, g and h. This approach is used to make sure that
generated results belonging to distant locations of the output
are compatible with each other. In other words, SA mech-
anism enables GAN networks to consider long-distance
dependencies in generating output. To do this, each SA mod-
ule combines local and global dependencies of features to
enhance the details and harmony of the generated outputs.
The layers of SA modules are used to provide better informa-
tion from inputs and their layer structure is complementary to
convolutional layers.

B. TUNING LA-SAGAN USING REINFORCEMENT
LEARNING
As described earlier, using SA mechanism in the presented
SAGAN model may increase the computational complex-
ity. Also, it should be noted that some SA modules of the
proposed SAGAN model may have not a positive effect on
its efficiency, and could be ignored to reduce the complex-
ity. In fact, the optimal activity state of each SA module
in SAGAN could be determined according to the problem.
Thus, there is an optimal subset of SA modules that enabling
them in SAGAN model will optimize its performance. The
proposed model uses reinforced learning capabilities of LAs
to determine the optimal activity state of each SA module.
In LA-SAGAN, a LA model is assigned to each SA module
to determine its activity status.

In LA-SAGAN, reinforcement learning strategy has been
used in order to optimally configure the model. This strategy
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FIGURE 5. The structure of LA.

includes a set of LA models, the task of each of which is
to determine the optimal activity state for each SA module.
A learning automaton uses a simple mechanism to learn. This
structure is shown in figure 5.

Each LA, includes a set of selectable actions. In proposed
method, the action set of each LA is described as A =

{α1, α2}, where α1 is equivalent to activation of SA and α2
represents its deactivation state. Each action in set A corre-
sponds to a selection probability. In the proposed method,
selection is done randomly in one third of iterations and in
other iterations, based on the probability vector of automata.

Each LA operates by selecting an action from the set A and
applying it to the SAGAN structure. By repeating this process
by all LA models in each cycle, a candidate configuration for
the activity state of SA modules is created. This candidate
model is trained using database training instances and its
quality is evaluated. In this case, the quality evaluated by the
candidate model is considered as the response of the environ-
ment. Then, each LA uses the response of the environment
to update its probability vector and choose the next action.
During this process, each LA learns which configuration
mode is optimal for SA modules by adjusting the probability
of actions based on reward and penalty parameters.

With these explanations, the proposed reinforcement learn-
ing model will include 7 LAs (each one assigned to a SA
module), that cooperate together to form the optimal config-
uration of the SAGAN model. The process of determining
the optimal configuration is iterative. During each iteration,
each LAfirst selects one of its actions and applies the selected
action to its corresponding SA module in the base model.
After applying the selected actions by all LAs, a configured
SAGAN will be formed and trained using training instances.

In this way, after receiving the response of the environment,
the obtained quality value is compared with the highest value
obtained in the previous iterations, and according to the result
of this comparison, the process of updating the probability
vector of each LA model will be done. In other words, after
receiving the response from the environment and comparing
it with the highest quality obtained in the previous iterations,
the following conditions may occur:

• If the amount of quality in the current iteration is greater
than the highest quality in the previous iterations for
the currently determined configuration (environment
response); Therefore, it can be concluded that the set of
LAs have been able to select the activity pattern of the
SAmodules in a way that improves the performance and

can help the system to reach the global optimum. As a
result, the set of actions selected by LAs in this cycle
will be considered as optimal choices. In this case, each
LA increases the probability of its last choice as follows
(the current action is i) [32]:

pj (k + 1) =

{
pj (k) + a[1 − pj (k)] j = i,

(1 − a) pj (k) ∀j ̸= i.
(1)

• If the quality in the current iteration is lower than the
highest quality in the previous iterations; therefore, the
response generated in the last cycle will be considered as
non-optimal choices. In this case, each LA reduces the
probability of choosing the last action as follows [32]:

pj (k + 1) =

 (1 − b)pj (k) j = i,(
b

K − 1

)
+ (1 − b) pj (k) ∀j ̸= i.

(2)

In Equations (1) and (2), a and b are reward and penalty
coefficients, respectively. In the proposed method, these two
parameters are considered equal to 0.5. Also, k is a discrete
time index (the number of times the probabilities are mod-
ified) and K represents the number of selectable actions in
each LA (K = 2). After applying the above conditions to
each of the actions of the LA (individually for each SA mod-
ule), the probability vector of all the LAs is updated. After
updating the LA models, the process of selection, evaluating
the environment response and updating the probability vector
will be repeated from the first step. This process will continue
until one of the termination conditions is met:

• The number of iterations of the algorithm reaches the
threshold G.

• The quality criterion does not improve after S consecu-
tive iterations.

• The error criterion reaches zero.
In Figure 6, the flowchart of optimizing LA-SAGAN in pro-
posed method is illustrated.

In this research, the activity state of SA modules in
LA-SAGAN was determined within G = 20 iterations of
LAs. Each LA, had two selectable actions. Also, in each LA
the reward and penalty parameters were set to 0.5. It should
be noted that during each iteration, the learning model was
trained by 25% of samples in training data. The samples
were chosen randomly and considered the same during all
iterations. After determining the suitable activity state of SA
modules based on a quarter of training data, the resulting
configuration was applied on LA-SAGAN and it was trained
by all training samples.

C. DATASET AND TRAINING PARAMETERS
The dataset used to train LA-SAGAN and implement the pro-
posed method was obtained through musescore.com. To do
this, 1000 music files with different durations (between
50 and 250 seconds) were obtained through this website. All
dataset samples are in MIDI format. These samples belong to
10 musical genres of piano, including: 1- classical, 2- Jazz,
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FIGURE 6. The flowchart of optimizing LA-SAGAN in proposed method.

3- Blues, 4- Pop, 5- Folk, 6- piano rock, 7- stride, 8- roman-
tic, 9- dance and 10- new age. It should be noted that the
collection and analysis method complied with the terms and
conditions for the source of the data. A 5-fold cross-validation
approach was employed to evaluate the generalizability of the
model’s performance.

Finally, for the training phase, we used Adam optimizer,
batch size of 4, and also combination ofWGAN-GP (Wasser-
stein Generative Adversarial Network with Gradient Penalty)
and L1 as loss function. With WGAN-GP loss function, the
challenges that traditional WGANs face are resolved that
are the reduction of gradient and the mode collapse. It is
achieved by introducing a gradient penalty term that regulates
the training process in an orderly manner so that the learning
process is stable. One the one hand, the L1 loss function is
aimed to have the generated piece to be as close to the ground
truth (real data) as possible in terms of absolute differences
between the values. Thismodule is also responsible for giving
the model a higher level of detail in the generated recon-
structions. It should be noted that the proposed method is
the integration of two loss functions as WGANGP+100L1.
Therefore, the L1 loss is multiplied by a factor of 100 and
contributes less to the WGAN-GP’s training process. Conse-

FIGURE 7. The average reconstruction error of model during each
iteration of optimizing by LAs.

quently, the WGANGP+100L1 function used in this model
allows to produce realistic and detailed outputs while keeping
the training process stable.

IV. IMPLEMENTATION AND RESULTS
The proposed method was implemented using MATLAB
2018a software. During the experiments, the efficiency of the
proposed method in generating piano music was evaluated by
objective evaluation and subjective experiment. The criteria
used in objective evaluation include: precision, recall and
Entropy. Also, the subjective experiment was performed by
scoring outputs of the proposed method using 10 participants.

The dataset used to implement the proposed method was
obtained through musescore.com. To do this, 1000 music
files with different durations (between 50 and 250 seconds)
were obtained through this website. All dataset samples are
in MIDI format. These samples belong to 10 music genres
with piano pieces. During the experiments, database samples
were partitioned into 10 parts and a 10-fold cross validation
approach was utilized. Thus, the experiments were repeated
10 times and during each iteration, 90% of database instances
(900 MIDI files) were used for training model; while the
remaining 10% (100 MIDI files) were used for testing it.

In order to optimize the structure of LA-SAGAN, seven
LA models were used to determine the activity state of SA
modules in a cooperative manner. In this case, the number of
iterations for optimization was set to G= 20 and the threshold
of unimproved consecutive iterations was considered as S =

10. Also, the reward and penalty coefficients of each LA was
set as a = b = 0.5. Figure 7, illustrates the average recon-
struction error of model during each iteration of optimization
algorithm.

As shown in Figure 7, the proposed optimization algorithm
can minimize the reconstruction error of LA-SAGAN using
reinforced learning ability of learning automata. Accord-
ing to the results, the minimum reconstruction error is met
after 17 iterations. This case is obtained after activating SA
modules of {SA2, SA3, SA4, SA6, SA7}, and deactivating other
modules.
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FIGURE 8. The convergence effect of the loss function.

FIGURE 9. Several piano pieces generated by LA-SAGAN.

In order to examine the effectiveness of LA-based opti-
mization in improving the performance of LA-SAGAN, the
results are compared with the case that all SA modules
are activated in the model. This case is called SAGAN (no
optimization). Also, if all SA modules be deactivated, the
resulting model will be a GAN, which this case has been
considered in comparisons too.

In Figure 8, the convergence effect of the loss function in
the studied cases is presented.

As shown in figure 8, when a simple GAN model is used
for reconstruction, the convergence value is 0.0187. After
applying SA modules to this model, a SAGAN is constructed
which results in convergence value of 0.0054. These results
demonstrate that using self-attention mechanism is effective
in achieving better results. On the other hand, after optimizing
the structure of SAGAN by proposed algorithm, a LA-

FIGURE 10. Spectrogram representation of sample piano pieces
generated by LA-SAGAN.

FIGURE 11. Two first sheets of a sample piano piece generated by
LA-SAGAN.

SAGAN with convergence value of 0.008754 is obtained
which outperforms other cases. These results confirm the
effectiveness of proposed LA-based optimization algorithm
in achieving a more accurate model for music reconstruction.
Several piano pieces generated by LA-SAGAN are presented
in figure 9. These outputs are drawn as piano-roll presen-
tations. Figure 10 represents the spectrogram of 4 samples
piano pieces generated by LA-SAGAN. Also, sheet of a
sample piano piece generated be LA-SAGAN is presented in
Figure 11.

In Figure 12, the average values of entropy, precision and
recall criteria for test phase of the experiments is presented.
The information entropy is used for measuring the random-
ness of data. This criterion is calculated as follows [33]:

Entropy = −

∑
x∈X

p (x) log2 (
1

p (x)
) (3)

where p(x) is the probability of occurrence of x in data X.
Also, precision and recall criteria are formulated as follows:

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)
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FIGURE 12. The average values of (a) entropy, and (b) precision and recall
criteria.

where, TP and TN represent the number of true positives and
true negatives, respectively. FP and FN also, describe the false
positives and false negatives.

As shown in this figure, LA-SAGAN results in higher
values of entropy, precision and recall compared to other
methods. Higher values of entropy in LA-SAGAN shows that
piano pieces generated by proposed method are more diverse;
while higher precision and recall values show that outputs
of the proposed method are more consistent with real music
files. This improvement in proposed method can be attributed
to optimizing the structure of the model using reinforcement
learning approach.

It can be said that the best and most reliable way for
evaluating the generated music is listening to it. For this
reason, in order to more accurately evaluate the performance
of the proposed method, a group of 10 participants was used
and they were asked to rate the music pieces produced by
LA-SAGAN and other methods. This scoring is in the scale of
1 to 10 and is determined based on criteria such as quality of
the piece and rational connection between different parts. For
this purpose, 10 pieces produced by each method were scored
by the participants and the average scores were considered.
It should be noted that the group of participants, includes
5 regular users and 5music experts. The samples produced by
the proposed method and each of the compared methods were
scored by the participants. It should be noted that in order
to maintain justice in scoring, the order of all samples was
permuted randomly. Also, all samples have been evaluated in
the same listening conditions. The results of this experiment
are shown in Figure 13.

As the results presented in Figure 13 show, the proposed
method has received a higher average score than other meth-
ods. This superiority in the proposed method can be seen
as the result of two factors: LA-SAGAN decomposes piano
pieces into sections and attempts to reconstruct next section of
input in each iteration. This mechanism is effective in gener-
ating creative pieces which are compatible with the real piece,
in terms of genre and theme. Also, using the SA mechanism
in the proposed model creates outputs by maintaining the
emotional and contextual characteristics of the initial input.
This feature is effective in the formation of outputs whose
different parts have a better rational connection.

FIGURE 13. The average scores of participants for various methods.

TABLE 3. Summary of the results.

Table 3, summarizes the results obtained in the experi-
ments.

According to the evaluation above, the LA-SAGAN is
proven to be quite effective in producing high-quality music.
Unlike the existing approaches, LA-SAGAN produces at
least 14.47% more entropy which means a higher degree
of variety and richness of the resultant music. Also, the
LA-SAGAN model displays an increased precision of a min-
imum of 2.47% compared to the recall of a minimum of
2.13%, which indicates a better tradeoff between producing
relevant and comprehensive musical sequences.

Besides that human assessment of music supervisors gives
LA-SAGAN’s outputs the upper hand. The music generated
by LA-SAGAN received higher points, which means the
music generated had a greater degree of musical coherence
and better adherence to the emotional cues needed compared
to the music generated by the related methods.

A. DISCUSSION AND LIMITATIONS OF THE WORK
This research was conducted based on the following hypoth-
esis: LA-SAGAN, a cutting-edge deep learning model com-
bining Self-Attention (SA) and Learning Automata (LAs),
is capable of producing elaborate and emotion-based real-
time piano music.

Our evaluation strategy used the two types of metrics,
objective and subjective, for confirmation of the correctness
of the hypothesis. The outcomes supported the hypothe-
sis, presenting LA-SAGAN’s ability to produce high-quality
piano music. Here’s a breakdown of the key findings:

Reconstruction Error: Data of LA-SAGAN’s construction
error in figure 7 revealed that it produced the least average
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reconstruction error after the optimization process with LAs.
This proves that the presented model is more efficient in
generating detailed instances compared to both basic GAN
and a model with all SAs active (SAGAN).

Information Entropy: LA-SAGAN generated the outputs
with the highest entropy value (Figure 12a) among others,
which means that it includes more variety and richness in
the generated music. This indeed corroborates with the idea
that SA factors are the driving forces behind the diverse and
creative outputs.

Precision and Recall: In LA-SAGAN, the precision and
recall scores were significantly improved (Figure 12b) as
compared to different models. This suggests a better bal-
ance between generating relevant musical sequences that are
also comprehensive, further supporting the effectiveness of
LA-based optimization in refining the model’s performance.

Subjective Evaluation: The human listening test results for
LA-SAGAN given in Figure 13 indicates that the average
score was the highest among all the models. This implies that
the music which is actually produced by the proposed model
exhibits a higher degree of musical integrity and emotional
attachment, as predicted. This can be attributed to two factors:

• The process of deconstructing and reconstructing piano
parts could play a crucial role in composing pieces that
have a single theme or one that goes well with the input.

• Through SA, the mechanism of preservation of emo-
tional and contextual attributes of the original input is
achieved, which leads to more coherent parts of music.

Limitations: Though the results are encouraging, the assess-
ment of the limitations calls for further research as well:

• The size of the dataset (1000 music pieces) is somewhat
small for music generation purposes. The number of
samples in this dataset could be increased to find out
potential generalizability in the data.

• The subjectivity was in the fact that the participants
involved were few. An enlarged audience of listeners in
the listening part of the test would help to gather more
detailed information.

• One of the limitations of the proposed method is a
relatively long time to configure the GAN model by
the reinforcement learning approach. Because the rein-
forcement learning strategy, by applying any change to
the GAN model configuration, must repeat the train-
ing process so that it can evaluate the efficiency of
selected action. Although this strategy guarantees the
achievement of a more efficient GAN model than static
models, it causes the model training time to increase
several times. On the other hand, this time occurs only
in training phase and does not affect the performance of
the model while generating new music.

Generally, the research results are in line with the hypothesis
which has been forwarded. LA- SAGAN has shown great
potential as a model that generates music in real-time, with
a strong emotional touch and a high level of quality. We can

obtain even more realistic and personalized outcomes via this
way by addressing the limitations in future research.

V. CONCLUSION
AI-generated music will always be a subject of ongoing
research, but deep learning provides an opening for this
avenue. The paper introduced LA-SAGAN, a new system
that can make efficient use of GANs, SA and LAs for gen-
erating piano music. LA-SAGAN uses these two approaches
in addressing the issues of distance considerations and
emotion-based music generation.

The suggested approach exploits SA processes in GAN
architecture to tackle long-range dependences in musical
sequences, evoking the coherence and structure in the gener-
ated musical outputs. Moreover, LA-based optimization also
successfully solves the optimal active state of SA modules,
so as for the model to be more efficient and effective.

Evaluation results showed that LA-SAGAN gave better
results than other models (basic GAN and a model with
all SAs active) in terms of reconstruction error, information
entropy, precision, recall, and determining test scores by
human subjects. This implies that the LA-SAGAN approach
is able to produce the piano pieces of the highest quality, with
diverse emotional features, and in real time, being optimized
structure.

Although LA-SAGAN represents a significant contribu-
tion, but there are some limitations. The training time for the
initial periodmight be also reducedwith regard to the usage of
real-time applications. Moreover, the appraisal was done with
a given data size and a certain number of the human subjects.
Based on the research findings and determined limitations,
future research directions encompass:

Generalizability: Analyzing LA-SAGAN’s level of perfor-
mance with different types of music and numerous data sets.

Evaluation Methods: To have a more complete evaluation,
we employ more humanly advanced techniques like A/B
testing for more comprehensive assessment.

Model Enhancements: Looking into ways to cut down
training time or develop algorithms for real-time applications.

Multi-Track Generation: Using separate models for each
hand to provide in the music generated harmonics a degree
of complexity.

Beyond music generating, the general fundamental of
LA-SAGAN, such as the fusion of deep learning and rein-
forcement learning, may find a niche in medical image gen-
eration and signal analysis. Nevertheless, it is of paramount
importance to carry out more in-depth research in order to
understand the mechanism in full.
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