
Received 18 May 2024, accepted 7 June 2024, date of publication 14 June 2024, date of current version 21 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3414963

Context-Committing Authenticated Encryptions
Using Tweakable Stream Cipher
DONGHOON CHANG 1,2,3 AND MUNAWAR HASAN 1,2
1Indraprastha Institute of Information Technology Delhi, New Delhi 110020, India
2National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
3Strativia, USA

Corresponding author: Munawar Hasan (munawarh@iiitd.ac.in)

ABSTRACT Committing security of authenticated encryption schemes is an emerging area and an active
field of research and is highlymotivated by real-world scenarios. CMT-4 security of authenticated encryption
scheme is a security notion, where an adversary must create two distinct tuples, each containing a key,
a nonce, an associated data and a message for the encryption sub-routine of the authenticated encryption
scheme, such that outputs produced by the encryption sub-routine for the two tuples are the same. In this
paper, we analyze CMT-4 security of four tweakable wide block cipher schemes HBSH, HCTR2, double-
decker and docked-double-decker under encode-then-encipher paradigm by prepending zeros, and present
CMT-4 attacks with O(1) time complexity for all the four schemes. We introduce the notion of tweakable
stream cipher (tS in short) with the property of partial collision resistance, and use it to create four new
tweakable wide block cipher schemes: HBtSH, HtS, tS-double-decker and tS-docked-double-decker. These
four proposed schemes can be used to create a CMT-4 secure authenticated encryption scheme with the
property of partial collision under encode-then-encipher paradigm. Further, we provide security proof with
partial collision resistance for the four proposed schemes against a CMT-4 adversary.

INDEX TERMS Authenticated encryption, context commitment, double-decker, docked-double-decker,
disk encryption, HBSH, HCTR2, tweakable stream cipher.

I. INTRODUCTION
A tweakable wide block cipher scheme [1] takes three inputs:
a key, a tweak and a plaintext, and produces a ciphertext
as the output, where size of the ciphertext is equal to
size of the plaintext. The scheme is particularly useful in
applications like disk encryption. The disk is partitioned into
sectors, typically of size 512 bytes; in some newer hard
disks and solid state devices using advance format, sector
size of 4096 bytes are used. Each of these sectors have a
permanent index that identifies them uniquely. Encrypting a
disk requires encryption of each of these sectors. To enhance
user experience and performance, preference might be given
to an algorithm that considers encryption of a sector mutually
exclusive with the encryption of other sectors of the disk.
Further, when content of a sector changes, then the sector
is encrypted again. HBSH [2], a tweakable wide block
cipher scheme, emerged as one of the major work in this

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahdi Zareei .

area. Adiantum (HBSH specification) is available in Android
9.0 and higher for the encryption [3]. HCTR2 [4] is another
tweakable wide block cipher scheme, that is available in
Android 14.0 and higher for file encryption applications [5].
Double-decker and docked-double-decker [6] are two deck
function (doubly-extendable cryptographic keyed function)
based tweakable wide block cipher schemes targeting file
encryption applications. In [7], the authors present two
instances of docked-double-decker based on AES [8], and
hence, it can make use of existing cryptographic hardware
accelerators. Another target area of the tweakable wide block
cipher scheme is the design space of IoT devices, such devices
are computationally menial when compared to desktop
or smartphone grade chips, and often lack cryptographic
hardware instructions. Schemes like HBSH, double-decker
and docked-double-decker are useful in such scenarios.

Encode-then-encipher [9] (EtE in short) paradigm can
be used to construct an authenticated encryption scheme
from a tweakable wide block cipher scheme by inserting
zeros at a specified position. An authenticated encryption

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 84149

https://orcid.org/0000-0003-1249-2869
https://orcid.org/0000-0003-3462-8261
https://orcid.org/0000-0001-6623-1758

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

scheme provides both privacy (or confidentiality) and
authenticity (or integrity) of data simultaneously. This dual
functionality prevents unauthorized access to the encrypted
data while also detecting any attempts at tampering or
modification of the data. Due to this streamline and efficient
process, authenticated encryption schemes are widely used
for numerous security critical applications like including
secure communication protocols, data storage, file encryp-
tion, blockchain and cryptocurrencies, cloud services etc.
We target the notion of committing security of authenticated
encryption scheme, which is inspired by real-world attacks
and is an active area of research. Further, NIST proposal
on the requirements for an accordion mode mentions key
commitment and context commitment as the desirable
properties [10]. AEZ [11], a CAESAR [12] submission, is an
authenticated encryption scheme that uses zero appending
technique together with nonce, associated data and length of
the append (stretch) as the tweak, resulting into a ciphertext
that is longer by the length of the append. During the third
NIST workshop on block cipher modes of operation [13],
key commitment security with time complexity O(1) was
presented on AEZ [14], and an overview of CMT-4 attack
was also presented onHBSH andHCTR2 under encode-then-
encipher paradigm. Facebook’s message franking technique
in their end-to-end encrypted messenger for generating
cryptographically verifiable report for shared images and
video, based on AES-GCM [15], was shown to be vulnerable
to key commitment attack, due to non-key committing
authenticated encryption scheme [16], [17]. Facebook uses
a hash of the AES-GCM ciphertext, along with a randomly
generated value, as an identifier for the attachment. The
attack in [16], finds two different keys and a ciphertext
efficiently for a message, such that one of the key decrypts
the ciphertext to an abusive attachment while the other key
successfully decrypts the same ciphertext, but to another
harmless attachment. The adversary, then sends twomessages
with different keys but the same attachment ciphertext,
making Facebook’s deduplicate algorithm to report only
non-abusive attachment. This vulnerability was patched by
making deduplicate algorithm more vigilant. In [18],1 the
authors showed that a key commitment lacking AES-GCM
based ciphertext can be decrypted into two plaintexts of
different file formats such as PDF, Windows executable,
DICOM etc.

In this paper, we explore the idea of creating an
authenticated encryption scheme using HBSH, HCTR2,
double-decker and docked-double-decker under encode-
then-encipher paradigm. For message encoding, we use zero
prepending technique, and then for enciphering, we use
the four tweakable wide block cipher schemes. Under
this EtE setup, we evaluate CMT-4 security of each of
these authenticated encryption schemes, and provide detailed
CMT-4 attack with time complexity O(1) for all the four
schemes. We introduce the notion of tweakable stream

1https://github.com/kste/keycommitment

cipher (or tS in short) and use tS to create four new
tweakable wide block cipher schemes that are CMT-4 secure
.i.e., provide partial collision resistance under encode-then-
encipher paradigm.

A. MOTIVATION
The idea of context commitment security starts with the sub-
routine E committing to a key K . A CMT-1 adversary gener-
ates two distinct tuples (K1,N1,A1,M1) and (K2,N2,A2,M2)
.i.e., τ = {(K1,N1,A1,M1), (K2,N2,A2,M2)}, such that
E(K1,N1,A1,M1) = E(K2,N2,A2,M2) but K1 ̸= K2
.i.e., that two keys K1 and K2 are distinct. Since, E is
committing to only one of the input parameters .i.e., the
key, hence we use the notation as CMT-1. In a more
generic sense, we can use the notation CMT-ℓ, where ℓ

denotes the number of inputs of E , to show the commitment
of the encryption sub-routine on the number of inputs it
takes respectively. In case of CMT-4, the task of adversary
is to generate τ = {(K1,N1,A1,M1), (K2,N2,A2,M2)},
such that E(K1,N1,A1,M1) = E(K2,N2,A2,M2) but
(K1,N1,A1,M1) ̸= (K2,N2,A2,M2). Intuitively, a CMT-4
secure E requires commitment to all of its inputs. Further,
we can also see that CMT-4 H⇒ CMT-1 [19]. CMT-4
security is a strong goal, since commitment is required for
all the four inputs of the encryption sub-routine.

HBSH [2], HCTR2 [4] and the two deck based schemes
.i.e., double-decker and docked-double-decker [6] target
applications like file encryption. Further, HBSH, double-
decker and docked-double-decker target the area of low
powered devices where cryptographic hardware instructions
are absent. Using EtE paradigm, one can convert these
tweakable wide block cipher scheme to an authenticated
encryption scheme. The authenticated encryption schemes
so created must provide security assurance under various
notions like committing security. An overview of CMT-4
attack was presented [14] for HBSH and HCTR2 under
encode-then-encipher paradigm. We take inspiration from
this overview of CMT-4 attack and present detailed CMT-4
analysis with time complexityO(1), for all the four tweakable
wide block cipher schemes under EtE paradigm. We further,
try to investigate the design of the four tweakable wide block
cipher schemes, and introduce the notion of tweakable stream
cipher (tS). We use tweakable stream cipher to create four
new constructions of tweakable wide block cipher schemes
that are CMT-4 secure, when used for creating authenticated
encryption schemes by prepending zeros.

B. CONTRIBUTION
• We analyze CMT-4 security of four tweakable wide
block cipher schemes under the encode-then-encipher
(EtE) paradigm by prepending zeros. An overview of
CMT-4 attack of EtE-HBSH and EtE-HCTR2 was pre-
sented at the third NIST workshop on the block cipher
modes of operation [13]. We present the algorithm for
CMT-4 attack on EtE-HBSH and EtE-HCTR2 with
time complexity O(1). Further, we present two new

84150 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

results of CMT-4 attack under EtE paradigm of the two
deck function based schemes .i.e., EtE-double-decker
and EtE-docked-double-decker, with time complexity
O(1).

• We introduce the notion of a tweakable stream cipher
(tS) with the property of partial collision resistance.
Tweakable stream cipher takes three inputs: a key,
a nonce and a tweak and produces a key stream as
the output. The key stream can be used for message
encryption (or decryption in case of ciphertext). Further,
we demonstrate the procedure to create a tweak-
able stream cipher using eXtendable-Output Function
(XOF).

• We present four new tweakable wide block cipher
schemes based on a tweakable stream cipher, namely
HBtSH, HtS, tS-double-decker and tS-docked-double-
decker. These proposed schemes provide CMT-4 secure
constructions of authenticated encryption schemes
under encode-then-encipher paradigm. We provide
CMT-4 security proof to prove our claim.

C. ORGANIZATION OF THIS PAPER
The rest of the paper is organized as follows. In section II,
we present the related work in the area of encode-
then-encipher paradigm and the research around context
commitment security. Section III, is divided into two parts.
In section III-A, we present the notations used in this
paper. In section III-B, we present definitions that we
use in the paper. Section IV presents the four tweakable
wide block cipher schemes and their corresponding EtE
versions. In section V, we present CMT-4 attack on the four
tweakable wide block cipher schemes under EtE paradigm.
In section VI, we present the four new tweakable wide
block cipher schemes based on a tweakable stream cipher.
We present design rationale of the four new proposed
schemes in section VII, followed by the security proof of the
proposed schemes in section VIII. We conclude our paper
in section IX. In appendix A, we present collision attack on
Farfalle [20].

II. RELATED WORK
Bellare and Rogaway presented a method for combining
confidentiality and authenticity, called encode-then-encipher
(EtE) [9]. The authors introduced various encoding schemes
for the message, and analyzed the enciphering of the encoded
message. The EtE paradigm was initially overlooked, but
with the advent of CAESAR competition [12], it found
traction. A tweakable wide block cipher scheme provides
only confidentiality and not authenticity. Using encode-then-
encipher paradigm, a tweakable wide block cipher scheme
can be converted into an authenticated encryption scheme
by inserting 0λ at a specified position, where λ > 0. The
common methodology is to prepend or append 0λ. A robust
(key-committing) authenticated encryption scheme (RAE in
short) [11], must provide confidentiality and authenticity
for the chosen value of λ. AEZ [11] based on AES [8]

round function is an encode-then-encipher construction. AEZ
appends 0λ to the messageM and uses a tweak T comprising
of a nonce N , associated data A and λ .i.e., T = (N ∥ A ∥ λ).
Authenticator [11] .i.e., 0λ, is used to provide integrity under
EtE paradigm.We focus on creating authenticated encryption
scheme using a tweakable wide block cipher scheme [1].
HBSH [2], HCTR2 [4] and two deck function based
schemes .i.e., double-decker and docked-double-decker [6]
are popular tweakable wide block cipher schemes that target
file encryption and related applications. HBSH, double-
decker and docked-double-decker target devices that lack
cryptographic hardware instructions like AES. CBC [21]
and XTS-AES [22] became quite popular in disk encryption
applications like BitLocker [23], yet they were not very
popular in the design space of IoT devices, since AESmay be
slowwhen hardware support is absent. CBC encrypted binary
files was shown to be vulnerable to malleability, leading to
arbitrary code execution [24]. XTS is based on ECB mode
and hence is also prone to malleability .i.e., changing a bit
of ciphertext influences its corresponding plaintext block
only. The design space of IoT devices is called lightweight
cryptography [12], [25]. There is an associated trade-off
between the security and the efficiency in the design space
of lightweight cryptography. This field has gained a lot of
interest in the resent years, leading to proposal of several
authenticated encryption schemes in this category [26], [27],
[28], [29] under various security notions. In this paper,
we concentrate on creating a CMT-4 secure authenticated
encryption scheme from a tweakable wide block cipher under
encode-then-encipher paradigm.

Key commitment security analysis on AEGIS [30], one
of the winners of CAESAR competition, was presented
in [31] with O(1) time complexity. In [32], the authors
analyze the committing security of Ascon [26], winner of
NIST lightweight competition. KIVR [33] is a new mode
that transforms existing authenticated encryption schemes to
have CMT-4 security without increasing the ciphertext size.
In [34], the authors provide committing security analysis
for all the NIST LWC competition finalists (except Grain-
128AEAD). In [35], the author describes methodologies to
add key commitment property to an authenticated encryption
scheme.

III. PRELIMINARIES
We begin by presenting the list of abbreviations in
table 1.

A. NOTATIONS
The notions are defined in table 2. Next we define a zero
padding function: pad-0l(X) = X ∥ 0v, where v ≥ 0 and
(|X | + v) (mod l) = 0. Now, we define another padding
function: for a given X ∈ {0, 1}<η:

padη(X) =

{
X ∥ 10η−|X |−1 if |X | < η

⊥ otherwise.
(1)

VOLUME 12, 2024 84151

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

TABLE 1. Abbreviations used in the paper.

TABLE 2. Notations used in the paper.

B. SECURITY NOTIONS AND DEFINITIONS
We describe several concepts and definitions in this section,
that are used in this paper. Let K denote the key space, N
denote the nonce space, the message space is denoted byM,

and the tweak space is denoted by T . K $
←− K denotes a

randomly selected keyK from the key spaceK. We follow the
security notions of [1]. Let A be a computationally bounded
adversary. We denote t as the run time taken byA, t includes
two things; memory occupied by A and the time to answer
all the queries that A makes to the oracle. We know that the
security of a scheme under various notions is outlined by the
advantage that an adversary has on that scheme. We denote
advantage as ‘max’ function over all the adversaries that has
some restricted access to the oracle. We first start with the
definition of ϵ-almost-1-universal family of hash functions.
Then we define the primitives used in this paper with the
advantages the adversary has over these primitives.
Definition 1 (ϵ-Almost-1-Universal (ϵ-1U) Family of

Hash Functions): Let H be a family of hash functions with
domain D and range R. Further, let R be an Abelian group
where ‘−’ denotes the group subtraction operation. Let ϵ

be a constant such that 1
|R| ≤ ϵ < 1. Then, for two

distinct inputs x ∈ D and y ∈ D, and for any b ∈ R,

H is called ϵ-almost-1-universal (ϵ-A1U or in short ϵ-1U)
family of hash functions [37], if we have:

Pr[h(x)− h(y) = b : h
$
←− H] ≤ ϵ. (2)

Definition 2 (Blinded Keyed Hash (bhk) [6]): Let H be a

keyed hash, such that H = {HK : {0, 1}∗ → {0, 1}n|K
$
←−

K}. For two inputs (X , 1), letR : O1(HK (X)⊕1) be the real
world oracle, and I : O1(X , 1) be the ideal world oracle,
where O1 and O2 are two secret random oracles, then the
advantage for an adversary A for the blinded keyed hash or
bhk is given by:

AdvbhkH (A) = |Pr[AI 7→ 1]− Pr[AR 7→ 1]|

AdvbhkH (q, σ) = max
A∈A(q,σ)

AdvbhkH (A), (3)

whereA(q, σ) is an adversary that makes at most q with data
complexity σ =

∑q
i |Xi| + |1i|.

Definition 3 (Tweakable Stream Cipher): We introduce
the notion of tweakable stream cipher (tS in short).
A Tweakable Stream Cipher is defined as S : K×N × T →
{0, 1}lS , whereK is the key space,N is the nonce space, T is
the tweak space and lS denotes the maximum output length.
S generates a key stream for encryption of the message (or
decryption of the respective ciphertext). Let qi be the ith query
that consists of a tuple (Ni,Ti, li) ∈ (N × T × N), where
0 < li ≤ lS , and the adversary A receives SK (Ni,Ti)[1; li] as
the response of the ith query, for a randomly chosen key K.
Then we define:

AdvtSS (A) = Pr[ASK (·,·)[1;·] 7→ 1 : K
$
←− K]

−Pr[AF (·,·)[1;·]
7→ 1 :

F $
←− ((N × T)→ {0, 1}ltS)]

AdvtSS (q, l, l
′, t) = max

A∈A(q,l,l′,t)
AdvtSS (A), (4)

where (N × T) → {0, 1}lS denotes the set of all functions
from (N × T) to {0, 1}lS . A(q, l, l ′, t) is the set of all
adversaries that makes at most q queries and takes at most t
time to execute, such that, l is the upper bound on total input
length .i.e.,

∑q
i (|Ni| + |Ti|) and l

′ is the upper bound on total
output length .i.e.,

∑q
i li.

Definition 4 (eXtendable-Output Function (XOF)): An
eXtendable-Output function takes input a message M from
the message space M and an output length, hence XOF :
M×N→ {0, 1}≤lS ., where lS is the maximum output length.

In this paper, we propose XOF-based tweakable stream
cipher. For a given key K ∈ K, a nonce N ∈ N ∧ |N | < η,
a tweak T ∈ T , a maximum output length of tweakable
stream cipher ltS and a reversible encoding denoted by ENC,
a tweakable stream cipher can be constructed using XOF as
follows: S(K ,N ,T) = XOF(K ∥ ENC(N ,T), lS). ENC can
be written as (padη(N) ∥ T) for a nonce N with |N | < η,
a tweak T and the padding function defined in equation (1).
Definition 5 (Block Cipher): Let E be an n bit block cipher

that takes a key K
$
←− K and a message M ∈M as input and

84152 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

produces a ciphertext C ∈ C as the output .i.e., E : K×M→
C and E−1 : K × C →M, where C is the ciphertext space,
|K | = k, |M | = n and |C| = n. Let Perm(n) denote the set of
all permutations on {0, 1}n. Then for a randomly chosen key
K, we define the ±PRP advantage that an adversary A has
over the block cipher E in the following way:

Adv±PRPE (A) = Pr[AEK ,E−1K 7→ 1 : K
$
←− K]

− Pr[Aπ,π−1
7→ 1 : π

$
←− Perm(n)]

Adv±PRPE (q, t) = max
A∈A(q,t)

Adv±PRPE (A), (5)

where A(q, t) is an adversary that makes at most q queries
and takes at most t time to execute.
Definition 6 (Tweakable Enciphering Scheme): Let EEE be

a tweakable enciphering scheme defined as EEE : K × T ×
M → M for a key space K, a tweak space T and a
message spaceM, such that, for every key K ∈ K and tweak
T ∈ T , EEE(K ,T , ·) is a length preserving permutation .i.e.,
|EEE(K ,T ,M)| = |M |. Further,EEE−1(K ,T ,EEE(K ,T ,M)) = M.
Let PermT (M) denote the set of all functionsπππ : T ×M→
M, such that for T ∈ T , M ∈ M, |πππ (T ,M)| = |M |,
and πππ (T , ·) is bijective. Then the ±P̃RP advantage that an
adversary A has is given by the following expression:

Adv±P̃RPEEE (A) = Pr[AEEEK ,EEE−1K 7→ 1 : K
$
←− K]

−Pr[Aπππ,πππ−1
7→ 1 :

πππ
$
←− PermT (M)]

Adv±P̃RPEEE (q, lT , lM , t) = max
A∈A(q,lT ,lM ,t)

Adv±P̃RPEEE (A), (6)

where A(q, lT , lM , t) is the set of all adversaries that make
at most q queries, total tweak length is at most lT , and total
message length is at most lM , and take at most t time.

Algorithm 1 Game Partial Collision Resistance (PCR):
Gµ-PartialColl
H (A)

1: {X1,X2}
$
←− A ▷ {X1,X2} ∈ X

2: Y1← H (X1) ▷ Y1 ∈ Y
3: Y2← H (X2) ▷ Y2 ∈ Y
4: if Y1[1;µ] = Y2[1;µ] then ▷ Condition for Partial

Collision
5: return True
6: else
7: return False
8: end if

Definition 7 (Authenticated Encryption (AEAD)): An
authenticated encryption with associated data (in short
AEAD) is a family of algorithms denoted by AEAD = (E,D)
that consists of an encryption sub-routine E and a decryption
sub-routine D. The encryption sub-routine takes input as a
key K ∈ K, a nonce N ∈ N , an associated data A ∈ M,
a message M ∈ M and produces output as a ciphertext
C ∈ C such that:

Algorithm 2 Game CMT-4: GCMT-4
AEAD (A), Where

AEAD=(E,D)

1: {(K1,N1,A1,M1), (K2,N2,A2,M2)}
$
←− A

2: C1← E(K1,N1,A1,M1)
3: C2← E(K2,N2,A2,M2)
4: if (K1,N1,A1,M1) = (K2,N2,A2,M2) or C1 ̸= C2 then
5: return False
6: else
7: return True
8: end if

E : (K ,N ,A,M)→ C

D : (K ,N ,A,C)→ M/ ⊥ (7)

where:

D(K ,N ,A, E(K ,N ,A,M))→ M .

Definition 8 (Partial Collision Resistance): Let H : X →
Y be a function with X as domain space and Y as range
space, where X is the set of tuples of inputs and Y is the set
of outputs. For an adversary A, we define the advantage of
breaking the µ bit partial collision resistance of the function
H using Algorithm 1, in the following way:

Advµ-PartialColl
H (A) = Pr[Gµ-PartialColl

H (A) 7→ 1]. (8)

Definition 9 (CMT-4 Security of AEAD): Let AEAD be an
authenticated encryption scheme with associated data
defined as AEAD = (E,D). Then CMT-4 security of AEAD
is given by the game in algorithm 2. For an adversary A,
the CMT-4 advantage on AEAD is given by the following
equation:

AdvCMT-4
AEAD (A) = Pr[GCMT-4

AEAD (A) 7→ 1]. (9)

Definition 10 (Encode-then-Encipher (EtE) [9]): An
AEAD takes four inputs .i.e., a key K, a nonce N ,
an associated data A and a message M. AEAD can be
constructed under EtE paradigm using a two step approach.
The first step is to use message encoding, followed by
message enciphering. We use a tweakable enciphering
scheme (definition 6) for message enciphering. Let µ be
the number of zero bits that are used for the prepending
technique, then we define message encoding and message
enciphering as follows:

1) MESSAGE ENCODING
We borrow the notation of encoding the messages from [9].
Let M be the message space and let M∗ be the encoding
space.
• We present the Encode sub-routine in equation (10)
below:

M ′ = Encode(M , µ) =

{
(0µ
∥ M) if µ > 0

⊥ otherwise.

(10)

VOLUME 12, 2024 84153

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

• The Decode sub-routine in equation (11) below:

Decode(M ′, µ) =

{
M if µ > 0 ∧ (M ′ = (0µ

∥ M))
⊥ otherwise.

(11)

2) MESSAGE ENCIPHERING
After the message is encoded using the Encode sub-routine
of equation (10), a tweakable enciphering scheme EEE (defini-
tion 6) is invoked to encrypt M ′ and generate a ciphertext C ,
.i.e,

EEE(K ,T ,M ′) 7→ C,

where K is the key of the AEAD and nonce and associated of
AEAD is used to create the tweak .i.e., T ← (N ∥ A).
In case of decryption, EEE−1 is invoked to recover back M ′

from C .i.e.,

EEE−1(K ,T ,C) 7→ M ′,

where K is the key of the AEAD and the tweak is given by:
T ← (N ∥ A). Decode sub-routine of equation (11) is then
used to get back the original messageM . If the first µ bits of
M ′ are non-zero, then we reject the messageM and output⊥
(error).

IV. TWEAKABLE WIDE BLOCK CIPHER SCHEMES AND
EtE PARADIGM
In this section, we discuss four tweakable wide block
cipher schemes and present their respective EtE versions.
We describe HBSH in section IV-A and present EtE-HBSH
in section IV-A1. HCTR2 is describe in section IV-B while
EtE-HCTR2 is presented in section IV-B1. The two deck
function based schemes .i.e., double-decker and docked-
double-decker are described section IV-C, EtE-double-
decker and and EtE-docked-double-decker are presented in
section IV-C3.

A. HBSH
Hash Block cipher Stream cipher Hash (or HBSH) [2]
is shown in figure 1. HBSH is a tweakable wide cipher
scheme [1] and resembles an unbalanced Feistel struc-
ture [38]. It takes in three inputs: a key K from the key
space K ∈ {0, 1}k , a tweak T from the tweak space T ∈⋃lS

i=0{0, 1}
i and a message (or plaintext) P from the message

spaceM ∈
⋃i=lS

i=n {0, 1}
i. During the invocation of encryption

sub-routine, the plaintext P is first split into two parts, PL
and PR respectively, where (PL ∥ PR) ← P and |PR| = n.
Hence, |P| ≥ n. The ciphertext C , is also generated by
the encryption sub-routine in two parts (refer figure 1), .i.e.,
(CL ∥ CR) ← C . HBSH derives three keys KH , KE and KS
from K ; KH is used for the hash function H , KE is used for
the block cipher and KS is used for the stream cipher. Each
of these three cryptographic primitives that HBSH uses to
generate a ciphertext C from the given plaintext P (or recover
P from C) is explained below:

• Hash: H is an ϵ-almost-1-universal (ϵ-1U) function
(definition 1) that represents a group element in an n bit
string. The group operations⊞ and⊟ is computed using
Z/2nZ. The hash function is invoked two times.

– For the first invocation, H takes in a tweak T
and the left part of the plaintext .i.e., PL , and
uses key KH to produce a fixed size output. This
output is added with PR .i.e., the right part of the
plaintext P, to obtain PM . Mathematically, PM ←
HKH (T ,PL) ⊞ PR (refer figure 1).

– During the second invocation, H produces the
right part of the ciphertext C (CR) .i.e., CR ←
HKH (T ,CL)⊟CM (refer figure 1), where CM is the
output of the block cipher E and CL is the left part
of the ciphertext.

• Block cipher: A single invocation of block cipher
(denoted by E) is used with block size n and key KE
(refer figure 1). E produces CM .i.e., CM ← EKE (PM).
CM is used as a nonce for the stream cipher.

• Stream cipher: In figure 1, S denotes a stream cipher
that takes in a key KS and a nonce CM and produces a
long random stream. This long random stream is xored
with the left part of the plaintext PL , producing the left
part of the ciphertext CL respectively.

As mentioned earlier, HBSH derives three keys KH , KE and
KS fromK using a key derivation function. The stream cipher
S is used as the key derivation function by instantiating it with
a zero-length nonce .i.e., KE ∥ KH = SKS (ϵ), where KS = K
and |ϵ| = 0. We now describe Adiantum, a specification of
HBSH.
Adiantum:We obtain Adiantum from HBSH when we fix

n = 128 and lS = 273. Hence, for the three inputs: a
key K , a tweak T and a message P: n = 128 and lS =
273. For the three cryptographic primitives, Adiantum uses
XChaCha12 [39] as the stream cipher with key KS (= K)
and nonce CM from the nonce space N ∈

⋃191
i=0; such

that, SKS = XChaCha12KS (pad192(CM ∥ 1)). For the block
cipher, Adiantum uses AES256 [8], [40] with key KE . CM
is generated from the block cipher EKE , and is used as the
nonce after padding it to 192 bits. For the hashing, Adiantum
uses combination of NH [41] and Poly1305 [42] with keyKH .
Poly1305 is invoked two times, once with NH and once for
hashing message length and tweak. Hence, we need a total of
three keys for hashing .i.e., KT ← KH [0 : 128] for Poly1305
which hashes message length and tweak, KN ← KH [256 :
8576] for NH and KL ← KH [128 : 256] for Poly1305, there
by making a total of 128 + 8576 + 128 = 8832 bit hash
key or KH . Let HT ← Poly1305KT (bin128(|L|) ∥ T) and
HL ← Poly1305KL (NHKN (pad-0128(L))), then the final hash
is given by HT ⊞HL . Now, using the definition 10, we define
EtE-HBSH.

1) ETE-HBSH
In this section, we present an authenticated encryption
scheme called EtE-HBSH, based on the tweakable block

84154 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

FIGURE 1. HBSH (Hash Block cipher Stream cipher Hash) and HCTR2 (extension of HCTR).

cipher scheme HBSH (refer section IV-A), using encode-
then-encrypt paradigm (or EtE in short) [9]. As described in
definition 10, constructing such an authenticating encryption
scheme is a two step approach, message encoding followed
by enciphering. We prepend µ zero bits to the message for
message encoding. For enciphering, we use HSBH. We now
describe the EtE-HBSH. Let E be the encryption sub-routine
and D be the decryption sub-routine of EtE-HBSH. E takes
in three inputs, a key K , a tweak T and a message P, where
T ← (N ∥ A) for a fixed size nonce N and associated data
A. The message encoding is done using equation (12), where
the plaintext P is first split into two parts PL and PR; then
we create P′L from PL by prepending µ zero bits to PL .i.e.,
P′L ← (0µ

∥ PL), where µ > 0. The tweakable block cipher
scheme, HBSH, generates the ciphertext using key, tweak and
the encoded message.

Encode(P, µ) =

P′ if µ > 0
where P′← (P′L ∥ PR)
∧ P′L ← (0µ

∥ PL)
∧ (PL ∥ PR)← P

⊥ otherwise.

Decode(P′, µ) =

P if µ > 0 ∧ (P′L = (0µ

∥ PL))
where (P′L ∥ PR)← P′

∧ P← (PL ∥ PR)
⊥ otherwise.

(12)

In equation (12), P′ is the input of HBSH and P is the input
of AEAD .i.e, EtE-HBSH. The decryption sub-routine D,
takes in key K , tweak T and the ciphertext C . After the

ciphertext is decrypted usingHBSH (refer section IV-A), then
equation (12) is used to retrieve the message or plaintext. The
decryption sub-routine D of EtE-HBSH returns message if
the first µ bits of P′L are zero, else it returns ⊥ (error).

B. HCTR2
HCTR2 [4] is an extension of HCTR [36]. From the
likes of the Adiantum, HCTR2’s primary focus is also on
low powered devices and disk encryption scenarios. The
encryption sub-routine of HRCR2 takes three inputs: a keyK ,
a tweak T and a message or plaintext P. The keyK is used for
AES encryption, where K ∈ {{0, 1}128, {0, 1}192, {0, 1}256}.
h̄ ← EK (bin(0)), where h̄ denotes the key used by the hash
function and |h̄| = 128. HCTR2 uses polyval for hashing. For
a hash key h̄ ∈ {0, 1}n, a tweak T and a messageM , the hash
function is defined as follows:

Hh̄(T ,M) =

POLYVAL

(
h̄, bin(2|T | + 2) ∥ pad(T)

∥ M
)

if n divides |M |
POLYVAL

(
h̄, bin(2|T | + 3) ∥ pad(T)

∥ pad(M ∥ 1)
)
otherwise.

Polyval is calculated in the folowingway: POLYVAL(h̄, λ) =
0n and POLYVAL(h̄,A ∥ B) = (POLYVAL(h̄,A)⊕B)⊗ h̄⊗
x−n, where |h̄| = |B| = n = 128 and ⊗ is multiplication
over finite field. The polynomial used for reduction is x128+
x127+x126+x121+1 and x−n = x127+x124+x121+x114+1.
Let (U ∥ V)← P (refer figure 1), where |U | = n = 128. Let
L ← Ek (bin(1)), UU ← U ⊕ Hh̄(T ,N), YY ← EK (UU),
and S ← (UU ⊕ YY ⊕ L). HCTR2 uses XCTR as the stream
encryption: XCTRK (S) = EK (S⊕bin(1)) ∥ EK (S⊕bin(2)) ∥
EK (S ⊕ bin(3)) ∥ . . . and so on. The ciphertext C can be

VOLUME 12, 2024 84155

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

generated as follows: Z ← (V ⊕ XCTRK (S)[1; |V |]), Y ←
(YY ⊕ Hh̄(T ,Z)), and C ← (Y ∥ Z).

1) ETE-HCTR2
In case of HCTR2, we know that the plaintext P is divided
into two parts .i.e., (U ∥ V) ← P (refer figure 1), where
|M | = n. Using definition 10, we now present the EtE-
HCTR2. Let E and D be the encryption and decryption
sub-routine of EtE-HCTR2 respectively, under the encode-
then-encipher paradigm. We use Encode sub-routine (refer
equation 13) for V during the invocation of E , and Decode
sub-routine (refer equation 13) during the invocation of D.

Encode(P, µ) =

P′ if µ > 0
where P′← (U ∥ V ′)
∧ V ′← (0µ

∥ V)
∧ (U ∥ V)← P

⊥ otherwise.

Decode(P′, µ) =

P if µ > 0 ∧ (V ′ = (0µ

∥ V))
where (U ∥ V ′)← P′

∧ P← (U ∥ V)
⊥ otherwise.

(13)

In equation (13),P′ is the input of HCTR2 andP is the input of
AEAD .i.e, EtE-HCTR2. Similar to EtE-HBSH, the plaintext
from the decryption sub-routine is considered valid if and
only if, the first µ bits of V ′ are zero.

C. DECK-BASED WIDE BLOCK CIPHER SCHEMES
In this section we first describe two deck (doubly-extendable
cryptographic keyed) function based tweakable wide block
cipher schemes [6], namely, double-decker (section IV-C1)
and docked-double-decker (section IV-C2). Double-decker
(figure 2) is based on Farfalle [20], while docked-double-
decker (figure 2) is a slight modification of the double-
decker scheme. In section IV-C3, we present the EtE based
authenticated encryption schemes of double-decker and
docked-double-decker.

1) DOUBLE-DECKER
The construction of double-decker (figure 2) can be seen
as a generalized four-round Feistel structure, with FK1 and
FK2 as the two deck functions and two invocations of HK .
Double-decker is defined over a key space K, a tweak space
W , a message spaceM. The encryption sub-routine E , takes
in three keys (K ,K1,K2) ∈ K, a tweak W ∈ W and a
message P ∈ M, and produces a ciphertext C ∈ C, where
|P| = |C| and C is the ciphertext space. The decryption sub-
routine D, takes input (K ,K1,K2) ∈ K, tweak W ∈ W
and the ciphertext C ∈ C and returns back the output P
as the plaintext, if C was generated using (K ,K1,K2), W
and P. From the construction of double-decker in figure 2,
we know that the plaintext is divided into four separate parts

.i.e., (UL ∥ UR ∥ VL ∥ VR)← P, where |UL | = |VR| = n and
UR and VL can be of arbitrary length, while the ciphertext is
the combination of four separate parts .i.e. C ← (XL ∥ XR ∥
YL ∥ YR), where |XL | = |YR| = n and |XR| = |UR|, and
|YL | = |VL |. We define EtE-double-decker in section IV-C3.

2) DOCKED-DOUBLE-DECKER
Similar to the construction double-decker (section IV-C1),
docked-double-decker (figure 2) can also be seen as a
generalized four-round Feistel structure. In this case, the
plaintext is split into three separate parts .i.e., (T ∥ U ∥ V)←
P, with |T | = |V | = n and U can be of arbitrary length.
The ciphertext is the combination of three separate parts .i.e.
C ← (X ∥ Y ∥ Z), where |X | = |Z | = n and |Y | = |U |.
From figure 2, we can see that the input length to the two
deck functions FK1 and FK2 are fixed, hence, for a fixed
tweak length one can conceptualize docked-double-decker as
a stream cipher [6]. We now define EtE-double-decker and
EtE-docked-double-decker.

3) ETE-DOUBLE-DECKER AND
ETE-DOCKED-DOUBLE-DECKER
Using definition 10, we present the encode-then-encipher
version of double-decker and docked-double-decker.
• EtE-Double-Decker:Let E andD be the encryption and
decryption sub-routines of EtE-double-decker respec-
tively. From section IV-C1, we know that the plaintext
is split into four separate parts .i.e., (UL ∥ UR ∥
VL ∥ VR) ← P respectively (refer figure 2). To create
encoding for EtE-double-decker from double-decker,
we utilize the second split of the plaintext P .i.e., UR.
Invocation of E , starts with the encoding ofUR, by using
the Encode sub-routine of equation (14). In case of the
decryption sub-routineD, we have an addition step .i.e.,
Decode sub-routine of equation (14).

Encode(P, µ) =

P′ if µ > 0, where
P′← (UL ∥ U ′R ∥ VL ∥ VR)
∧ U ′R← (0µ

∥ UR)
∧ (UL ∥ UR ∥ VL ∥ VR)← P

⊥ otherwise.

Decode(P′, µ) =

P if µ > 0 ∧ (U ′R = (0µ
∥ UR))

where,
(UL ∥ U ′R ∥ VL ∥ VR)← P′

∧

P← (UL ∥ UR ∥ VL ∥ VR)
⊥ otherwise.

(14)

In equation (14), P′ is the input of double-decker and P
is the input of AEAD .i.e, EtE-double-decker.

• EtE-Docked-Double-Decker: In case of docked-
double-decker, we know that the plaintext is split into
three parts .i.e., (T ∥ U ∥ V) ← P. We use U ,

84156 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

FIGURE 2. Double-decker and Docked-double-decker.

to create EtE-docked-double-decker. Let E andD be the
encryption and decryption sub-routines of EtE-docked-
double-decker, then we use equation (15), for creating
encoding and decoding rules of E and D respectively.

Encode(P, µ) =

P′ if µ > 0 where,
P′← (T ∥ U ′ ∥ V)
∧ U ′← (0µ

∥ U)
∧ P← (T ∥ U ∥ V)

⊥ otherwise.

Decode(P′, µ) =

P if µ > 0 ∧ (U ′ = (0µ
∥ U))

where,
(T ∥ U ′ ∥ V)← P′

∧ P← (T ∥ U ∥ V)
⊥ otherwise.

(15)

In equation (15), P′ is the input of double-decker and P
is the input of AEAD .i.e, EtE-double-decker.

In case of EtE-double-decker, the plaintext is accepted if and
only if, the first µ bits of U ′R are zero, while for EtE-docked-
double-decker, the plaintext is accepted if and only if, the first
µ bits of U ′ are zero.

V. CMT-4 ATTACK ON ENCODE-THEN-ENCIPHER
SCHEMES
In this section, we present CMT-4 attack under EtE paradigm
for four tweakable wide block cipher schemes, namely
EtE-HBSH (section IV-A1, algorithm 3), EtE-HCTR2

(section IV-B1, algorithm 4), EtE-double decker and EtE-
docked-double-decker (section IV-C3).

A. CMT-4 ATTACK ON EtE-HBSH
Let A be a computationally bounded CMT-4 adversary
that has access to EtE-HBSH construction, defined in
section IV-A1. A interacts with the encryption sub-routine
E of EtE-HBSH. E takes in four inputs: a key K ,
a nonce N , an associated data A and a message P
and returns a ciphertext C . The task of A is to create
two distinct tuples (K1,N1,A1,P1) and (K2,N2,A2,P2)
.i.e., τ = {(K1,N1,A1,P1), (K2,N2,A2,P2)} such that
(K1,N1,A1,P1) ̸= (K2,N2,A2,P2) but E(K1,N1,A1,P1) =
E(K2,N2,A2,P2) .i.e., the ciphertext C generated by the
encryption sub-routine for the two distinct tuples are the
same. For EtE-HBSH, (N1 ∥ A1)← T1 and (N2 ∥ A2)← T2.
CMT-4 attack on EtE-HBSH is presented in Algorithm 3.
We explain the attack step by step as described in the
algorithm.We start by deriving the two keys KE and KH from
KS . We then obtain PL and PR from P, then we create EtE-
HBSH .i.e., we apply Encode sub-routine of equation (12) on
PL to obtain P′L .i.e., P′L ← (0µ

∥ PL), where µ > 0 and
(PL ∥ PR)← P. Let PM ← 0n .i.e., we fix PM to a constant
value. Note that, in case of Adiantum, n = 128. Next, we fix
the key to a constant value .i.e., K1 = K2 = K . We know that
KS = K and KE and KH is obtained from the stream cipher
using key KS and instantiation with ϵ. Let CM ← EKE (PM).
We now compute the left part of the ciphertext .i.e., CL ←
P′L ⊕ SKS (CM)[1; |P′L |]. Now, we choose and fix a value
for T1, and compute HKH (T1,CL). Then, it is trivial to find
T2 using the linear equation: HKH (T1,CL) = HKH (T2,CL),

VOLUME 12, 2024 84157

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

such that T1 ̸= T2. Hence, CR ← HKH (T1,CL) ⊟ CM .
We can now, simply append CL and CR to get the ciphertext,
C ← (CL ∥ CR). We can derive PR1 and PR2 as follows,
PR1 = HKH (T1,P

′
L) ⊟ PM and PR2 = HKH (T2,P

′
L) ⊟ PM .

Hence, P1 ← (P′L ∥ PR1), P2 ← (P′L ∥ PR2). The adversary
A has successfully generated two tuples (K ,N1,A1,P1) and
(K ,N2,A2,P2) such that ∀i (Ni ∥ Ai) ← Ti, enforcing
generation of same ciphertext C from EtE-HBSH using
these two distinct tuples. Hence, τ = {(K ,N1,A1,P1),
(K ,N2,A2,P2)}, where (N1 ∥ A1) ← T1 and (N2 ∥ A2) ←
T2.

B. CMT-4 ATTACK ON EtE-HCTR2
Let A be a computationally bounded CMT-4 adversary
that has access to the EtE-HCTR2 algorithm as described
in section IV-B1. A must create two distinct tuples
(K1,N1,A1,P1) and (K2,N2,A2,P2) such that the ciphertext
C produced by the encryption sub-routine E of EtE-HCTR2
is the same. CMT-4 attack on EtE-HCTR2 is presented as a
pseudocode in Algorithm 4.We now describe each step of the
attack. First, we start by fixing the key .i.e., K1 = K2 = K .
Now, we proceed by calculating h̄ and L as follows: h̄ ←
EK (bin(0)) and L ← EK (bin(1)) respectively. We know that
(U ∥ V)← P (refer figure 1). We construct V ′ from V using
equation (13) .i.e., V ′ ← (0µ

∥ V), µ > 0. Let UU ← 0n,
then we have YY ← EK (UU) and S ← (UU ⊕ YY ⊕ L).
We next calculate Z , Z ← V ′⊕XCTRK (S)[1; |V ′|]. We now
fix T1 and calculate Hh̄(T1,V). Then we can obtain T2 using
equation Hh̄(T1,V) = Hh̄(T2,V), such that T1 ̸= T2. We can
now calculate Y .i.e., Y ← Hh̄(T1,V). Further, we can now
find U1 and U2 as follows: U1 = Hh̄(T1,V

′) ⊕ UU and
U2 = Hh̄(T1,V

′) ⊕ UU . The ciphertext can be calculated
as C ← (Y ∥ Z). Further, P1 and P2 can be calculated
as follows: P1 ← (U1 ∥ V ′), P2 ← (U2 ∥ V ′). Hence,
τ = {(K ,N1,A1,P1), (K ,N2,A2,P2)}, where (N1 ∥ A1) ←
T1 and (N2 ∥ A2)← T2.

C. CMT-4 ATTACK ON EtE-DOUBLE-DECKER AND
EtE-DOCKED-DOUBLE-DECKER
In this section, we present two new results of CMT-4 attack.
In section V-C1, we present CMT-4 attack on EtE-double-
decker and in section V-C2, we present the CMT-4 attack
on EtE-docked-double-decker. Note that, we assume the deck
function is based on Farfalle [20], for both double-decker and
docked-double-decker. We present an overview of Farfalle
with CMT-4 attack in appendix A.

1) CMT-4 ATTACK ON ETE-DOUBLE-DECKER
Let A be a computationally bounded CMT-4 adversary. The
task of A is to create two distinct tuples (K1,N1,A1,P1) and
(K2,N2,A2,P2), where W1 ← (N1 ∥ A1) and W2 ← (N2 ∥

A2), such that the output or the ciphertext C generated by
the encryption sub-routine of EtE-double-decker for the two
tuples are the same. Note that, in case of double-decker and
docked-double-decker, each key K1 and K2 is actually a tuple
of three keys .i.e., (K1,K11 ,K12) and (K2,K21 ,K22). We start

Algorithm 3 CMT-4 Attack on EtE-HBSH (EtE-Adiantum
When n = 128)

1: KS
$
←− K

2: KE ∥ KH = SKS (ϵ) ▷ |ϵ| = 0, Derive KH and KE from
KS

3: P
$
←−M, where |P| > n

4: PL ∥ PR← P, |PL | = n
5: P′L ← (0µ

∥ PL), µ > 0 ▷ Construct P′L from PL
6: PM ← 0n

7: CM ← EKE (PM)
8: CL ← P′L ⊕ SKS (CM)[1; |P′L |]
9: ∃ (T1,T2) | HKH (T1,CL) = HKH (T2,CL)

10: PR1 = HKH (T1,P
′
L)⊟PM and PR2 = HKH (T2,P

′
L)⊟PM

▷ Derive PR1 and PR2
11: P1← (P′L ∥ PR1), P2← (P′L ∥ PR2)
12: τ = {(K ,N1,A1,P1), (K ,N2,A2,P2)}, where (N1 ∥

A1)← T1 and (N2 ∥ A2)← T2
13: Return τ

Algorithm 4 CMT-4 Attack on EtE-HCTR2

1: K
$
←− K

2: h̄← EK (bin(0))
3: L ← EK (bin(1))
4: P

$
←−M, where |P| > n

5: (U ∥ V)← P, |U | = n
6: V ′← 0µ

∥ V , µ > 0 ▷ Construct V ′ from V
7: UU ← 0n

8: YY ← EK (UU)
9: S ← (UU ⊕ YY ⊕ L)

10: Z ← V ′ ⊕ XCTRK (S)[1; |V ′|]
11: ∃ (T1,T2) | Hh̄(T1,Z) = Hh̄(T2,Z)
12: M1 = Hh̄(T1,V

′)⊕ UU andM2 = Hh̄(T1,V
′)⊕ UU ▷

Derive U1 and U2
13: P1← (U1 ∥ V ′), P2← (U2 ∥ V ′)
14: τ = {(K ,N1,A1,P1), (K ,N2,A2,P2)}, where (N1 ∥

A1)← T1 and (N2 ∥ A2)← T2
15: Return τ

by fixing the keys of the two tuples, and hence, enumerating
the tuple as K̄ .i.e., K̄ = (K1,K11 ,K12) = (K2,K21 ,K22).
Further, we know that, the plaintext is split into four parts
.i.e., (UL ∥ UR ∥ VL ∥ VR) ← P, where |UL | = |VR| = n.
W denotes the tweak and the ciphertext C is given by C ←
(XL ∥ XR ∥ YL ∥ YR) where |XL | = |YR| = n. In our attack,
we assume UR1 = UR2 = 0µ where µ > 0. Hence, we can
construct U ′R1 and U

′
R2

using equation (14), in the following
way: U ′R1 = (0µ

∥ UR1) and U
′
R2
= (0µ

∥ UR2), thereby
making the size of of U ′R1 and U ′R2 as 2 • µ bits. This setup
of UR1 and UR1 is one of the example, our CMT-4 attack will
work on any arbitrary size. We advise the reader to augment
the explanation of the attack with figure 3.

Step 1: We select FK2 for starting the CMT-4 attack. FK2 is
defined over three input parameters and a key (refer

84158 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

FIGURE 3. CMT-4 Attack on EtE-Double-Decker.

figure 3).We already fixed key .i.e.,

K̄ = (K1,K11 ,K12) = (K2,K21 ,K22).

Step 2: Fix two input parameters of FK2 as g and h. Note that
the third parameter is the tweak.
Now, we construct the inputs of Farfalle.2 A padding
function is required to ensure that inputs are multiple
of b̄ bits .i.e., pad10∗(M) = M ∥ 10|M | (mod b̄)−1 for
M ∈ {0, 1}∗. Let ENC be an encoding, then for two
tweaksW1 andW2 we can construct input of Farfalle
as follows:

ENC(W1, g, h) = (pad10∗(W1), pad10∗(g ∥ h)),

ENC(W2, g, h) = (pad10∗(W2), pad10∗(g ∥ h)).

Step 3: Using the collision attack on Farfalle (refer
appendix A-C), we can say that, there exists two
tweaks, such that output of FK2 is deterministically
produced .i.e., ∃ (W1,W2) | FK2 (ENC(W1, g, h)) =
FK2 (ENC(W2, g, h)) = (a, b). This implies XR1 =
XR2 = b, since UR1 = UR2 = 0µ and XR1 = UR1 ⊕ b
and XR2 = UR2 ⊕ b respectively.

Step 4: We now fix another value c, one of the parameters to
the deck function FK1 (please refer figure 3). Hence,
XL1 = XL2 = c⊕ a. The input to HK is deterministic
.i.e., c ⊕ a (or XL) and 0µ (or XR) are completely
determined, there by fixing the output of HK as f ,
we have YR1 = YR2 = h⊕ f .

Step 5: Since, g is fixed, hence YL1 = YL2 = g.

2Farfalle takes input as bits of string and a key, and processes the input in
multiples of size b̄-bits (refer appendix A-B).

Step 6: Since, W1 ̸= W2, hence, FK1 (ENC(W1, c,UR1)) ̸=
FK1 (ENC(W2, c,UR2)), or FK1 (ENC(W1, c,UR1)) =
(d1, e1) and FK1 (ENC(W2, c,UR2)) = (d2, e2).
Further, since, we already fixed g and h, hence VR1 =
h ⊕ e1 and VR2 = h ⊕ e2. Also, VL1 = g ⊕ d1 and
VL2 = g⊕ d2.

Step 7: Since VL1 ̸= VL2 , this makes the input to HK as
distinct .i.e., HK (g ⊕ d1, h ⊕ e1) = i1 and HK (g ⊕
d2, h ⊕ e2) = i2; making UL1 = i1 ⊕ c and
UL2 = i2 ⊕ c.

We can now construct the message and the ciphertext for
the encryption sub-routine of EtE-double-decker:

P1 = (i1 ⊕ c) ∥ 0µ
∥ (g⊕ d1) ∥ (h⊕ e1), µ > 0

C1 = (c⊕ a) ∥ b ∥ g ∥ (h⊕ f)

P2 = (i2 ⊕ c) ∥ 0µ
∥ (g⊕ d2) ∥ (h⊕ e2), µ > 0

C2 = (c⊕ a) ∥ b ∥ g ∥ (h⊕ f). (16)

From equation (16), we see that C1 = C2, hence we can
now construct two distinct tuples in the following way:

τ = {(K̄ ,N1,A1,P1), (K̄ ,N2,A2,P2)}

where (N1 ∥ A1)← W1 and (N2 ∥ A2)← W2,

P1← (i1 ⊕ c) ∥ 0µ
∥ (g⊕ d1) ∥ (h⊕ e1),

P2← (i2 ⊕ c) ∥ 0µ
∥ (g⊕ d2) ∥ (h⊕ e2).

(17)

From equation (17), we have constructed two tuples, such that
P1 ̸= P2 and W1 ̸= W2 but C1 = C2. This completes our
CMT-4 attack on EtE-double-decker.

VOLUME 12, 2024 84159

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

FIGURE 4. CMT-4 Attack on EtE-Docked-Double-Decker.

2) CMT-4 ATTACK ON ETE-DOCKED-DOUBLE-DECKER
The task ofA is to create two distinct tuples (K1,N1,A1,P1)
and (K2,N2,A2,P2), where W1 ← (N1 ∥ A1) and W2 ←

(N2 ∥ A2), such that the output or the ciphertext C generated
by the encryption sub-routine of EtE-docked-double-decker
are the same. As mentioned earlier (section V-C1), each key
K1 and K2 is actually a tuple of three keys .i.e., (K1,K11 ,K12)
and (K2,K21 ,K22). We fix the keys by enumerating them as
a tuple K̄ .i.e., K̄ = (K ,K1,K2). The plaintext is divided into
three parts .i.e., (T ∥ U ∥ V)← P, where |T | = |V | = n. W
denotes the tweak and the ciphertext C is given by C ← (X ∥
Y ∥ Z) where |X | = |Z | = n. As in the case of EtE-double-
decker (section V-C1), we proceed by making U1 = U2 =

0µ, where µ > 0, and derieve U ′1 and U
′

2 using equation (15)
.i.e., U ′1 = (0µ

∥ U1) and U ′2 = (0µ
∥ U2), thereby |U ′1| =

|U ′2| = 2 • µ. Please refer figure 4 for the explanation of the
attack.
Step 1: We select FK2 for the CMT-4 attack. The key is

already fixed .i.e.,

K̄ = (K1,K11 ,K12) = (K2,K21 ,K22).

Step 2: We fix a .i.e., one of the parameters of FK2 . Let ENC
be an encoding, then for two tweaks W1 and W2 we
can construct input of Farfalle as follows:

ENC(W1, a) = (pad10∗(W1), pad10∗(a)),

ENC(W2, a) = (pad10∗(W2), pad10∗(a)).

Step 3: Using the collision attack of Farfalle (refer
appendix A-C), we can say that, there exists two
tweaks, W1 and W2 such that the output from
FK2 is completely determined .i.e., ∃ (W1,W2) |

FK2 (ENC(W1, a)) = FK2 (ENC(W2, a)) = (b, c).
Hence, Y = 0µ

⊕ c = c.
Step 4: We now fix d , then X = b ⊕ d . Further, we have

HK (b⊕ d, c) = f , this implies the value of Z is also
completely determined .i.e., Z = f ⊕ a.

Step 5: Since, W1 ̸= W2, hence, FK1 (ENC(W1, d)) ̸=
FK1 (ENC(W2, d)). Let FK1 (ENC(W1, d)) = e1 and
FK1 (ENC(W2, d)) = e2. Proceeding this way,
we have V1 = e1 ⊕ a and V2 = e2 ⊕ a.

Step 6: Since, g1 = HK (0µ, e1⊕a) and g2 = HK (0µ, e2⊕a),
hence T1 = d ⊕ g1 and T2 = d ⊕ g2.

We can now construct the message and the ciphertext for the
encryption sub-routine of EtE-docked-double-decker:

P1 = (d ⊕ g1) ∥ 0µ
∥ (e1 ⊕ a), µ > 0

C1 = (b⊕ d) ∥ c ∥ (f ⊕ a).

P2 = (d ⊕ g2) ∥ 0µ
∥ (e2 ⊕ a), µ > 0

C2 = (b⊕ d) ∥ c ∥ (f ⊕ a). (18)

From equation (18), we see that C1 = C2, hence we can now
construct two distinct tuples in the following way:

τ = {(K̄ ,N1,A1,P1), (K̄ ,N2,A2,P2)}

where (N1 ∥ A1)← W1 and (N2 ∥ A2)← W2,

P1← (d ⊕ g1) ∥ 0µ
∥ (e1 ⊕ a)

P2← (d ⊕ g2) ∥ 0µ
∥ (e2 ⊕ a). (19)

From equation (19), we have constructed two tuples such that
P1 ̸= P2 and W1 ̸= W2 but C1 = C2. This completes our
CMT-4 attack on EtE-docked-double-decker.

In table 3, we present the summary of CMT-4 attack
on encode-then-encipher versions of HBSH, HCTR2,

84160 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

TABLE 3. Summary of CMT-4 attack. EtE-HBSH, EtE-HCTR2, EtE-Double-Decker and EtE-Docked-Double-Decker. Two new results of CMT-4 attack are
shown in red color. In case of EtE-HBSH and EtE-HCTR2, we present detailed analysis and algorithm of CMT-4 attack.

double-decker and docked-double-decker. New results of
CMT-4 attack is shown in red color, while in case of
EtE-HBSH and EtE-HCTR2, we provide detailed analysis
and algorithm for CMT-4 attack.

VI. HBtSH, HtS, tS-DOUBLE-DECKER AND
tS-DOCKED-DOUBLE-DECKER
In this section, we present four new designs of tweakable
wide block cipher schemes that utilizes tweakable stream
cipher (tS). In section VI-A, we introduce HBtSH, which
is based on HBSH. In section VI-B, we present HtS
based on HCTR2. We present tS-double-decker based
on double-decker, and tS-docked-double-decker based on
docked-double-decker in section VI-C. In this paper, we use
eXtendable-Output Function (or XOF in short) [44] for
instantiating the tweakable stream cipher.

A. HBtSH
We present a new tweakable wide block cipher scheme called
HBtSH (Hash Block cipher tweakable Stream cipher Hash).
The architecture of the scheme is shown in figure 5, and we
present the pseudocode of the scheme in algorithm 5. HBtSH
based on a tweakable stream cipher (refer definition 3), and
uses the structural design of HBSH (refer section IV-A for
HBSH), but replaces its one of the underlying primitive .i.e.,
instead of using a stream cipher, HBtSH uses a tweakable
stream cipher. We now describe the construction of HBtSH.

Let E and D be the encryption sub-routine and the
decryption sub-routine of HBtSH. E takes in three inputs,
a keyK , a tweak T and a plaintextP and produces a ciphertext
C as the output. D takes input as a key K , a tweak T and
a ciphertext C and outputs the corresponding plaintext P.
The tweakable stream cipher is invoked two times, once for
generating the ciphertext CL , where (CL ∥ CR) ← C , and
once for the key derivation function.

• Generating Ciphertext: S is used to generate the left
part of the ciphertext .i.e., CL . S takes in three inputs:
a key K , a fixed size nonce CM and a tweak T , and a
maximum output length denoted by lS , such that |PL | ≤
lS . Hence, the invocation of S can be represented by

Algorithm 5 HBtSH
E(K ,T ,P)
1: (KE ∥ KH)← S(K , ϵ, ϵ)[1; |KH | + |KE |] ▷ Derive KH
and KE from K

2: (PR ∥ PL)← P, |PL | = n
3: PM ← PR ⊞ HKH (T ,PL)
4: CM ← EKE (PM)
5: CL ← PL ⊕ S(KS ,CM ,T)[1; |PL |]
6: CR← CM ⊟ HKH (T ,CL)
7: C ← (CL ∥ CR)
8: Return C

D(K ,T ,C)
1: (KE ∥ KH)← S(K , ϵ, ϵ)[1; |KH | + |KE |] ▷ Derive KH
and KE from K

2: (CR ∥ CL)← C , |CL | = n
3: CM ← CR ⊞ HKH (T ,CL)
4: PL ← CL ⊕ S(KS ,CM ,T)[1; |CL |]
5: PM ← E−1KE (CM)
6: PR← PM ⊟ HKH (T ,PL)
7: P← (PL ∥ PR)
8: Return P

following expression:

S(K ,CM ,T)[1; |PL |]. (20)

The key stream generated by equation (20) is xoredwith
PL for generating CL . When a XOF-based S is used,
a reversible encoding denoted by ENC is utilized for
combining CM and T .i.e., ENC(CM ,T). For a nonce
with size < η, CM in this case, ENC can be written as
(padη(CM) ∥ T), where padding function is defined in
equation (1).

• Key Derivation Function: The key KE (used for the
block cipher) and the keyKH (used for the hash function)
is derived using the tweakable stream cipher with input
as the key K and empty nonce and empty tweak, with
a maximum output length given by lS such that |KE | +
|KH | ≤ lS . The invocation of S can be represented by

VOLUME 12, 2024 84161

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

FIGURE 5. HBtSH and HtS: Tweakable wide block cipher scheme based on tweakable stream cipher. HBtSH is based on HBSH
and HtS is based on HCTR2. The construction of HtS is similar to HBtSH and hence, we omit the CMT-4 security proof of HtS.

following expression:

S(K , ϵ, ϵ)[1; |KE | + |KH |]. (21)

The key stream generated by equation (21) is used as
the two keys KE and KH . We enforce the condition that
when using XOF, equation (20) and equation (21) must
be unrelated. This will lead to an unrelated output stream.
HBtSH from algorithm 5 can be used to describe the
Adiantum specification. We present CMT-4 security proof
of HBtSH in section VIII-A under encode-then-encipher
paradigm.

B. HtS
HtS is based on HCTR2. The tweakable stream cipher S is
used instead of the stream encryption XCTRK (refer figure 1),
where K is the key. The invocation of S is given by the
following expression:

S(K , S,T)[1; |V |]. (22)

The key stream generated by equation (22) is xored with
V to obtain Z . We present the construction of HtS in
figure 5b and the pseudocode of HtS in presented the
algorithm 6.
At this stage, we want to point out that the construction

of HtS eliminates the use of stream encryption .i.e.,
XCTRK (S) = EK (S ⊕ bin(1)) ∥ EK (S ⊕ bin(2)) ∥ . . . , which
makes the construction similar to HBtSH, and hence we omit
the CMT-4 security proof of HtS under encode-then-encipher
paradigm.

Algorithm 6 HtS
E(K ,T ,P)
1: h̄← EK (bin(0))
2: L ← EK (bin(1))
3: (U ∥ V)← P, where |U | = n
4: UU ← U ⊕ Hh̄(T ,V)
5: YY ← EK (UU)
6: S ← (UU ⊕ YY ⊕ L)
7: Z ← V ⊕ S(K , S,T)[1; |V |]
8: Y ← YY ⊕ Hh̄(T ,Z)
9: C ← (Y ∥ Z)
10: Return C

D(K ,T ,C)
1: h̄← EK (bin(0))
2: L ← EK (bin(1))
3: (Y ∥ Z)← C , where |Y | = n
4: YY ← Y ⊕ Hh̄(T ,Z)
5: UU ← E−1K (YY)
6: S ← (UU ⊕ YY ⊕ L)
7: V ← Z ⊕ S(K , S,T)[1; |Z |]
8: U ← UU ⊕ Hh̄(T ,V)
9: P← (U ∥ V)
10: Return P

C. tS-DOUBLE-DECKER AND
tS-DOCKED-DOUBLE-DECKER
In this section, we present two new constructions of
tweakable wide block cipher scheme, tS-double-decker based

84162 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

FIGURE 6. tS-Double-decker and tS-docked-double-decker: Tweakable wide block cipher scheme based on a
tweakable stream cipher.

on double-decker, and tS-docked-double-decker based on
the docked-double-decker. Similar to HBtSH, both of these
constructions are based on a tweakable stream cipher S.
We describe each of the schemes in section VI-C1 and
section VI-C2. We start with the description of the key
derivation function for tS-double-decker and tS-docked-
double-decker.
We use the key K2 for the second instance of the tweakable
stream cipher and also use the key K2 with the empty
instantiation of tweakable stream cipher for generating the
other two keys .i.e., K and K1:

S(K2, ϵ, ϵ)[1; |K | + |K1|]. (23)

We want to point out that, it is necessary to generate the
two keys K and K1 using the key derivation function of
equation (23) with K2 as one of the input, due to the fact that,
if the keys are unrelated then it will become trivial to find two
keys (K ′,K ′′) producing the same output from the polynomial
hash function.

1) TS-DOUBLE-DECKER
In section IV-C1, we saw that the construction of
double-decker uses deck function two times .i.e., FK1

with key K1 and FK2 with key K2. We replace these two
instances of the deck function with a tweakable stream cipher.
Figure 6 shows the construction of ts-double-decker. The two
instances of S for ts-double-decker is show below:

S(K1, c,ENC(UR,W))[1; |VL | + |VR|]

S(K2, h,ENC(g,W))[1; |VL | + |VR|]. (24)

where ENC(X ,Y) = (binη(|X |) ∥ X ∥ Y) and |X | < 2η. The
key stream generated by the first instance of S in equation (24)
is xored with VL and VR. The key stream generated by the
second instance S is xored with UL and UR.

2) TS-DOCKED-DOUBLE-DECKER
Similar to double-decker, docked-double-decker uses the
deck function two times (refer section IV-C2). We replace
these two instances of the deck function by the tweakable
stream cipher, hence resulting into ts-docked-double-decker
(refer figure 6b). The two instances of S for ts-docked-
double-decker is show below:

S(K1, d,W))[1; |V |]

S(K2, a,W))[1; |T | + |U |]. (25)

The key stream generated by S in equation (25) during the
first instance is xored with V , while, in case of the second
instance S, the key stream generated is xored with T and U .

In table 4, we present summary of all the four proposed
tweakable wide block cipher schemes.

VII. DESIGN RATIONALE
In this section, we describe the design rationale behind the
four proposed tweakable wide block cipher schemes.
• Tweakable Stream Cipher (tS): In section V-A
and section V-B, we saw that the CMT-4 attack on
EtE-HBSH and EtE-HCTR2 was possible since the
stream cipher in EtE-HBSH and the stream encryption
in EtE-HCTR2 did not take the tweak as the input.
Further, for ts-double-decker and ts-docked-double-
decker, the two deck functions based on Farfalle [20]

VOLUME 12, 2024 84163

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

TABLE 4. Summary of proposed tweakable wide block cipher schemes.

construction was unable to counter CMT-4 attack.
The tweakable stream cipher ensures partial collision
resistance against a CMT-4 adversary under encode-
then-encipher paradigm. In this paper, we use XOF [44]
as an instantiation to the S.
XOF-based Tweakable Stream Cipher:
1) Security Claim: Let a sponge function be based on

an ideal permutation and total bit length of data
be at most σ , then the indifferentiability of the
sponge function from a random oracle is given by
the expression: ≤ σ 2

2c+1
[45], where c is the capacity

of the sponge function. Now, for performing µ-bit
partial collision on random oracle, its probability
bound is given by the expression: ≤ q2

2µ+1 , where
q is the number of queries to the random oracle
and µ is the number of bits for partial collision.
Hence, the probability bound of the sponge function
for performing µ-bit partial collision, where the
underlying permutation is ideal, is given by the
expression: ≤ σ 2

2c+1
+

q2

2µ+1 .
For example, in case of SHAKE [46], the capacity c
of SHAKE128 is 256, thereby making the probability
bound for performing µ-bit partial collision on
SHAKE128 to ≤ σ 2

2257
+

q2

2µ+1 , assuming underlying
permutation of SHAKE128 is ideal, while in case of
SHAKE256, c = 512, hence, the probability bound
for performing µ-bit partial collision on SHAKE256
is ≤ σ 2

2513
+

q2

2µ+1 , where underlying permutation of
SHAKE256 is ideal.

2) Implementation: TurboSHAKE [47] is a family of
eXtendable Output Functions (XOF) with reduced
round, that can be used for the applications requiring
fast computation or hardware that have low com-
puting power. Hence, TurboSHAKE may be suitable
for application curated for IoT devices like disk
encryption scenarios. Further, XOF is an active area
of research and future advancements might result into
more efficient designs.

• Recycle Proofs: The construction of HBtSH, HtS, tS-
double-decker and tS-docked-double-decker ensures a
minimal change in the original design .i.e., HBSH,
HCTR2, double-decker and docked-double-decker
respectively. The proposed designs are structurally
similar to their original counter parts, hence verification

of the proposed designs are intuitive. The security
proofs of the original design can be recycled, giving
us the leverage to provide only the CMT-4 security
proof for the respective proposed designs under encode-
then-encipher paradigm. The will further lead to easy
verification by the research community.

• Facilitate Existing Implementations: Due to the
structural similarity of all the four proposed designs,
it fairly easy task to replace the existing implementations
with the new proposed ones. This will further lead to
easy benchmarking under standard metrics. Moreover,
the property of structural similarity in the proposed
designs will facilitate the replacement in the existing
deployments.

VIII. SECURITY PROOFS
A. SECURITY PROOF OF HBtSH
We begin with some definitions. Let K $

←− {0, 1}k denote
the key space with key size equal to k , M ∈ {0, 1}∗ is the
message space and T ∈ {0, 1}∗ denotes the space of the
tweak. HBtSH (algorithm 5) takes in three inputs: a key K ∈
K, a tweak T ∈ T and a message (or a plaintext) P ∈M, and
outputs a ciphertext C ∈ C, where C is the ciphertext space
and |M | = |C|. In case of CMT-4 security of an authenticated
encryption scheme, the task of the adversaryA, is to construct
two distinct tuples (K1,N1,A1,P1) and (K2,N2,A2,P2)
for the encryption sub-routine of EtE-HBtSH, such
that τ = {(K1,N1,A1,P1), (K2,N2,A2,P2)}, where
(K1,N1,A1,P1) ̸= (K2,N2,A2,P2) and E(K1,N1,A1,P1) =
E(K2,N2,A2,P2). In case of EtE-HBtSH, (N1 ∥ A1) ←
T1 and (N2 ∥ A2) ← T2. CMT-4 security is defined in
definition 9 and EtE-HBtSH is defined in definition 10.
We now present the proof of CMT4 security of EtE-HBtSH
in theorem 1.
Theorem 1: Let A be a CMT-4 adversary defined in

algorithm 2 that has access to EtE-HBtSH with µ-
bit zero prepending, and creates two distinct tuples,
τ = {(K1,N1,A1,P1), (K2,N2,A2,P2)} s.t C1 ←

E(K1,N1,A1,P1), C2 ← E(K2,N2,A2,P2), and Ti = (Ni ∥
Ai), i ∈ {1, 2}, where (K1,N1,A1,P1) ̸= (K2,N2,A2,P2)
and C1 = C2, then, we can construct a partial collision
finding adversary BA on tS given by:

AdvCMT-4
EtE-HBtSH(A) ≤ Advµ-PartialColl

tS (BA). (26)

Proof: We start by presenting a algorithm (refer
Algorithm 7) that transforms the query executed by the
adversary A as a halting problem. The adversary BA takes
input from the adversary A and executes the partial collision
attack.

Note that in case of HBtSH, we combine the nonce and the
associated data to form the tweak .i.e., (N1 ∥ A1) ← T1 and
(N2 ∥ A2) ← T2. We now proceed to calculate the CMT-4
bound of EtE-HBtSH using following two cases:

• Case 1: (K1,T1) = (K2,T2)
For the two tuples generated byA .i.e., {(K1,N1,A1,P1),

84164 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

Algorithm 7 BA
1: τ ← φ

2: Run A:
3: Generate {(K1,N1,A1,P1), (K2,N2,A2,P2)}

$
←− A

▷ ∀i Ti← (Ni ∥ Ai)
4: Execute: C1 ← E(K1,N1,A1,P1), C2 ←

E(K2,N2,A2,P2)
5: Halt: (C1

?
= C2) ∧ (K1,N1,A1,P1)

?
= (K2,N2,A2,P2)

6: if (C1 = C2) ∧ (K1,N1,A1,P1) ̸= (K2,N2,A2,P2)
7: then (PL1 ∥ PR1) ← P1, (PL2 ∥ PR2) ← P2
▷ Generate inputs of tS

8: P′L1 ← (0µ
∥ PL1) and P

′
L2
← (0µ

∥ PL2)
9: (K1E ,K1H)← S(K1, ϵ, ϵ)[1; |K1E | + |K1H |]
10: (K2E ,K2H)← S(K2, ϵ, ϵ)[1; |K2E | + |K2H |]
11: PM1 ← PR1 ⊞ HK1H

(T1,P′L1)
12: PM2 ← PR2 ⊞ HK2H

(T2,P′L2)
13: CM1 ← EK1E

(PM1), CM2 ← EK2E
(PM2)

14: τ = {(K1,CM1 ,T1), (K2,CM2 ,T2)}
15: return τ

(K2,N2,A2,P2)}
$
←− A, we have (K1,T1) = (K2,T2),

where (N1 ∥ A1) ← T1 and (N2 ∥ A2) ← T2. Now
from the construction of HBtSH in section VI-A and
figure 5, we know that the tweakable stream cipher S
is defined in the following way: S(K1,CM1 ,T1) and
S(K2,CM2 ,T2), where CM1 and CM2 are the two nonces.
The key stream generated by the tweakable stream
cipher S is used to generate the left part of the ciphertext
.i.e., CL1 ← P′L1 ⊕ S(K1,CM1 ,T1)[1; |P

′
L1
|] and CL2 ←

P′L2 ⊕ S(K2,CM2 ,T2)[1; |P
′
L2
|], where P′L1 ← (0µ

∥

PL1), P
′
L2
← (0µ

∥ PL2), (PL1 ∥ PR1) ← P1 and
(PL2 ∥ PR2) ← P2. Now, since S is a permutation,
it is not possible to generate two different outputs .i.e.,
CL1 and CL2 , given the same inputs, since (K1,T1) =
(K2,T2). This leads to the fact that, in this case, it is
not possible to generate two different outputs from
the tweakable stream cipher, hence, in equation (26),
we have AdvCMT-4

EtE-HBtSH(A) = 0.
• Case 2: (K1,T1) ̸= (K2,T2)
In this case, the tweakable stream cipher takes two
distinct tuples .i.e., S(K1,CM1 ,T1) and S(K2,CM2 ,T2).
Under encode-then-encipher paradigm, we know from
definition 10 and equation (12), that in case of EtE-
HBtSH, we have P′L1 ← (0µ

∥ PL1) and P
′
L2
← (0µ

∥

PL2), where (PL1 ∥ PR1)← P1, (PL2 ∥ PR2)← P2 and
µ > 0. Hence, to generate the same ciphertext part
CL = CL1 = CL2 , the tweakable stream cipher must
produce µ-bit partial collision in its output. This leads
to the fact that the game in Algorithm 2 returns 1,
making the game in Algorithm 1 to return 1 as well.
Hence, using definition 9 and definition 8, we have
Pr[GCMT-4

EtE-HBtSH(A) 7→ 1] = Pr[Gµ-PartialColl
tS (BA) 7→ 1]

.i.e., AdvCMT-4
EtE-HBtSH(A) = Advµ-PartialColl

tS (BA).
From case 1 and case 2, we conclude that AdvCMT-4

EtE-HBtSH(A)
≤ Advµ-PartialColl

tS (BA), which proofs our claim in

equation (26). Hence, we conclude our CMT-4 security proof
of EtE-HBtSH.
We now present the security proof of HBtSH in theorem 2

below.
Theorem 2: Let HBtSH be the scheme defined in

section VI-A, where H is ϵ-almost-1-universal for inputs,
then we define:

Adv±P̃RPHBtSH(q, lT , lM , t)

≤ (ϵ +
2
2n

) •
(
q
2

)
+ AdvtSS (q+ 1, lT , lM + |KE | + |KH | − q • n, t ′)

+ Adv±PRPE (q, t ′),

where KE is key for E , KH is key for H , n is the output size
of E and t ′ = t + O(lT + lM).

Proof: The design of HBtSH is similar to HBSH with
the exception of a tweakable stream cipher (definition 3),
instead of a stream cipher, and therefore we leave the proof
for brevity. We encourage the reader to refer theorem 1 in [2]
for the proof.

B. SECURITY PROOF OF tS-DOUBLE-DECKER AND
tS-DOCKED-DOUBLE-DECKER
We present the CMT-4 proof of EtE-tS-double-decker and
EtE-tS-docked-double-decker in theorem 3. In case of EtE-
ts-double-decker, µ bit zero prepending is done on UR, while
for EtE-ts-docked-double-decker, we use U for µ bit zero
prepending. Further, please note that, we use key K2 for
the second instantiation of the tweakable stream cipher and
generate the other two keys K and K1 using key K2 (refer
equation (23)).
Theorem 3: Let 5 be EtE-tS-Double-Decker or EtE-

tS-Docked-Double-Decker created using tS-Double-Decker
and tS-Docked-Double-Decker respectively, as defined in
section VI-C1 and section VI-C2. Let A be a CMT-4
adversary defined in algorithm 2 that has access to 5 with
µ-bit zero prepending to UR or U respectively, and creates
two distinct tuples τ = {(K1,N1,A1,M1), (K2,N2,A2,M2)}
s.t C1 ← E(K1,N1,A1,M1), C2 ← E(K2,N2,A2,M2), and
Wi = (Ni ∥ Ai), i ∈ {1, 2}, where (K1,N1,A1,M1) ̸=
(K2,N2,A2,M2) and C1 = C2, then, we can construct a
partial collision finding adversary BA on tS given by:

AdvCMT-4
5 (A) ≤ Advµ-PartialColl

tS (BA). (27)

Proof: The proof is similar to theorem 1, hence we omit
it for brevity.
Theorem 4: Let tS-Double-Decker be the scheme defined

in section VI-C1, where H is blinded keyed hash, then we
define:

Adv±P̃RPtS-Double-Decker(q, lW , lM , t)

≤ AdvtSS (q, lW + lUR , lM − lUR − q • n, t
′)

+ AdvtSS (q+ 1, lW + lVL , lM
+ |K | + |K1| − lVL − q • n, t

′)

VOLUME 12, 2024 84165

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

+

∑
W∈W

(
AdvbhkH (qW , σH1,W)+ AdvbhkH (qW , σH2,W)

+

(
qW
2

)
• 2−2•n

)
,

where lUR and lVL are the total lengths of UR and VL
respectively (refer figure 6), qW is the total number of queries
with tweakW and σH1,W , σH2,W are the data complexities of
the two instances of H .i.e., H1 and H2 respectively, K is key
for H , K1 is key for the first instance of S, n is the outside
branch length .i.e., |UL | = |VR| = n and t ′ = t +O(lT + lM).

Proof: The design of tS-double-decker is similar to
double-decker with the exception of a tweakable stream
cipher (definition 3), instead of a deck function, and therefore
we leave the proof for brevity. We encourage the reader to
refer theorem 1 in [6] for the proof.
Theorem 5: Let tS-Docked-Double-Decker be the scheme

defined in section VI-C2, where H is blinded keyed hash, then
we define:

Adv±P̃RPtS-Docked-Double-Decker(q, lW , lM , t)

≤ AdvtSS (q, lW , lM − q • n), t ′)

+ AdvtSS (q+ 1, lW , lM
+ |K | + |K1| − q • n, t ′)

+

∑
W∈W

(
AdvbhkH (qW , σH1,W)+ AdvbhkH (qW , σH2,W)

+

(
qW
2

)
• 2−2•n

)
,

where qW is total number of queries with tweakW and σH1,W ,
σH2,W are the data complexities of the two instances ofH .i.e.,
H1 and H2 respectively, K is key for H , K1 is key for the first
instance of S, n is outside branch length .i.e., |T | = |V | = n
and t ′ = t + O(lT + lM).

Proof: The design of tS-docked-double-decker is similar
to docked-double-decker with the exception of a tweakable
stream cipher (definition 3), instead of a deck function, and
therefore we leave the proof for brevity. We encourage the
reader to refer theorem 1 in [6] for the proof.

IX. CONCLUSION
In this paper, we provide detail analysis of CMT-4 security
of four tweakable wide block cipher schemes under encode-
then-encipher paradigm. We analyze the scenario of creating
authentication encryption schemes by prepending zeros.
We presented successful CMT-4 attack on EtE-HBSH in
section V-A, EtE-HCTR2 in section V-B, and the two
deck function based constructions in section V-C .i.e., EtE-
double-decker in section V-C1 and EtE-docked-double in
section V-C2 respectively. All the four attacks have time
complexity O(1) (refer table 3). We introduce the notion
of tweakable stream cipher (or tS in short) in definition 3.
We use tS to design four new tweakable wide block cipher
schemes namely, HBtSH (refer section VI-A), HtS (refer
section VI-B), tS-double-decker (refer section VI-C1) and

tS-docked-double-decker (refer section VI-C2). All the four
proposed schemes provide partial collision resistance against
a CMT-4 adversary under encode-then-encipher paradigm
(refer theorem 1 and theorem 3). Further, we provide security
proof of HBtSH in theorem 2, ts-double-decker in theorem 4
and ts-docked-double-decker in theorem 5.

The notion of tweakable stream cipher opens a new
direction. Several constructions can be analyzed for CMT-4
security under encode-then-encipher paradigm, and tweak-
able stream cipher can be explored to see the resilience
against a CMT-4 adversary for the analyzed constructions.
Further, in this paper, we use eXtendable-Output Function
(or XOF) (refer definition 4) for creating a tweakable stream
cipher. It can be of interest to explore other primitives
that can be used as a tweakable stream cipher. From the
implementation perspective, a tS based scheme may seem to
be slower than a traditional stream cipher based construction
or a deck function based construction, but on a positive note,
XOF is an active area, where attempts are made to make
it faster by reducing the number of rounds [47]. This also
opens up a future research work in this area. Further, since,
the committing security is very practical in the real-world
setting, it is always good know the resilience of authenticated
encryption schemes against such attacks.

APPENDIX A
FARFALLE
A. OVERVIEW
Farfalle [20] can be used for building a deck (doubly-
extendable keyed) function. It takes bits of string and a key
K as the input and returns an arbitrary-length output. From
the architecture point of view, a Farfalle can be divided into
two layers, a compression layer, followed by an expansion
layer (refer figure 7). It can be instantiated using following
notation:

Farfalle[pb, pc, pd , pe, rollc, rolle],

where pb, pc, pd and pe are permutations and, rollc and rolle
are rolling functions, such that:
• pb: used for deriving the initial mask from the key K
• pc: used in the compression layer
• pd : used between the compression and expansion layer
• pe: used in the expansion layer
• rollc: used in the compression layer for generatingmasks
that are added to the input blocks

• rolle: used in the expansion layer to update the internal
state

The rolling function, rollc is a lightweight linear function
with huge order [20], analogous to LFSR. As an example,
XOOFFF [48] is based on Farfalle, with XOODOO [48] as
the underlying permutation with six rounds for pb, pc, pd and
pe and LFSR like rolling functions for rollc and rolle.

B. SPECIFICATION
Inside Farfalle, bits of string are processed in blocks of
b̄-bits or in multiple of b̄ bits, where b̄ denotes the width of

84166 VOLUME 12, 2024

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

FIGURE 7. Compression layer of Farfalle (Adapted from [20]).

underlying permutation. Hence, a padding rule is needed to
convert the input bits of string into multiple of b̄-bits. For
a given message M ∈ {0, 1}∗, padding rule is defined as
follows: P = pad10∗(M), where P← (p0 ∥ p2 ∥ · · · ∥ pn−1)
and ∀ i ∈ {0, n− 1} |pi| = b. Similarly, the key K is padded
to (K ∥ 10∗) before applying pb. Two keys k and k ′ is derived
from the input key K ; k is used during the compression layer
while k ′ is used during the expansion layer.

C. COLLISION ATTACK
For performing collision attack on Farfalle, the task the
adversary A is to create two distinct inputs of Farfalle, such
that the output generated by Farfalle for the two inputs are the
same. From the construction, we know that if the output of
the expansion layer, .i.e., ‘t’ in figure 7, is same for the two
inputs then the output produced by the expnasion layer (or
Farfalle) is also same. Hence, we choose compression layer
of Farfalle for demonstrating our collision attack. Our task
is to construct two inputs: ENC(pad10∗(A1), pad10∗(B)) and
ENC(pad10∗(A2), pad10∗(B)), where A1 ̸= A2, such that the
output of the expansion layer is t . We require that both A1 and
A2 contains at least two full blocks .i.e., |A1| ≥ 2 • b̄ and
|A2| ≥ 2 • b̄. We start our attack by fixing the key K , hence
we obtain k and k ′ deterministically. Since, ‘t’ is obtained
by xor operation, it is trivial to find r ′0 and r

′

1, that produces
the same output ‘t’. Now, since pc is a permutation, we can
find values ‘s0’, ‘s1’, ‘s′0’ and ‘s′1’ such that s0 = p−1c (r0),
s1 = p−1c (r1), s′0 = p−1c (r ′0) and s

′

1 = p−1c (r ′1). We know that
the rolling function rollc is linear, hence it is trivial to obtain
two distinct b̄-bit blocks a10 and a20 , such that a10 and a20

denotes the two b̄-bit blocks of A1; a′10 and a
′

20
, such that a′10

and a′20 denotes two b̄-bit blocks of A2. This leads to the fact
that we have constructed two distinct inputs producing the
same output. This concludes the collision attack on Farfalle.

REFERENCES
[1] S. Halevi and P. Rogaway, ‘‘A tweakable enciphering mode,’’ in

Proc. Annu. Int. Cryptol. Conf. Cham, Switzerland: Springer, 2003,
pp. 482–499.

[2] P. Crowley and E. Biggers, ‘‘$Adiantum$: Length-preserving encryption
for entry-level processors,’’ Cryptol. ePrint Arch., Dec. 2018.

[3] Android Open Source Project. (2024). Enabling Adiantum on Android.
[Online]. Available: https://source.android.com/docs/security/features/
encryption/adiantum

[4] P. Crowley, N. Huckleberry, and E. Biggers, ‘‘Length-preserving encryp-
tion with HCTR2,’’ Cryptol. ePrint Arch., Jan. 2021.

[5] Android Open Source Project. (2024). File-Based Encryption.
[Online]. Available: https://source.android.com/docs/security/features/
encryption/file-based

[6] A. Gunsing, J. Daemen, and B. Mennink, ‘‘Deck-based wide block cipher
modes,’’ Cryptol. ePrint Arch., Jan. 2022.

[7] C. Dobraunig, K. Matusiewicz, B. Mennink, and A. Tereschenko,
‘‘Efficient instances of docked double decker with aes,’’ Cryptol. ePrint
Arch., Jan. 2024.

[8] (2001). Advanced Encryption Standard (AES). [Online]. Available:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=901427

[9] Mihir Bellare and Phillip Rogaway, ‘‘Encode-then-encipher encryption:
How to exploit nonces or redundancy in plaintexts for efficient cryp-
tography,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur. Cham,
Switzerland: Springer, 2000, pp. 317–330.

[10] (2024). Proposal of Requirements for an Accordion Mode. [Online].
Available: https://csrc.nist.gov/files/pubs/other/2024/04/10/proposal-
of-requirements-for-an-accordion-mode-dis/iprd/docs/proposal-of-
requirements-for-an-accordion-mode-discussion-draft.pdf

[11] V. T. Hoang, T. Krovetz, and P. Rogaway, ‘‘Robust authenticated-
encryption AEZ and the problem that it solves,’’ in Proc. 34th Annu. Int.
Conf. Theory Appl. Cryptograph. Techn., 2015, pp. 15–44.

[12] CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness. [Online]. Available: http://competitions.
cr.yp.to/caesar.html

[13] (2023). The Third NIST Workshop on Block Cipher Modes of Oper-
ation 2023. [Online]. Available: https://csrc.nist.gov/events/2023/third-
workshop-on-block-cipher-modes-of-operation

[14] (2023). Key Committing Security of Aez and More. [Online]. Avail-
able: https://csrc.nist.gov/csrc/media/Presentations/2023/key-committing-
security-of-aez/images-media/sess-7-chen-bcm-workshop-2023.pd

[15] (2007). Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38d.pdf

[16] Y. Dodis, P. Grubbs, T. Ristenpart, and J. Woodage, ‘‘Fast message
franking: From invisible salamanders to encryptment,’’ in Proc. Annu. Int.
Cryptol. Conf., Santa Barbara, CA, USA. Cham, Switzerland: Springer,
Aug. 2018, pp. 155–186.

[17] P. Grubbs, J. Lu, and T. Ristenpart, ‘‘Message franking via committing
authenticated encryption,’’ in Proc. 37th Annu. Int. Cryptol. Conf., Santa
Barbara, CA, USA. Cham, Switzerland: Springer, Aug. 2017, pp. 66–97.

[18] A. Albertini, T. Duong, S. Gueron, S. Kölbl, A. Luykx, and S. Schmieg,
‘‘How to abuse and fix authenticated encryption without key commit-
ment,’’ in Proc. 31st USENIX Secur. Symp. (USENIX Secur.), 2022,
pp. 3291–3308.

[19] M. Bellare and V. T. Hoang, ‘‘Efficient schemes for committing authen-
ticated encryption,’’ in Proc. Annu. Int. Conf. Theory Appl. Cryptograph.
Techn. Cham, Switzerland: Springer, 2022, pp. 845–875.

[20] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and
R. Van Keer, ‘‘Farfalle: Parallel permutation-based cryptography,’’ Cryp-
tol. ePrint Arch., Dec. 2016.

[21] W. F. Ehrsam, C. H. Meyer, J. L. Smith, and W. L. Tuchman, ‘‘Message
verification and transmission error detection by block chaining,’’ U.S.
Patent 4 074 066, Feb. 14, 1978.

VOLUME 12, 2024 84167

D. Chang, M. Hasan: Context-Committing Authenticated Encryptions Using Tweakable Stream Cipher

[22] (2010). Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-
38e.pdf

[23] (2023). Setting the Bitlocker Encryption Algorithm for Autopilot Devices.
[Online]. Available: https://learn.microsoft.com/en-us/autopilot/bitlocker

[24] R. Fujita, T. Isobe, and K. Minematsu, ‘‘ACE in chains: How risky
is cbc encryption of binary executable files?’’ in Proc. 18th Int. Conf.
Appl. Cryptogr. Netw. Secur., Rome, Italy. Cham, Switzerland: Springer,
Oct. 2020, pp. 187–207.

[25] (2018). Lightweight Cryptography. [Online]. Available:
https://csrc.nist.gov/Projects/Lightweight-Cryptography

[26] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, ‘‘Ascon v1.2:
Lightweight authenticated encryption and hashing,’’ J. Cryptol., vol. 34,
no. 3, pp. 1–42, Jul. 2021.

[27] S. Banik, A. Chakraborti, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin,
Y. Sasaki, S. M. Sim, and Y. Todo, ‘‘GIFT-COFB,’’ IACR Cryptol. ePrint
Arch., vol. 2020, p. 738, Jan. 2020.

[28] T. Iwata, M. Khairallah, K. Minematsu, and T. Peyrin, ‘‘Duel of the titans:
The romulus and remus families of lightweight AEAD algorithms,’’ IACR
Trans. Symmetric Cryptol., pp. 43–120, May 2020.

[29] M. Hasan and D. Chang, ‘‘Lynx: Family of lightweight authenticated
encryption schemes based on tweakable blockcipher,’’ IEEE Internet
Things J., vol. 11, no. 8, pp. 14357–14369, Apr. 2024.

[30] H. Wu and B. Preneel, ‘‘AEGIS: A fast authenticated encryption
algorithm,’’ in Proc. Int. Conf. Sel. Areas Cryptogr., Burnaby, BC, Canada.
Cham, Switzerland: Springer, Aug. 2013, pp. 185–201.

[31] T. Isobe andM. Rahman, ‘‘Key Committing Security Analysis of AEGIS,’’
Cryptol. ePrint Arch., Jan. 2023.

[32] Y. Naito, Y. Sasaki, and T. Sugawara, ‘‘Committing security of ascon:
Cryptanalysis on primitive and proof on mode,’’ IACR Trans. Symmetric
Cryptol., vol. 2023, no. 4, pp. 420–451, Dec. 2023.

[33] Y. Naito, Y. Sasaki, and T. Sugawara, ‘‘KIVR: Context-committing
authenticated encryption using plaintext redundancy and application to
GCM and variants,’’ in Proc. NIST, 2023.

[34] J. Krämer, P. Struck, and M. Weishäupl, ‘‘Committing Authenticated
Encryption: Sponges vs. block-ciphers in the case of the nist lwc finalists,’’
Cryptol. ePrint Arch., Jan. 2023.

[35] S. Gueron, ‘‘Key committing AEADs,’’ Cryptol. ePrint Arch., Dec. 2020.
[36] P. Wang, D. Feng, and W. Wu, ‘‘HCTR: A variable-input-length

enciphering mode,’’ in Proc. Int. Conf. Inf. Secur. Cryptol. Cham,
Switzerland: Springer, 2005, pp. 175–188.

[37] H. Krawczyk, ‘‘LFSR-based hashing and authentication,’’ in Proc. Int.
Cryptol. Conf. Cham, Switzerland: Springer, 1994, pp. 129–139.

[38] B. Schneier and J. Kelsey, ‘‘Unbalanced feistel networks and block
cipher design,’’ in Proc. Int. Workshop Fast Softw. Encryption. Cham,
Switzerland: Springer, 1996, pp. 121–144.

[39] D. J. Bernstein, ‘‘ChaCha, a variant of Salsa20,’’ in Proc. Workshop Rec.
SASC, Lausanne, Switzerland, vol. 8, no. 1, 2008, pp. 3–5.

[40] National Institute of Standards and Technology (NIST). (2001).
Advanced Encryption Standard (AES). [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf

[41] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, ‘‘UMAC:
Fast and secure message authentication,’’ in Proc. Annu. Int. Cryptol.
Conf., Santa Barbara, CA, USA. Cham, Switzerland: Springer, Aug. 1999,
pp. 216–233.

[42] D. J. Bernstein, ‘‘The Poly1305-AES message-authentication code,’’ in
Proc. Int. Workshop Fast Softw. Encryption. Cham, Switzerland: Springer,
2005, pp. 32–49.

[43] Y. L. Chen, A. Flórez-Gutiérrez, A. Inoue, R. Ito, T. Iwata, K. Minematsu,
N. Mouha, Y. Naito, F. Sibleyras, and Y. Todo, ‘‘Key committing security
of AEZ and more,’’ IACR Trans. Symmetric Cryptol., vol. 2023, no. 4,
pp. 452–488, Dec. 2023.

[44] M. J. Dworkin, ‘‘SHA-3 standard: Permutation-based hash and extendable-
output functions,’’ in Proc. NIST, 2015.

[45] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, ‘‘On the
indifferentiability of the sponge construction,’’ in Proc. Int. Conf. Theory
Appl. Cryptograph. Techn., 2008, pp. 181–197.

[46] (2015). FIPS 202, SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. [Online]. Available: https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

[47] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, R. Van Keer,
and B. Viguier, ‘‘TurboSHAKE,’’ Cryptol. ePrint Arch., Jan. 2023.

[48] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer, ‘‘The design
of xoodoo and xoofff,’’ IACR Trans. Symmetric Cryptol., pp. 1–38,
Dec. 2018.

DONGHOON CHANG received the bachelor’s
degree in mathematics, the master’s degree, and
the Ph.D. degree in information security from
Korea University, South Korea, in 2001, 2003, and
2008, respectively. In 2006, he was a Researcher
with the University of Waterloo, Canada. Fol-
lowing this, he held a postdoctoral position with
Columbia University, USA, from 2008 to 2009.
Subsequently, he was a Guest Researcher with
the Computer Security Division, National Institute

of Standards and Technology (NIST), USA, from 2009 to 2012. Since
2012, he has been an Associate Professor with the Indraprastha Institute of
Information Technology Delhi, India. From 2019 to 2021, he was with NIST,
as a Guest Researcher. Since August 2021, he has been a Research Specialist
with Strativia, USA.

MUNAWAR HASAN received the B.Tech. degree
in computer science engineering from Dehradun
Institute of Technology, Dehradun, India, in 2010,
and theM.Tech. degree from Indraprastha Institute
of Information Technology Delhi (IIIT-Delhi),
New Delhi, India, in 2016, where he is currently
pursuing the Ph.D. degree, under the supervision
of Dr. Donghoon Chang. He was employed
as a Software Engineer with DXC Technol-
ogy (formerly Computer Sciences Corporation),

from 2010 to 2013. He was a Senior Researcher with IRISYS Company
Ltd., from 2016 to 2019. Since 2019, he has been with the National Institute
of Standards and Technology (NIST), USA, as a Guest Researcher. His
research interests include the design and analysis of authenticated encryption
schemes, security proofs, and machine learning.

84168 VOLUME 12, 2024

