
Received 2 May 2024, accepted 12 June 2024, date of publication 14 June 2024, date of current version 21 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3414928

Optimized 4-Parallel 1024-Point MSC FFT
ZEYNEP KAYA 1 AND MARIO GARRIDO 2, (Senior Member, IEEE)
1Department of Electricity and Energy, Osmaneli Vocational School, Bilecik Şeyh Edebali University, 11500 Bilecik, Turkey
2Department of Electronic Engineering, ETSI de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Corresponding author: Zeynep Kaya (zeynep.kaya@bilecik.edu.tr)

This work was supported in part by the Comunidad de Madrid through the Call ‘‘Ayudas de Estímulo a la Investigación de Jóvenes
Doctores de la Universidad Politécnica de Madrid’’ under Project APOYO-JOVENES-21-TL23SB-116-I4FOMC and in part by
MCIN/AEI/10.13039/501100011033 and ‘‘European Social Fund (ESF) Investing in Your Future’’ under Grant RYC2018-025384-I.

ABSTRACT This paper presents a 4-parallel 1024-point multi-path delay commutator (MSC) fast Fourier
transform (FFT) architecture. The aim of this work is to provide multiple optimizations of this type of
FFT at the architectural level. This results in a highly optimized FFT architecture that uses significantly
fewer resources than previous ones. One advantage of the proposed approach is that it uses two identical
processing modules, which simplifies the development of architecture. Between the modules, instead of
permutation circuits, we use matrix transposition with memories, which results in a more compact and
hardware-efficient solution. Additionally, a tailor-made design of the rotations and the application of shift-
and-add techniques lead to a reduction in their number and complexity. Experimental results show that the
proposed architecture requires significantly fewer hardware components than previous comparable parallel
pipeline FFT architectures.

INDEX TERMS MSC, FFT, parallel pipeline, matrix transposition, shift-and-add.

I. INTRODUCTION
Nowadays, fast Fourier transform (FFT) architectures are key
components in multiple signal processing applications. This
includes areas as relevant as 5G and 6G communications [1],
[2], radio atronomy [3], [4], and satellite systems [5], [6].

FFT architectures are classified into memory-based [7],
[8], [9], [10] and pipelined [4], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34]. Memory-based
FFTs carry out the calculations iteratively and intermediate
results are stored in the same memory or bank of memories.
By contrast, pipelined FFTs compute the algorithm by means
of a series of stages connected in a pipeline, which allows for
continuous flow computations.

Pipelined FFTs consider a continuous flow of data arriving
in series or in parallel. Traditionally, serial pipelined FFT
architectures included single-path delay feedback (SDF) [4],
[11], [12] and single-path delay commutator (SDC) [13], [14]
FFTs. Analogously, parallel pipelined FFT architectures con-
sidered the cases of multi-path delay feedback (MDF) [15],

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabian Khateb .

[16], [17] and multi-path delay commutator (MDC) [18],
[19], [20], [21], [22], [23], [24], [25].

In this context, the serial commutator (SC) FFT [26]
appeared as an alternative to the traditional architectures,
being the first serial pipelined FFT architecture that achieved
full utilization of butterflies. Additionally, the SC FFT was
also the first FFT architecture that used circuits to permute
serial data [35]. This allows for placing data that must
be rotated every other clock cycle, which provides two
clock cycles to calculate each rotation and translates into a
reduction of the complexity of the rotators. As the rotation
can be carried out in two clock cycles instead of one, only
half of the hardware resources are necessary for calculating
them. As a consequence, the SC FFT represented a key step
in the development of FFT architectures.

After the original SC FFT, numerous works have continued
this research line by proposing alternatives that improve the
original design. Among them, most of the papers in the liter-
ature have considered real-valued serial commutator (RSC)
FFT architectures [27], [28], [29], [30], [31]. These RSC
approaches provided new architectural modifications [27],
[28], [29], [30] or focused on evaluating the accuracy in
terms of SQNR calculation [31]. Furthermore, a recent paper

84110

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9831-6246
https://orcid.org/0000-0001-5739-3544
https://orcid.org/0000-0002-9864-9830

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

presented an interesting approach to reduce the number of
multiplexers in SC FFTs [32].

Apart from developing the SC FFT itself, a natural
evolution of this research field has been to use the principles
in the SC FFT to calculate FFTs on parallel data. This
led to the multi-path serial commutator (MSC) FFT, whose
first version was presented in [33]. This work only covered
the particular case of a 128-point MSC FFT. Thus, a more
completed study on MSC FFT architectures was presented
later in [34]. This work considered MSC architectures for
any radix-2k and presented efficient modules that can be
combined to derive the architectures for any FFT size and
radix.

In this work, we present an evolution of the MSC FFT
in which we have applied multiple optimization techniques
to the architecture with the goal of developing a new
architecture that requires significantly fewer resources to
calculate the FFT than previous approaches. Although the
proposed techniques are general and can be applied to FFT
architectures with different sizes, radices, and parallelization,
we consider for the study the case of a 4-parallel radix-25

1024-point MSC FFT. One advantage of the proposed FFT is
that it uses the same radix-25 module twice in the architecture.
This makes the design simple, as only a single module
must be developed. Furthermore, the proposed architecture
is designed so that most of the permutations are placed
between the radix-25 modules. Instead of using registers
and multiplexers for these permutations, we substitute them
with an efficient circuit based on memories. Additionally, the
proposed radix-25 modules use more efficient rotators and
include a simplification of the permutation circuits between
stages. All of this results in a new andmore optimized version
of the MSC FFT that requires significantly less hardware
resources than previous parallel pipelined FFT architectures
with the same size and parallelization.

We have organized the rest of the paper as follows: In
Section II, we review the related concepts to understand the
proposed approach. In Section III, we present the proposed
radix-25 1024-point MSC FFT architecture. In section IV,
we provide experimental results on a field-programmable
gate array (FPGA) and compare our design to previous
studies. Finally, in Section V, we summarize the main
conclusion of this paper.

II. BACKGROUND
A. THE FFT
An N -point discrete Fourier transform (DFT) of a complex
signal x[n], n = 0, . . . ,N − 1, is calculated as

X [k] =

N−1∑
n=0

x[n] ·W nk
N , k = 0, . . . ,N − 1, (1)

where k is the frequency index and the termsW nk
N = e−j

2π
N nk

are the twiddle factors that correspond to the rotations. The
FFT is an efficient way to compute the DFT. The Cooley-
Tukey algorithm [36] calculates the FFT in n = log2 N stages

and reduces the computational cost of the DFT from O(N 2)
to O(N log2 N).

To define the data order at the FFT stages s = 1 . . . n,
the index I is defined [37], being its binary representation
bn−1 . . . b1b0. Throughout the paper, we use the symbol (≡)
to relate a number and its binary representation. Thus, for the
index it is fulfilled I ≡ bn−1 . . . b1b0. Based on this index,
the FFT algorithm has the property that butterflies at stage s
operate on pairs of data that differ in bn−s [37]. We will use
this property for the design of the proposed architecture.

B. BIT-DIMENSION PERMUTATIONS
Bit-dimension permutations are used to provide the data order
required along the FFT stages. This data order is defined by
its position. For a set of N = 2n data, the position is obtained
as [35]

P =

n−1∑
i=0

xi2i, (2)

where xn−1xn−2 . . . x0 are called dimensions.
When P-parallel data arrive at different terminals, p =

log2 P dimensions are parallel and correspond to xp−1 . . . x0.
The remaining n − p dimensions define data arriving in
series and correspond to xn−1 . . . xp. Note that P is used for
the position, whereas P stands for the number of parallel
branches. For P-parallel data, the terminals are defined in the
range T = 0 . . . 2p − 1 and are related to the dimensions
according to

T =

p−1∑
i=0

xi2i, (3)

being their binary representation

T ≡ xp−1 . . . x0 = Tp−1 . . . T0. (4)

Likewise, the arrival time of the data coming in consecutive
clock cycles is defined in the range t = 0 . . . 2n−p − 1 as

t =

n−1∑
i=p

xi2i−p, (5)

being its binary representation

t ≡ xn−1 . . . xn−p = tn−p−1 . . . t0. (6)

Therefore, (2) can be expressed as

P = t|T ≡ tn−p−1 . . . t0|Tp−1 . . . T0, (7)

where a vertical bar (|) separates the serial and parallel
dimensions.

A bit-dimension permutation σ transforms data from an
input position P0 = un−1 . . . up|up−1 . . . u0 into an output
position P1 = σ (P0) = u′

n−1 . . . u′
p|u

′

p−1 . . . u′

0. In this
regard, a bit-dimension permutation σ that permutes two
dimensions of the data flow, i.e., σ : xj ↔ xk , is called
elementary bit-exchange (EBE) [38]. Here, if both xj and xk

VOLUME 12, 2024 84111

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

FIGURE 1. Permutation circuits. (a) Serial-serial permutation.
(b) Serial-parallel permutation.

FIGURE 2. Matrix transposition of parallel data using memories.

are serial dimensions, the permutation is called serial-serial
(ss) permutation. If both xj and xk are parallel dimensions,
a parallel-parallel (pp) permutation is performed, which only
routes input data to different terminals. Likewise, when the
permutation is done between a serial and a parallel dimension,
it is called serial-parallel (sp) permutation [35].

Figures 1(a) and 1(b) show the serial-serial and serial-
parallel permutation circuits, respectively. The circuits con-
sist of buffers of length L and multiplexers. The buffer length
for the serial-serial permutation is calculated as

Lss =
2j − 2k

2p
, (8)

whereas the buffer length for the serial-parallel permutation
is

Lsp =
2j

2p
. (9)

A comprehensive explanation of the circuits in Fig. 1 can be
found in [35].

C. MATRIX TRANSPOSITION OF PARALLEL DATA USING
MEMORIES
Let us consider that a continuous flow of N = 2n data
provides P-parallel data at each clock cycle, where P = 2p.
In this way, the entire data set is received in N/P = 2n−p

clock cycles. As the time of arrival is t = 0 . . . 2n−p − 1,
a control counter with n − p bits can be used to count this
time, i.e., cn−p−1 . . . c0.
In this context, we can define the transposition of a square

matrix for the case n/2 > p as [39]

σ (un−1 . . . un/2un/2−1 . . . up|up−1 . . . u0)

= un/2−1 . . . u0un−1 . . . un/2+p|un/2+p−1 . . . un/2. (10)

FIGURE 3. Overview of the proposed architecture.

As shown in Fig. 2, this matrix transposition can be calculated
as a sequence of permutations of the form pp-ss-pp. The
matrix transposition is then obtained as [39]

σ = σ3 ◦ σ2 ◦ σ1, (11)

being

σ1(un−1 . . . un/2un/2−1 . . . up|up−1 . . . u0)

= un−1 . . . up|(up−1 ⊕ un/2+p−1) . . . (u0 ⊕ un/2),

σ2(un−1 . . . un/2un/2−1 . . . up|up−1 . . . u0)

= un/2−1 . . . up(up−1 ⊕ un/2+p−1)

. . . (u0 ⊕ un/2)un−1 . . . un/2+p|up−1 . . . u0,

σ3(un−1 . . . un/2un/2−1 . . . up|up−1 . . . u0)

= un−1 . . . up|(up−1 ⊕ un/2+p−1) . . . (u0 ⊕ un/2), (12)

where (⊕) is the XOR operation. Note that the permutations
σ1 and σ3 are the same parallel-parallel permutation. For both
of them, the input terminal is Tin = up−1 . . . u0 and the output
terminal is Tout = (up−1 ⊕ cn/2−1) . . . (u0 ⊕ cn/2−p).

The permutation σ2 is a serial-serial permutation and is
calculated in the memories based on their read and write
addresses. These addresses are obtained from the counter.
By setting the write address of all memories for the first set
of N data toW1 = cn−1 . . . c0, the read address is obtained as

R1 = cn/2−p−1 . . . c0(up−1 ⊕ cn/2−1)

. . . (u0 ⊕ cn/2−p)cn−p−1 . . . cn/2. (13)

For continuous flow processing, new data are written in the
memory addresses that are being emptied when reading the
previous data set. Thus, for the i-th set of data it is fulfilled
that Wi = Ri−1, leading to [39]

Wi =

cn−1 . . . c0, if i odd,
cn/2−p−1 . . . c0(up−1 ⊕ cn/2−1) . . .
. . . (u0 ⊕ cn/2−p)cn−p−1 . . . cn/2, if i even,

(14)

Ri =

cn/2−p−1 . . . c0(up−1 ⊕ cn/2−1) . . .
. . . (u0 ⊕ cn/2−p)cn−p−1 . . . cn/2, if i odd,
cn−1 . . . c0. if i even.

(15)

III. PROPOSED 1024-POINT MSC FFT ARCHITECTURE
Figure 3 shows the overview of the proposed 4-parallel
1024-pointMSC FFT architecture. It consists of two identical
radix-25 modules, rotators (⊗), and an intermediate permuta-
tion circuit that interconnects the radix-25 modules. In this
Section, we explain all the design steps and optimizations of
the proposed architecture.

84112 VOLUME 12, 2024

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

TABLE 1. Bit-dimension index for the proposed architecture.

A. ENABLING THE USE OF TWO IDENTICAL RADIX-25

MODULES
Table 1 shows the data order of the proposed N =

2n = 1024-point MSC FFT at the different stages. The
architecture has n = log2 N = 10 stages, 5 for each
radix-25 module. Initially, the input data index is ordered
as P1 ≡ b3b2b4b0b1b8b7b9|b5b6. As there are two parallel
dimensions (p = 2), the number of parallel branches in the
architecture is P = 2p = 4. Regarding the output data, note
that they are provided in natural order at the last stage, which
means that the FFT outputs are in bit-reversed order [40].

To be able to have two identical radix-25 modules we have
designed the data order in such a way that the permutations
of the index bits are the same for stages 1 to 5 and stages 6 to
10. For instance, between stages 1 to 2, the dimensions x4 and
x2 are swapped, which also occurs between stages 6 and 7.
As the permutations, data order, and FFT algorithm in stages
1 to 5 and 6 to 10 are exactly the same, then the circuit is also
the same.

B. RADIX-25 MODULE
Figure 4 shows the original structure of the 4-parallel radix-
25 module used twice in the architecture. Through the
paper, we apply multiple optimizations to this module. The
original module in Fig. 4 consists of processing elements
(PEs), which include butterflies and rotators, radix-2 (R2)
butterflies, a trivial rotator (diamond-shaped), and serial-
serial permutation circuits. In Fig. 4, all the wires carry
complex-valued data. As the PEs have to operate on pairs
of the data in consecutive clock cycles, in any stage s
that uses PEs, the bit bn−s must be placed in the least
significant bit (LSB) of the serial dimensions, which is x2.
Alternatively, R2 butterflies operate on consecutive parallel
branches. Therefore, in stages with R2 butterflies, the bit bn−s
has to be in the LSB bit of the parallel dimensions, i.e., x0.
These requirements are the same for both radix-25 modules.
To highlight this fact, in Table 1 we have written the bit bn−s
at each stage in bold.

FIGURE 4. Original radix-25 module.

FIGURE 5. Processing element.

The circuit of the PEs is shown in Fig. 5, which has already
been used in previous SC [26] and MSC [33], [34] FFT
architectures. The input data of the PE arrive in consecutive
clock cycles and are split into their real and imaginary parts.
After the serial-parallel permutation circuit, the butterfly
operates first on the real parts of the consecutive inputs
and then on their imaginary parts. This leads to using one
real adder and one real subtractor instead of complex ones.
Likewise, the rotation operation only appears at the lower
output of the butterfly. This means that only the lower path
of the PE needs to be rotated. The rotator uses two real
multipliers and one adder. Thus, the total number of adders
and multipliers in the PEs is halved concerning conventional
butterflies and rotators.

C. OPTIMIZATION OF THE PERMUTATIONS IN THE
RADIX-25 MODULES
In our design, two identical radix-2 modules are used. Each
module has 12 PEs and 8 serial-serial permutation circuits.
Each PE has 5multiplexers and each serial-serial permutation
circuit has 2 multiplexers. Taking into account both identical
modules, the total number of real multiplexers in PEs is 2 ×

12×5 = 120, and in permutation circuits, it is 2×8×2×2 =

64 by taking into account the real and imaginary parts of the
data. Thus, before optimization, the radix-25 modules require
a total of 184 real multiplexers. Regarding real delays, each
radix-25 module in Fig. 4 requires 92, leading to a total of
92 × 2 = 184.
Figure 6 shows the optimization process for the permuta-

tions between processing elements, which is inspired by the

VOLUME 12, 2024 84113

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

FIGURE 6. Optimized model of the radix-25 module.

ideas in [32]. The upper part of Fig. 6 shows the detailed
circuit of the first two consecutive PEs of any of the parallel
branches of the original radix-25 module in Fig. 4 and the
serial-serial permutation circuit that connects these PEs. Note
that the permutation circuit has been split into two circuits to
process the real and imaginary parts of the data. The lower
part of Fig. 6 shows the optimized version of this circuit.
In the upper part of the figure, the interconnection between
PEs is carried out by a set of three permutations of the
form sp-ss-sp. As these permutations only affect three serial
dimensions and a parallel one, following the theory in [35],
we can model them as

σ1(u3u2u1|u0) = u3u2u0|u1,

σ2(u3u2u1|u0) = u1u2u3|u0,

σ3(u3u2u1|u0) = u3u2u0|u1. (16)

Note that the lower input to the first permutation includes a
delay by one clock cycle, which is carried out in the rotator.
If we calculate the total permutation carried out between the
PEs as σ = σ3 ◦ σ2 ◦ σ1, we obtain

σ (u3u2u1|u0) = u0u2u1|u3. (17)

This permutation is the EBE σ : x3 ↔ x0, which can be
calculated with the circuit in Fig. 1(b) with buffers of length
L = 4, according to (9). Therefore, the permutations in the
upper circuit of Fig. 6 are substituted by the simple circuit
in the lower part of Fig. 6. Again, one of the delays of the
lower branch of the input of the circuit is accomplished in the
rotator.

By comparing the permutations in the upper and lower
parts of Fig. 6, it can be observed that the number of
real multiplexers has been reduced from 8 to 2 and the
number of delays from 9 to 7. This improvement can be
applied to the connection between the first and second
stages in all the parallel branches of the radix-25 module in
Fig. 4. Likewise, the same approach can be applied to the
connections between the second and third stages. In this case,

FIGURE 7. Optimized radix-25 module.

the serial-serial permutation only has one delay, the number
of real multiplexers is reduced from 8 to 2, and the number of
delays from 5 to 3. Thus, the total saving in multiplexers in
the entire FFT architecture is 6×4×2×2 = 96. This reduces
their number from 184 down to 88, which represents a saving
of more than 50%. Regarding the number of real registers,
it is reduced by 2 × 4 × 2 × 2 = 32, from 184 down to 152,
which is a saving of 17%.

As a result of this optimization, the proposed version of the
radix-25 module is shown in Fig. 7. Input data and data from
the output of stage 3 to the output of the module are complex-
valued, whereas data connecting stages 1, 2, and 3 are real-
valued, which can be deduced from the optimization in Fig. 6.

D. INTERMEDIATE PERMUTATION CIRCUIT
From Sections III-B and III-C, it can be observed that the
radix-25 modules of the architecture use short buffers. This
is because we have designed the proposed architecture in
such a way that all the longer buffers are placed between
the radix-25 modules, which creates a permutation between

84114 VOLUME 12, 2024

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

FIGURE 8. Intermediate permutation before optimization.

FIGURE 9. Optimized intermediate permutation by calculating a matrix
transposition using memories.

stages 5 and 6 where multiple dimensions are exchanged.
This not only simplifies the radix-25 modules but also has the
advantage that we can find a way to carry out the intermediate
permutation in an optimized way, as described next.

Figure 8 shows the intermediate permutation between
the radix-25 modules, which results from moving all the
permutations with long buffers out of the radix-25 modules.
In the proposed architecture, this permutation tranforms
the order b3b2b4b0b1b9b8b7|b6b5 in the fifth stage to the
order b9b8b7b6b5b3b2b4|b0b1 in the sixth stage, according
to Table 1. It can be noted that the intermediate permutation
is fulfilled by multiple exchanges in dimensions. Some of
these exchanges are done between serial dimensions such as
x9 ↔ x4, x8 ↔ x3, x7 ↔ x2 and the others are done between
serial and parallel dimensions, i.e., x6 ↔ x1, x5 ↔ x0.
In Fig. 8, the length of the buffers is obtained by applying (8)
and (9). According to them, each branch has serial-serial
permutation circuits with 124, 62, and 31 delays, and serial-
parallel permutation circuits with 16 and 8 delays. In total, the
circuit requires 20 buffers with a total of 4×241 = 964 delays
and 32 multiplexers.

In the proposed architecture, the data orders at stages 5 and
6 have not been designed arbitrarily. In fact, they have been
defined in such a way that the permutation between these
two stages is a matrix transposition. Specifically, from the
orders in stages 5 and 6 in Table 1 we can deduce that the

permutation is

σ (u9 . . . u2|u1u0) = u4u3u2u1u0u9u8u7|u6u5. (18)

Therefore, we can apply the theory of Section II-C to obtain
a circuit that carries out this permutation using memories in
an optimized way. The resulting circuit is shown in Fig. 9 and
calculates the permutation σ in (18) as a combination of three
permutations according to (11).

To derive the circuit in Fig. 9, we apply (12) to the specific
case of (18), which leads to

σ1(u9 . . . u0) = u9u8u7u6u5u4u3u2|(u1 ⊕ u6)(u0 ⊕ u5),

σ2(u9 . . . u0) = u4u3u2(u1 ⊕ u6)(u0 ⊕ u5)u9u8u7|u1u0,

σ3(u9 . . . u0) = u9u8u7u6u5u4u3u2|(u1 ⊕ u6)(u0 ⊕ u5).

(19)

Note that the permutations σ1 and σ3 are the same and
permute the data only in parallel dimensions. It means that
these permutations route the data from a certain terminal
at the input of the permutation to another terminal at the
output. For the permutations σ1 and σ3, the input terminal is
Tin = u1u0 = T1T0 and the output terminal is Tout = (u1 ⊕

u6)(u0 ⊕ u5) = (T1 ⊕ t4)(T0 ⊕ t3). This leads to the shuffling
carried out by themultiplexers before thememories for σ1 and
after the memories for σ3. Note that they are controlled by the
c3 and c4 bits of the counter, which correspond to t3 and t4,
respectively.

Regarding σ2, it permutes data arriving in series by using
the memories M0 − M3. By applying (14) and (15), σ2 the
address signals for the memories become

M0 : Wi = Ri−1 =

{
c7c6c5c4c3c2c1c0, if Sf = 0,
c2c1c0c4c3c7c6c5, if Sf = 1,

M1 : Wi = Ri−1 =

{
c7c6c5c4c3c2c1c0, if Sf = 0,
c2c1c0c4c3c7c6c5, if Sf = 1,

M2 : Wi = Ri−1 =

{
c7c6c5c4c3c2c1c0, if Sf = 0,
c2c1c0c4c3c7c6c5, if Sf = 1,

M3 : Wi = Ri−1 =

{
c7c6c5c4c3c2c1c0, if Sf = 0,
c2c1c0c4c3c7c6c5, if Sf = 1,

(20)

where the control signal Sf toggles for every incoming FFT.
Figure 10 shows the address generation circuit for memo-

ries M0 to M3, where an 8-bit counter is used to obtain the
read and write addresses. The multiplexers after the counter
are used to swap their upper and lower bits when Sf = 1,
whereas the bits are unchanged if Sf = 0. Likewise, the signal
Sf is used to negate some of the bits before memories M1 to
M3 to obtain the cases for which Sf = 1 in (20).
As a result, the proposed approach to calculate the

intermediate permutation converts the circuit with 20 buffers
and 32 multiplexers in Fig. 8 into the compact solution with

VOLUME 12, 2024 84115

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

FIGURE 10. Address generation circuit for the memories in the
intermediate permutation.

FIGURE 11. Algorithm used in the proposed radix-25 1024-point FFT
architecture. (a) Binary tree representation. (b) Triangular matrix
representation.

4 memories and 16 multiplexers shown in Fig. 9. Further-
more, the read and write addresses are easily generated by a
simple control circuit based on a counter, according to Fig. 10.

E. OBTAINING THE TWIDDLE FACTORS IN THE MSC FFT
FFT algorithms are usually described by their binary
tree representation [41], [42], [43] and their triangular matrix
representation [40], [43]. As can be seen in the binary tree
representation in Fig. 11, the upper node is divided into
two equal 25-point FFTs. These FFTs are calculated in the
radix-25 modules of the proposed architecture. Note also that
each 25-point FFT is decomposed according to the radix-2
decimation in frequency (DIF) FFT algorithm [43].

The rotation values φs(I) can be obtained from the
index I ≡ b9 . . . b0 at any stage s from the triangular
matrix representation in Fig. 11(b). In the triangular matrix
representation, rows and columns are numbered as x =

1 . . . n − 1 and y = 1 . . . n − 1 [40], respectively, and the
numbers in the matrix cells represent the stages. According
to this, the rotations at any stage s are calculated as [43]

φs(I) =

∑
s

bn−x · bn−y−1 · 2n+(x−y)−2. (21)

For instance, in Fig. 11(b), s = 2 for the cells of the matrix
where x = 2 and y = {2, 3, 4}. If we apply (21), we get
φ2(I) = b8 ·b7 ·28+b8 ·b6 ·27+b8 ·b5 ·26 = b8 ·[b7b6b5] ·26,
where values inside [·] are the digits of a binary number.
The rotations for all the stages of the proposed FFT

architecture are derived in the same way, which results in

φ1(I) = b9 · [b8b7b6b5] · 25,

φ2(I) = b8 · [b7b6b5] · 26,

φ3(I) = b7 · [b6b5] · 27,

φ4(I) = b6 · b5 · 28,

φ5(I) = [b5b6b7b8b9] · [b4b3b2b1b0],

φ6(I) = b4 · [b3b2b1b0] · 25,

φ7(I) = b3 · [b2b1b0] · 26,

φ8(I) = b2 · [b1b0] · 27,

φ9(I) = b1 · b0 · 28. (22)

To design the rotators in the architecture, we have to
rewrite (22) in terms of time and terminals as given in (7).
As a consequence, by replacing the bi bits in (22) with the
corresponding ti and Ti bits in (7) we obtain

φ1(I) = φ6(I) = t0 · [t2t1T0T1] · 25,

φ2(I) = φ7(I) = t0 · [t1T0T1] · 26,

φ3(I) = φ8(I) = t0 · [T0T1] · 27,

φ4(I) = φ9(I) = T0 · T1 · 28,

φ5(I) = [T0T1t0t1t2] · [t5t7t6t3t4]. (23)

Note that φi(I) = φi+5(I) for i = 1 . . . 4. This is due to the
fact that the radix-25 modules are identical in our architecture.
Furthermore, the ti and Ti bits give the information about the
time of arrival data and the terminals. To obtain the twiddle
factors at the four parallel branches of each stage, we set the
terminal bits T1T0 to the corresponding terminal, which takes
the values {00, 01, 10, 11} from the upper to the lower branch.
As stages 6 to 9 are the same as stages 1 to 4, we only focus

on the latter ones. In the first stage, the rotations are

φ10(I) = t0 · [t2t100] · 25

φ11(I) = t0 · [t2t110] · 25

φ12(I) = t0 · [t2t101] · 25

φ13(I) = t0 · [t2t111] · 25, (24)

where φsj(I) is the value of the rotations at stage s and branch
j. The value j = 0 corresponds to the upper branch in the
architecture and j = 3 corresponds to the lower branch. In the
second stage, the rotations for all branches are calculated as

φ20(I) = t0 · [t100] · 26

φ21(I) = t0 · [t110] · 26

φ22(I) = t0 · [t101] · 26

φ23(I) = t0 · [t111] · 26. (25)

84116 VOLUME 12, 2024

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

TABLE 2. Twiddle factors of the radix-25 module.

In the third stage, the rotations are

φ30(I) = t0 · [00] · 27

φ31(I) = t0 · [10] · 27

φ32(I) = t0 · [01] · 27

φ33(I) = t0 · [11] · 27. (26)

Likewise, the rotations at stage four are

φ40(I) = 0

φ41(I) = 0

φ42(I) = 0

φ43(I) = 28. (27)

The twiddle factors W φ
32 as a function of the time

are obtained by simply substituting the values t2t1t0 in
equations (24) to (27). These twiddle factors are summarized
in Table 2. For the first stage, the rotations in (24) depend
on the binary values of t2t1t0. As the ti values represent the
time of arrival and the rotations only depend on the 3 LSBs
of t , the rotation values repeat every 8 consecutive samples.
For stage 2, the rotations in (25) only depend on t1t0, so they
repeat every 4 clock cycles. For stage 3, they repeat every
other clock cycle and for stage 4 they are constant, as they do
not depend on any ti.
In equations (24) to (26) it can also be observed that all the

rotations are obtained through a multiplication by t0. Thus,

FIGURE 12. Rotation angles for W φ

32.

TABLE 3. Symmetric angle sets for W φ

32 twiddle factors.

when t0 = 0, no rotation needs to be calculated. Therefore,
the twiddle factor W 0

32 appears every other clock cycle in
Table 2 for the stages 1 to 3.

F. DESIGNING THE ROTATORS OF THE PROPOSED MSC
FFT
Figure 12 shows the angles used for W φ

32, which are the
result of dividing the circumference into 32 equal parts. It can
be observed that some angles are symmetric regarding 0◦,
−45◦ and −90◦. In this context, a symmetric angle set (SAS)
is the group of angles that can be obtained by symmetries
from other angles in the group [44]. These symmetries are
achieved by applying a trivial rotation by 0◦, ±90◦ or 180◦

and/or changing the real and imaginary parts of the rotation
coefficient. Table 3 shows all the symmetric angle sets in the
W φ

32 twiddle factor. For instance,W
3
32,W

5
32,W

11
32 , andW

13
32 are

in the same SAS.
The rotator φ10(I) in Table 2 must rotate by the angles φ =

{0, 4, 8, 12}. According to Table 3, φ = 0 and φ = 8 are
in SAS 0, and φ = 4 and φ = 12 are in SAS 4. A rotator
that can rotate multiple angles in M different SAS is called
an M -rot [45]. Thus, the rotator φ10(I) is a 2-rot.

Figure 13 shows the circuit for the rotatorφ10(I). It receives
the real and imaginary parts of data to be rotated in
consecutive clock cycles and considers thatW 0

32 = 1,W 4
32 =

(181−j181)/256,W 8
32 = −j, andW 12

32 = (−181−j181)/256.
The rotation is divided into two parts. The first part scales
the inputs by 256/256 or 181/256 depending on the control
signal s0. The second part carries out a multiplication by 1,
(1− j), −j, or (−1 − j), which is controlled by s1, s2, s3, and
s4. Table 4 shows the values of the control signals depending
on the rotation that must be carried out. Here, c0 represents
the LSB of the control counter.

The rotator φ11(I) in Table 2 computes φ = {2, 6, 10, 14}.
As all the rotations are in SAS 2 in Table 3, φ11(I) is a

VOLUME 12, 2024 84117

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

FIGURE 13. Rotator φ10(I).

TABLE 4. Control signals for the rotator φ10(I).

1-rot. Conversely, the rotators φ12(I) and φ13(I) are 2-rot,
as they rotatate by φ = {1, 5, 9, 13} and φ = {3, 7, 11, 15},
respectively. In the proposed architecture, φ12(I) and φ13(I)
are optimized by exchanging some rotations between them
according to the circuit in Fig. 14. This circuit makes it
possible to calculate rotations φ = {1, 7, 9, 15} in φ12(I) and
φ = {3, 5, 11, 13} in φ13(I), so both rotators become 1-rot.

Figure 14(b) shows the structure of the rotators
φ11(I), φ12(I) and φ13(I). This circuit has already been
described in [34] and the details on how it works can be
found there. It receives the real and imaginary parts of the
input in consecutive clock cycles. In the figure, C and S refer
to the real and imaginary parts of the rotation coefficient
C + jS. In this work, we improve the calculation of C + jS
with respect to [34], by using optimized coefficients. These
coefficientes are C + jS = (473 + j196)/512, C + jS =

(251 + j50)/256, and C + jS = (213 + j142)/256 for
φ11(I), φ12(I) and φ13(I), respectively. Their shift-and-add
implementations are shown in Figs. 14(c), 14(d), and 14(e),
respectively. The multiplication by 473 and 196 requires only
4 adders. Likewise, the multiplication by 251 and 50, and the
multiplication by 213 and 142 requires only 3 adders. This
makes the rotators hardware-efficient.

In the second stage, φ20(I) involves rotations by φ = 0 and
φ = 8 from Table 2, which are in SAS 0 according to Table 3
and correspond to trivial rotations. Figure 15 shows the circuit
of the rotator φ20(I). To rotate by φ = 0, data simply passes
through the circuit by setting s = 0. To rotate by φ = 8,
which is a multiplication by −j, first s = 0 to let x pass to
the register. Then, s = 1 so that y passes to the output while
x is multiplied by −1 and stored back in the register, which
is output in the next clock cycle.

The rotator φ21 rotates by φ = 4 or φ = 12, which
corresponds to multiplying by (1−j) or (−1−j). These angles

FIGURE 14. Rotators for φ11(I), φ12(I), and φ13(I). (a) Rotators structure.
(b) Exchange circuit for φ12(I) and φ13(I). (c) Multiplication by coefficient
C + jS = 473 + j196 in φ11(I). (d) Multiplication by C + jS = 251 + j50 in
φ12(I). (e) Multiplication by coefficient C + jS = 213 + j142 in φ13(I).

are a subset of the angles for φ10(I), so φ21 can be calculated
with the rotator in Fig. 13. For φ21, we only have to use the
control signals s1 and s2, whereas the other signals are fixed
to s0 = 0, s3 = 1, and s4 = 1, which allows for simplifying
the circuit. Similarly, the angles in φ22(I) and φ23(I) are a
subset of the angles in φ11, so the rotator in Fig. 14(b) can

84118 VOLUME 12, 2024

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

FIGURE 15. Trivial rotators. (a) Trivial rotator φ20(I) for serial data.
(b) Trivial rotator φ43(I) for parallel data.

be used to calculate them. For φ22(I), s0 = 0, whereas for
φ23(I), s0 = 1. As the control signal is constant in both cases,
the corresponding multiplexers can be removed.

In the third stage, φ30(I) does not calculate any rotation,
φ31(I) is a trivial rotator as φ20(I), and both φ32(I) and φ33(I)
can use a simplified version of the rotator φ10(I).
In the fourth stage, the first three branches do not calculate

any rotation, whereas φ43 is a constant trivial rotation
calculated with the circuit in Fig. 15(b). Contrary to the trivial
rotator in Fig. 15(a), in the trivial rotator in Fig. 15(b) the real
and imaginary parts of the data arrive at the same clock cycle.
Note that swapping inputs and multiplying x by −1 results in
multiplying the inputs by −j. In fact, this trivial rotator can
be integrated into the butterfly previous to it by changing the
real and imaginary parts of the output of the subtraction and
also changing the inputs of one of the subtractors.

G. NUMBER OF COMPONENTS
The proposed 4-parallel 1024-point radix-25 MSC FFT
architecture uses a total data memory size of 1088. This
includes four memories with the size of 256 in the matrix
transposition and 64 registers in the permutation circuits.

Regarding adders in butterflies, each PE has 2 real adders,
which is equivalent to 1 complex adder. Three stages of PEs
with 4-parallel branches in two radix-25 modules lead to 1×

3 × 4 × 2 = 24 real adders in PEs. Similarly, the butterflies
in R2 have 2× 2× 2 = 8 complex adders that correspond to
16 real adders. This leads to a total of 40 complex adders in
the architecture.

Regarding multipliers, there are 4 general rotators (G-rot)
after the first radix-25 module as shown in Fig. 3. In each
module, there is a half 2-rot, 6 half 1-rot, and 2 half
constant rotators (C-rot), leading to a total of 1 2-rot, 6 1-rot,
and 2 C-rot in both modules.

Regarding multiplexers, with the help of the optimization
in the radix-25 module shown in Fig. 6, 16 real multiplexers
are used in stages 1 and 3, while there is no multiplexer in
stage 2. In the permutation circuits between the PEs, 16 real
multiplexers are used. Additionally, 16 complex multiplexers
are used in the matrix transposition. Thus, the total usage of
real multiplexers is 96, which is equivalent to 48 complex
multiplexers.

IV. EXPERIMENTAL RESULTS AND COMPARISON
Table 5, compares the proposed architecture to previous
radix-2k pipeline FFT architectures. For a fair comparison,

TABLE 5. Comparison of 4-parallel 1024-point pipelined FFT
architectures.

TABLE 6. Comparison of 4-parallel 1024-point pipelined FFT
implemented on FPGA.

we have only selected previous FFT architectures with the
same size and number of parallel branches, i.e., N =

1024 and P = 4. The comparison in Table 5 compares
different approaches from an architectural point of view in
terms of adders, rotators, and memory.

By comparing complex adders, the proposed architecture
achieves the minimum number of adders, which is also the
same as in [16], [19], [20], and [24] and less than in [23].
Regarding the use of memory, [19], [20], [24] have pretty
close results to the proposed approach, whereas we get
significantly better results than [16], [23]. Regarding rotators,
our architecture improves the number of rotators and their
complexity. The number of general rotators is 12 in [24],
16 in [23], and 11 in [16]. The proposed approach uses
only 4 G-rots, which represents a saving of at least 63%.
Compared to approaches with the same number of general

VOLUME 12, 2024 84119

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

rotators [19], [20], our approach reduces the number of non-
general rotators. Specifically, [20] requires 22 non-general
rotators, whereas the proposed architecture uses only 9.
Despite the proposed approach using 1-rots and 2-rots, the
savings in total rotator complexity are significant. Compared
to [19], the proposed approach reduces the number of total
rotators from 10 to 9 and, at the same time, reduces the
complexity of the non-general rotators by using mostly
1-rots and C-rots. As a result, thanks to all the architectural
optimizations carried out in the proposed approach, the
architecture presented in this paper is the most resource-
efficient one among comparable state-of-the-art approaches.

Regarding experimental results, the proposed architecture
has been implemented on a Virtex 7 XC7VX330T −3
FFG1157 FPGA. It works at 420 MHz with a latency of
300 clock cycles and a throughput of 1680 MS/s. The
signal-to-quantization-noise ratio (SQNR) is 50.16 dB with
16 bits of word length. Additionally, the power consumption
is 0.98 W and the normalized power consumption is
2.33 mW/MHz.

Table 6 compares the experimental results to previous FFT
architecture. The table only includes FFT architecture with
N = 1024 points, P = 4 parallel branches, and a word
length WL = 16, so that the architectures are comparable.
All approaches in the table are implemented on Virtex 6 (V6)
or Virtex 7 (V7) FPGAs and the comparison is carried out
in terms of area, clock frequency (fCLK), throughput (Th.),
latency (Lat.), signal-to-quantization-noise ration (SQNR),
power consumption (P), and normalized power consumption
(NP). From the results in the table, the proposed architecture
uses a total of 12 DSP slices for the G-rots and 4 BRAMs for
the matrix transposition. This represents a huge reduction in
terms of hardware resources concerning most previous FFT
architectures [16], [19], [23], [24]. Note that the proposed
architecture reduces the number of DSP Slices by 25 % and
the number of BRAMs by 66 % with respect to [19], which is
the most resource-efficient implementation among [16], [19],
[23], [24]. Thus, the area savings with respect to [16], [23],
and [24] are even more significant.
The only previous work with area results that are closer

to our work is [20]. Compared to it, our approach reduces the
number of slices by 38% at the cost of adding only 4 BRAMs.
Furthermore, the proposed approach has 24 % lower latency
in terms of clock cycles and 4 % less power consumption
when normalizing it in terms of mW/MHz.

As a result, the proposed approach offers a very efficient
solution in terms of hardware resources, as it requires a
small number of rotators with low complexity. This leads to
a hardware implementation with a small number of slices,
LUTs, FFs, DSP slices, and BRAMs.

V. CONCLUSION
In this paper, we have proposed an optimized 4-parallel
1024-point radix-25 MSC FFT architecture that reduces
the number of hardware resources significantly concerning
previous parallel pipelined FFT architectures.

The proposed design carries out multiple optimizations
over previous MSC FFT architectures. First, the architecture
makes use of a radix-25 module. This module has been
optimized by simplifying the permutations between PEs and
optimizing the rotators. As this module is used twice in the
architecture, the optimizations are also applied twice.

Apart from optimizing the radix-25 modules, the most
complex permutation circuits in the architecture have been
placed between the modules and implemented as a matrix
transposition, which reduces the complexity of the circuit.

As a result, the proposed architecture achieves the lowest
complexity in terms of hardware resources among FFT
architectures with the same size and parallelization so far.

REFERENCES
[1] V. M. Bautista, M. Garrido, and M. López-Vallejo, ‘‘Serial butterflies for

non-power-of-two FFT architectures in 5G and beyond,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 70, no. 10, pp. 3992–4003, Oct. 2023.

[2] M. Mahdavi, O. Edfors, V. Ówall, and L. Liu, ‘‘A low latency and area
efficient FFT processor for massive MIMO systems,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[3] T. Kamazaki, S. K. Okumura, Y. Chikada, T. Okuda, Y. Kurono, S. Iguchi,
S. Mitsuishi, Y. Murakami, N. Nishimuta, H. Mita, and R. Sano, ‘‘Digital
spectro-correlator system for the Atacama compact array of the Atacama
large millimeter/submillimeter array,’’ Publications Astronomical Soc.
Jpn., vol. 64, no. 2, p. 29, Apr. 2012.

[4] H. Kanders, T. Mellqvist, M. Garrido, K. Palmkvist, and O. Gustafsson,
‘‘A 1 million-point FFT on a single FPGA,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 66, no. 10, pp. 3863–3873, Oct. 2019.

[5] N. Linty and L. Lo Presti, ‘‘Doppler frequency estimation in GNSS
receivers based on double FFT,’’ IEEE Trans. Veh. Technol., vol. 65, no. 2,
pp. 509–524, Feb. 2016.

[6] T. Yu, E. Wang, S. Jin, Y. Wang, J. Huang, X. Liu, and W. Zhan,
‘‘Responses of GNSS ZTD variations to ENSO events and prediction
model based on FFT-LSTME,’’ IEEE Trans. Geosci. Remote Sens., vol. 61,
pp. 1–17, Mar. 2023, Art. no. 4101417.

[7] Z. Kaya, M. Garrido, and J. Takala, ‘‘Memory-based FFT architecture
with optimized number of multiplexers and memory usage,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 70, no. 8, pp. 3084–3088, Aug. 2023.

[8] Z. Kaya and M. Garrido, ‘‘Low-latency 64-parallel 4096-point memory-
based FFT for 6G,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70,
no. 10, pp. 4004–4014, Oct. 2023.

[9] S. Liu and D. Liu, ‘‘A high-flexible low-latency memory-based FFT
processor for 4G, WLAN, and future 5G,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 27, no. 3, pp. 511–523, Mar. 2019.

[10] Y. Guo, Z. Wang, Q. Hong, H. Luo, X. Qiu, and L. Liang, ‘‘A 60-
mode high-throughput parallel-processing FFT processor for 5G/4G
applications,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 31,
no. 2, pp. 219–232, Feb. 2023.

[11] V. M. Bautista and M. Garrido, ‘‘An automatic generator of non-power-
of-two SDF FFT architectures for 5G and beyond,’’ in Proc. 38th Conf.
Design Circuits Integr. Syst. (DCIS), Nov. 2023, pp. 61–66.

[12] X.-Y. Shih, H.-R. Chou, and Y.-Q. Liu, ‘‘Design and implementation
of flexible and reconfigurable SDF-based FFT chip architecture with
changeable-radix processing elements,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 65, no. 11, pp. 3942–3955, Nov. 2018.

[13] Y.-N. Chang, ‘‘An efficient VLSI architecture for normal I/O order pipeline
FFT design,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 12,
pp. 1234–1238, Dec. 2008.

[14] X. Liu, F. Yu, and Z.-K. Wang, ‘‘A pipelined architecture for normal I/O
order FFT,’’ J. Zhejiang Univ. Sci. C, vol. 12, no. 1, pp. 76–82, Jan. 2011.

[15] X. Zhou, X. Chen, Y. He, and X. Mou, ‘‘A flexible-channel MDF
architecture for pipelined Radix-2 FFT,’’ IEEE Access, vol. 11,
pp. 38023–38033, 2023.

[16] J. Wang, C. Xiong, K. Zhang, and J. Wei, ‘‘A mixed-decimation MDF
architecture for Radix-2k parallel FFT,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 1, pp. 67–78, Jan. 2016.

84120 VOLUME 12, 2024

Z. Kaya, M. Garrido: Optimized 4-Parallel 1024-Point MSC FFT

[17] C.-H. Yang, T.-H. Yu, and D. Markovic, ‘‘Power and area minimization
of reconfigurable FFT processors: A 3GPP-LTE example,’’ IEEE J. Solid-
State Circuits, vol. 47, no. 3, pp. 757–768, Mar. 2012.

[18] M. Garrido, J. Grajal, M. A. Sánchez, and O. Gustafsson, ‘‘Pipelined
Radix-2k feedforward FFT architectures,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 1, pp. 23–32, Jan. 2013.

[19] M. Garrido, S.-J. Huang, and S.-G. Chen, ‘‘Feedforward FFT hardware
architectures based on rotator allocation,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 65, no. 2, pp. 581–592, Feb. 2018.

[20] M. Garrido and P. Malagón, ‘‘The constant multiplier FFT,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 68, no. 1, pp. 322–335, Jan. 2021.

[21] N. Le Ba and T. T. Kim, ‘‘An area efficient 1024-point low power Radix-
22 FFT processor with feed-forward multiple delay commutators,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 10, pp. 3291–3299,
Oct. 2018.

[22] P. Paz and M. Garrido, ‘‘A 5.2-GS/s 8-parallel 1024-point MDC FFT,’’
in Proc. 38th Conf. Design Circuits Integr. Syst. (DCIS), Nov. 2023,
pp. 55–60.

[23] A. X. Glittas, M. Sellathurai, and G. Lakshminarayanan, ‘‘A normal
I/O order Radix-2 FFT architecture to process twin data streams for
MIMO,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 6,
pp. 2402–2406, Jun. 2016.

[24] M. Garrido, M. Acevedo, A. Ehliar, and O. Gustafsson, ‘‘Challenging the
limits of FFT performance on FPGAs,’’ in Proc. Int. Symp. Integr. Circuits
(ISIC), Dec. 2014, pp. 172–175.

[25] W.-L. Tsai, S.-G. Chen, and S.-J. Huang, ‘‘Reconfigurable Radix-2k×3
feedforward FFT architectures,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2019, pp. 1–5.

[26] M. Garrido, S.-J. Huang, S.-G. Chen, and O. Gustafsson, ‘‘The serial
commutator FFT,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63,
no. 10, pp. 974–978, Oct. 2016.

[27] S. Park and D. Jeon, ‘‘A modified serial commutator architecture for real-
valued fast Fourier transform,’’ in Proc. IEEE Workshop Signal Process.
Syst. (SiPS), Oct. 2020, pp. 1–6.

[28] J. Hazarika, M. T. Khan, S. R. Ahamed, and H. B. Nemade, ‘‘Energy
efficient VLSI architecture of real-valued serial pipelined FFT,’’ IET
Comp. Digital Tech., vol. 13, no. 6, pp. 461–469, Jun. 2019.

[29] M. Garrido, N. K. Unnikrishnan, and K. K. Parhi, ‘‘A serial commutator
fast Fourier transform architecture for real-valued signals,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 65, no. 11, pp. 1693–1697, Nov. 2018.

[30] H. Fang, B. Zhang, F. Yu, B. Zhao, and Z. Ma, ‘‘A pipelined algorithm and
area-efficient architecture for serial real-valued FFT,’’ IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 69, no. 11, pp. 4533–4537, Nov. 2022.

[31] N. K. Unnikrishnan, M. Garrido, and K. K. Parhi, ‘‘Effect of finite word-
length on SQNR, area and power for real-valued serial FFT,’’ inProc. IEEE
Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[32] H. Fang, Z. Ma, F. Yu, B. Zhao, and B. Zhang, ‘‘Optimised serial
commutator FFT architecture in terms of multiplexers,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 71, no. 1, pp. 445–449, Jan. 2024.

[33] S.-C. Hsu, S.-J. Huang, S.-G. Chen, S.-C. Lin, and M. Garrido, ‘‘A 128-
point multi-path SC FFT architecture,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Oct. 2020, pp. 1–5.

[34] G.-T. Deng, M. Garrido, S.-G. Chen, and S.-J. Huang, ‘‘Radix-2k MSC
FFT architectures,’’ IEEE Access, vol. 11, pp. 81497–81510, 2023.

[35] M. Garrido, J. Grajal, and O. Gustafsson, ‘‘Optimum circuits for bit-
dimension permutations,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 5, pp. 1148–1160, May 2019.

[36] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine calculation
of complex Fourier series,’’ Math. Comput., vol. 19, no. 90, pp. 297–301,
Apr. 1965.

[37] M. Garrido, ‘‘A survey on pipelined FFT hardware architectures,’’ J. Signal
Process. Syst., vol. 94, no. 11, pp. 1345–1364, Nov. 2022.

[38] A. Edelman, S. Heller, and S. L. Johnsson, ‘‘Index transformation
algorithms in a linear algebra framework,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 5, no. 12, pp. 1302–1309, Dec. 1994.

[39] M. Garrido and P. Pirsch, ‘‘Continuous-flow matrix transposition using
memories,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 9,
pp. 3035–3046, Sep. 2020.

[40] M. Garrido, ‘‘A new representation of FFT algorithms using triangular
matrices,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 10,
pp. 1737–1745, Oct. 2016.

[41] H.-Y. Lee and I.-C. Park, ‘‘Balanced binary-tree decomposition for area-
efficient pipelined FFT processing,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 54, no. 4, pp. 889–900, Apr. 2007.

[42] F. Qureshi and O. Gustafsson, ‘‘Generation of all Radix-2 fast Fourier
transform algorithms using binary trees,’’ in Proc. 20th Eur. Conf. Circuit
Theory Design (ECCTD), Aug. 2011, pp. 677–680.

[43] M. Garrido, F. Qureshi, J. Takala, and O. Gustafsson, ‘‘Hardware
architectures for the fast Fourier transform,’’ in Handbook of Signal
Processing Systems, S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and
J.Takala, Eds., 3rd ed. Berlin, Germany: Springer, 2019, pp. 613–647.

[44] R. Andersson and M. Garrido, ‘‘Using rotator transformations to simplify
FFT hardware architectures,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 67, no. 12, pp. 4784–4793, Dec. 2020.

[45] R. Andersson, ‘‘FFT hardware architectures with reduced twiddle factor
sets,’’ M.S. thesis, Dept. Elect. Eng., Linköping Univ., Linköping, Sweden,
Jun. 2014.

ZEYNEP KAYA received the M.Sc. and Ph.D.
degrees in electrical and electronics engineering
from Eskisehir Osmangazi University, Turkey, in
2015 and 2021, respectively.

Since 2021, she has been an Assistant Profes-
sor with Bilecik Şeyh Edebali University. From
September 2022 to September 2023, she was a
Post-Doctoral Researcher at Universidad Politéc-
nica de Madrid (UPM). Her current research
interests include optimized hardware architectures

for the fast Fourier transform (FFT) including data management and memory
addressing schemes, high-performance circuits, designs for small area, low
latency, and low power consumption.

MARIO GARRIDO (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in elec-
trical engineering from Universidad Politécnica
de Madrid (UPM), Spain, in 2004 and 2009,
respectively.

In 2010, he moved to Sweden to work as
a Post-Doctoral Researcher at the Department
of Electrical Engineering, Linköping University.
From 2012 to 2019, he was an Associate Professor
at the Department of Electrical Engineering.

In 2019, he moved back to UPM, where he holds a Ramón y Cajal
Research Fellowship. So far, he has been the author of more than
50 scientific publications, and he appeared in the ‘‘World’s Top 2% Scientists
List’’ elaborated by Stanford University, in 2022 and 2023, respectively.
His research interest includes optimized hardware design for signal-
processing applications. This includes the design of hardware architectures
for the fast Fourier transform (FFT), circuits for data management, the
CORDIC algorithm, neural networks, and circuits to calculate statistical
and mathematical operations. His research covers high-performance circuits
for real-time computation and designs for small area and low power
consumption.

VOLUME 12, 2024 84121

