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ABSTRACT Microgrids are fundamental elements in modern energy systems. Among the various microgrid
components, the Energy Storage System (ESS) plays a pivotal role in ensuring system reliability, but its
high cost and inevitable degradation over time pose significant challenges. Many current studies overlook
the impact of ESS degradation on operational optimization, potentially leading to cost-ineffective systems.
To address this gap, we introduce a quadratic ESS degradation model that captures intricate battery
dynamics, such as State of Charge (SoC) and Depth of Discharge (DoD), using Markovian properties.
Based on this model, we propose an optimal energy management framework for DC microgrids using
Quadratic Programming (QP). The objective is tominimize the combined costs of degradation and electricity,
considering the Time-of-Use (ToU) tariff while adhering to ESS constraints. This financially focused
approach provides a pragmatic and economically aligned optimization strategy. Testing across various State
of Health (SoH) scenarios demonstrates that our proposed model reduces total operational costs by 3-18%.
This research advances microgrid optimization techniques and offers practical insights to enhance efficiency
and economic resilience in real-world scenarios.

INDEX TERMS Energy storage system, microgrid, battery degradation, electricity cost, quadratic
programming.

NOMENCLATURE
CGRID
t Unit electricity cost from the grid between

time t and t + 1.
PGRIDt Power flow from the AC to the microgrid

between time t and t + 1.
PESSt Power inflow into the ESS between time t

and t + 1.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wencong Su .

PPVt Power generated by solar power system
between time t and t + 1.

PLOADt Power consumption of the microgrid system
between time t and t + 1.

BSoCt SoC of an ESS at time t .
CGRID Vector of CGRID

t values from time 0 to T .
PGRID Vector of PGRIDt values from time 0 to T .
PESS Vector of PESSt values from time 0 to T .
PPV Vector of PPVt values from time 0 to T .
PLOAD Vector of PLOADt values from time 0 to T .
BSoC Vector of BSoCt values from time 0 to T .
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cnew Cost of a new ESS unit.
L̄t SoH of an ESS at time t .
qESS Energy capacity of the ESS (kWh).
Sδ(δ) DoD stress factor.
Sσ (σ ) SoC stress factor.
ST (T ) Temperature stress factor.
St (t) Time stress factor.
αsei, βsei Coefficients for SEI film formation in the

battery degradation model.
fd,1 Degradation per cycle.
β0, β1, β2 Coefficients of the battery degradation

approximation model.
1N N-dimensional vector with each element

having a value of 1.
IN N×N identity matrix.
M N×N matrix with

Mij =

{
1, if i > j
0, otherwise.

M′ N×N matrix with

M′
ij =

{
1, if i ≥ j
0, otherwise.

I. INTRODUCTION
Microgrids, typically equipped with a photovoltaic (PV)
system and an energy storage system (ESS), play an
essential role in the modern power system landscape by
offering enhanced resilience, sustainability, and energy
efficiency [1], [2].

ESS stands out as a pivotal component in microgrids,
providing economic benefits by storing volatile renewable
energy sources such as PV and wind. It also enables the
effective redistribution of energy from off-peak to peak
hours. However, ESS does not function perpetually; its
economic benefits are constrained by inherent degradation
properties.

Batteries, as the predominant form of ESS, undergo
degradation, marked by a progressive decline in capacity
over time and repeated charge-discharge cycles. From an
economic perspective, this degradation should be viewed as
depreciation. Accurately accounting for battery degradation
is crucial for efficient microgrid operation.

Considering the non-linear and complex nature of battery
degradation, however, many studies on microgrid optimiza-
tion fail to adequately address this issue, as indicated by the
omission in [3] and the simplified approaches in [4], [5], [6],
[7], [8], [9], and [10]. The limitations in addressing battery
degradation primarily appear in two forms:

1) Oversimplification of degradation models: Numerous
models fall short of capturing the complete range
of battery usage patterns by neglecting crucial fac-
tors such as State of Charge (SoC) and Depth of
Discharge (DoD), which are the primary drivers

of degradation [11]. To illustrate, while the studies
[6], [7] exclusively emphasized DoD, they did not
consider the significance of SoC. Conversely, the study
of [8] primarily considered on SoC in their degradation
model. The authors of [9] simplified the battery
degradation model by linearizing it into two distinct
segments. In a different case, despite [10] aiming
to incorporate a comprehensive degradation model
from [11], the study made a simplified assumption
that battery capacity linearly declines with cycle
increments, thus overlooking the evident nonlinear
decay observed in a battery’s early life, as suggested
by [11].

2) Limited consideration of monetary aspects: The costs
associated with degradation are rarely expressed in
monetary terms. For instance, in the study [4] penalties
are applied to battery charging and discharging activ-
ities to minimize battery operations within specified
limits. The authors of [5] included battery power in the
cost function to prolong battery life. However, these
penalties are not converted into financial values.

To resolve the two aforementioned battery degradation
issues, an accurate battery degradation model is paramount
before devising an optimal ESS operation strategy. Various
endeavors have been undertaken to formulate accurate battery
degradation models [11], [12], [13], [14], [15], [16]. The
seminal degradation model proposed by [11] has successfully
captured the non-linearity of degradation by considering
both the SoC and DoD. The authors of [11] empirically
demonstrated the model’s robust correlation with real-world
scenarios. However, the need for historical data in its
Rainflow counting method inherently limits its applicability
in real-time decision-making. To overcome the necessity of
historical data, the study [16] reformulated the model of [11]
into a Markovian model to ensure that the current state of
the battery contains sufficient information on future battery
degradation.

To illustrate the use of the Markovian degradation model,
the study [16] framed the ESS operation problem as a
Markovian Decision Process (MDP) and tackled it using
a learning-based algorithm, Reinforcement Learning (RL).
However, theMarkovian degradationmodel proposed by [16]
includes a numerical procedure for solving nonlinear equa-
tions, which presents compatibility issues with general math-
ematical optimization methods such as Linear Programming
(LP) and Quadratic Programming (QP).

Our degradation model aims to refine the existing models
to be fit for analytical optimization methods. While authors
of [16] presented a Markovian model reformulated from the
model by [11], their model needed iterations for approxi-
mation. Building upon the seminal contributions of [11]
and [16], our quadratic degradation model further simplifies
and transforms it into a mathematical form suitable for ana-
lytical optimization methods. Furthermore, by providing an
analytical equation, our model can reduce the computational
burden of calculations and enhance interpretability. We have

VOLUME 12, 2024 88535



K. J. Choi et al.: Quadratic Formulation of ESS Degradation and Microgrid Operation Strategy

analytically refined their frameworks, ensuring our model
accurately accounts for the degradation cost in the monetary
term. To summarize, our degradation model comprises three
crucial attributes: increase efficiency and interpretability,
fidelity to foundational works, monetary evaluation, and
adaptability tomathematical optimization frameworks. These
elements collectively render it an indispensable tool for
effectively optimizing microgrid systems.

This study pursues the optimization of microgrid oper-
ation using QP that incorporates the proposed quadratic
degradation model. While RL is a robust technique capable
of operating in ill-defined environments [17], it presents
several challenges. First, RL does not ensure a global
optimum solution. Its reliance on a trial-and-error approach,
which is heavily influenced by initial conditions and the
agent’s particular experiences, can lead to suboptimal out-
comes. Second, RL often encounters difficulties in handling
explicit constraints, potentially yielding solutions that might
be infeasible or unsafe for microgrid operations. Finally,
alterations in system parameters require retraining, which is
an inefficient process for microgrids that undergo frequent
changes.

In our research, we adopt the QP approach that over-
comes the aforementioned limitations of RL. QP excels in
contexts where systems have robust predictive models [18].
As prediction models for PV generation and power demand
continue to improve, they form a dependable foundation
for microgrid optimization [19], [20], [21]. QP not only
handles practical constraints intrinsic to control problems,
such as stability requirements and input-output boundaries
but also ensures the feasibility and safety of microgrid
operations [22]. Additionally, the deterministic nature of QP
allows for efficient adaptations in response to the changes
in system parameters, establishing it as a resilient tool in
dynamic microgrid settings [23].

In microgrid optimization research, several studies
strongly advocate for multiobjective optimization [23], [24],
[25], [26], [27], [28], [29]. These studies incorporate a wide
range of considerations, covering primary operational costs
to ancillary factors such as battery degradation, emission of
pollutant gases, strategic node selection, and the stability of
power generation.

In particular, the study [23] demonstrates the effectiveness
of QP in optimizing the energy management of microgrids.
The authors propose an objective function that integrates two
distinct components: electricity costs and battery degrada-
tion. However, these components are measured in different
units, with electricity costs quantified in monetary terms and
battery degradation gauged in units related to battery life or
performance decline. The integration of these heterogeneous
units requires careful consideration. The weighted addition of
heterogeneous terms can be arbitrary, lacking a clear rationale
or systematic determination method. This limitation calls for
expressing the lifespan and degradation of the battery in
monetary terms.

Studies [24], [25] focus on reducing CO2 emissions,
while [26] expands its objectives to include the emission
of multiple pollutants and cost considerations. Studies
[27] and [28] address power variability in microgrid systems,
with [27] emphasizing effective node connections and [28]
integrating environmental costs. The authors of [29] imple-
mented four different objectives, including costs, into their
optimization problem.

In contrast to the earlier examinations of multiobjective
optimization, our study presents multiple objectives consis-
tently quantified in monetary units. This requires a detailed
understanding of the diverse cost elements inherent in micro-
grid operations, including battery degradation and Time-of-
Use (ToU) tariffs. By integrating a quadratic ESS degradation
model, we refine the conventional QP formulation, forging a
framework that prioritizes pragmatic monetary optimization.

This paper contributes in the following aspects:
• proposing a quadratic battery degradation model that
reduces computational burden compared to existing
models while preserving a high level of accuracy and
encompasses both the SoC and DoD.

• formulating the microgrid optimization with explicit
monetary evaluation, ensuring battery degradation costs
are adequately considered,

• employing QP for microgrid optimization, factoring
in battery degradation, which results in a substantial
operational cost reduction of 3-18 %.

• proposing QP-based optimization model exploits the
convexity, ensuring global optimality while reduc-
ing computational complexity. This enables real-
time decision-making and integration into microgrid
management.

II. DEGRADATION MODEL
In recent years, the development of battery degradation
models has been actively researched, yet a consensus on
a definitive model has not been reached. This section
introduces a noteworthy approach to characterizing battery
degradation. Given its complexity and the challenges it poses
for direct application in diverse scenarios, such as operational
management of ESS, a simplified quadratic approximation
of the original model is proposed. The validation of this
approximation model is then examined.

A. PREVIOUS RESEARCH ON BATTERY DEGRADATION
Given that the extent of battery degradation is affected
by usage patterns and external factors, comprehending the
properties of degradation is essential, particularly considering
the high cost of the battery [30]. This section delves into
the semi-empirical battery degradation model from [11] and
its numerical reformulated version with Markovian property
by [16], underscoring their relevance in optimizing microgrid
systems.

Battery degradation, a nonlinear process, can be cate-
gorized into cycle aging and calendar aging [14], [15].
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Cycle aging results from repeated charging-discharging
activities, while calendar aging refers to the battery’s
natural wear over time, influenced by factors such as SoC
and environmental temperature. The study [14] presents a
chemicalmodel of factors contributing to battery degradation.
Building upon this, the foundational research by [11] outlines
the stress factors leading to degradation and proposes a
mathematical framework. The study [11] links two aging
types to four stress factors:

• SoC stress, Sσ (σ ): Degradation increases with higher
SoC levels; maintaining lower SoC levels helps mitigate
degradation.

• DoD stress, Sδ(δ): Degradation increases super-linearly
with DoD levels, accelerating at a rate greater than
proportional to increases in DoD.

• Temperature stress, ST (T ): Degradation varies with the
operating temperature. Temperatures between 15◦C and
20◦C are optimal for minimizing degradation.

• Time stress, St (t): Batteries degrade over time, indepen-
dent of cycling.

Temperature and time stresses, which contribute to battery
degradation, are presumed to be minimized in the controlled
microgrid environment, where conditions are carefully man-
aged to avoid extreme temperatures. While acknowledging
the impact of numerous factors on battery degradation that are
not included in our model, our study focuses on controllable
factors, consistent with the approach taken by [11].
The degradation per cycle, fd,1, is calculated by combining

these factors as shown in Equation (1) below.

fd,1 = (Sδ(δ) + St (t)) × Sσ (σ ) × ST (T ) (1)

fd,1 effectively estimates the battery lifespan in a fixed
charge-discharge cycle, enabling the computation of the
battery life L̄t .

L̄t = 1 − αseie−Ntβseifd,1 − (1 − αsei)e−Nt fd,1 (2)

where αsei and βsei represent coefficients for solid electrolyte
interphase (SEI) film formation in the battery degradation
model, and Nt represents the number of cycles.
Although Equation (2) offers a method to compute

battery degradation within a fixed charge-discharge cycle,
it is not fully suited for real-world scenarios that exhibit
irregular battery usage patterns. To tackle this limitation, the
study [11] employed the Rainflow counting method [31].
However, this approach requires an exhaustive battery oper-
ation history which poses computational challenges during
optimization [16]. To address this challenge, the authors
of [16] present a Markovian reformulation for the battery
degradation model. Markovian models are state-dependent,
thereby avoiding the need for extensive historical data, which
greatly improves computational efficiency.

For the determination of battery life, the Markovian
approach uses three key metrics: the current SoH (L̄t ), current
SoC (BSoCt ), and next SoC (BSoCt+1 ). These values facilitate the

prediction of the SoH for the next time step (L̄t+1).

L̄t+1 = f (L̄t ,BSoCt ,BSoCt+1 ) (3)

Equation (3) takes a Markovian form, predicting the
SoH at the next time step based on the current and next
time step’s SoC and the current SoH, assuming constant
values for other environmental variables. This method is
crucial for determining optimal charging and discharging
times. It forecasts the battery’s lifespan through variations
in the SoC, reflecting the user’s battery usage patterns. The
study [16] proposed a numerical procedure for Equation (3)
and demonstrated it to be a highly loyal model with an
error of less than 0.001% compared to the original model
in [11]. To further refine this model, we propose its quadratic
approximation form in the next subsection.

B. QUADRATIC APPROXIMATION OF THE BATTERY
DEGRADATION MODEL
The Markovian degradation model proposed by [16]
improved computational efficiency and showed compatibility
with RL frameworks compared to the model by [11].
However, the iterative process in numerical methods makes it
challenging to use analytical optimization methods like QP.
To address this, we introduce a quadratic approximation of
the battery degradation model, enabling its integration with
analytical optimization methods. The specific revisions are
as follows.

Figure 1 illustrates SoH changes for three fixed SoC
cycles. For instance, ‘‘Cycle 85-25’’ shows the SoH impact
of repeatedly operating the battery between 85% and 25%
SoC. Figure 1 reveals a progressive shift from nonlinear to
relatively linear SoH changes as the number of battery cycles
increases.

FIGURE 1. Non-linearity of battery degradation.

Due to pronounced nonlinearity in certain intervals,
we employ piecewise regression. Considering batteries are
often disposed of when their SoH reaches around 80%,
our model focuses on the SoH range from 100% to 80%.
The following steps are taken to develop our degradation
model: 1) Employing piecewise division for SoH intervals,
2) Generating training data, 3) Training the model, and
4) Validating the model.

To effectively address the nonlinearity of degradation,
we applied a piecewise regression approach, segmenting the
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SoH into distinct intervals and creating a regression model
for each. For the SoH range of 100%-90%, which exhibits
pronounced nonlinearity, we developed models for each 1%
segment. Given that the SoH range of 90%-80% shows
comparatively linear degradation, we utilized a single, unified
model to represent this interval. In total, 11 models were
developed to characterize the battery degradation for the SoH
range of 100% to 80%.

Furthermore, the generation of robust training data is
vital for the development and validation of our models.
We generated a training dataset by simulating different
scenarios using the Markovian degradation model proposed
by [16]. Specifically, we generated the training dataset as
follows. First, 10,000 pairs of uniform random SoC and
the next SoC were generated. For each pair, the DoD was
calculated to form an input sample consisting of SoC, the
next SoC, and DoD values. Second, for each input, the SoH
degradation was calculated using the Markovian degradation
model to determine the output value. Finally, regression
was used on this training data to obtain a quadratic model.
Our dataset, which incorporates a range of degradation
outputs from the model, ensures an accurate representation
of complex degradation properties.

In the process of training the model using data generated
with hourly ESS control intervals, we assumed that external
stress factors, such as time and temperature stresses, exhibit
minimal variations across cycles. As a result, the SoH is
determined solely by the SoC ((BSoCt + BSoCt+1 )/2) and DoD
(|BSoCt − BSoCt+1 |). Using our proposed regression method,
we derived the following model for per-cycle SoH variation:

L̄t − L̄t+1

= β0 + β1
BSoCt+1 + BSoCt

2
+ β2|BSoCt+1 − BSoCt |

2
+ ϵt . (4)

Here, ϵt denotes the residual term, capturing any unex-
plained variability.

To assess the performance of our trained models,
we employed the R2 metrics. Figure 2 provides a comparison
of values between the Markovian and the quadratic model
across 300 random samples for both the 80%-90% and 96%-
97% SoH intervals. A perfect alignment between models
would position all data points along the red dashed 45-
degree diagonal line. For SoH values in the 80%-90%
range, the model achieved an R2 of 0.98. In the nonlinear
90%-100% SoH region, where piecewise regression was
applied, all 10 models consistently achieved scores above
0.97, including the 96%-97% SoH interval. Incorporating
higher-dimensional SoC and DoD variables did not lead to
a significant improvement in fit.

Our quadratic model closely approximates the Markovian
degradationmodel proposed in the study by [16], demonstrat-
ing a strong goodness of fit. Unlike the models presented in
the studies by [11] and [16], our proposed model directly
provides degradation equations for variable SoC usage
patterns, enabling the formulation of optimization problems
for analytical methods.

FIGURE 2. Comparison of degradation values.

III. QP PROBLEM DESCRIPTION
In this section, we explore the application of our previously
introduced quadratic degradation model to a concrete micro-
grid scenario, presenting a detailed problem formulation
reminiscent of the challenges addressed in [23]. Our setup,
as depicted in Figure 3, demonstrates the system architec-
ture central to our QP optimization approach tailored for
microgrids.

Our analysis is centered around a university campus
equipped with PV and ESS. In our configuration, the PV
system feeds into a DC-bus, transferring its generated power,
PPV , to the grid. A controller governs whether the ESS
charges or discharges from the DC-bus, with a positive PESS

signaling charging and a negative indicating discharging.
An Active Front End (AFE) AC/DC converter links the DC
bus to an AC power supplier, with the purchased power
labeled PGRID. Due to the ToU tariff structure, the purchase
cost is dynamic. The microgrid system can then draw its
required electricity, PLOAD, from diverse sources.
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FIGURE 3. DC microgrid architecture.

In linewith the objectives outlined in [23], our primary goal
is to minimize the microgrid’s operating costs, with a specific
focus on optimizing ESS control within system constraints
using QP. We believe that highlighting the advantages of
our QP optimization compared to the Markovian degradation
model [16] for ESS management in microgrids aids in
understanding the detailed description of the mathematical
unfoldings in this section:

• Efficiency: Our method outperforms in scenarios with
well-defined parameters, aligning with ESS manage-
ment needs while optimizing computational resources.

• Simplicity: By using the piecewise quadratic regression,
our method facilitates straightforward implementation
due to its analytical nature and compatibility with the
system model.

• Determinism: This approach ensures consistent out-
comes when the input is identical, which is crucial for
stable microgrid operations.

A. OBJECTIVE FUNCTION
The primary expenses associated with operating a microgrid
system are electricity costs and ESS depreciation costs.
To address these, our objective function J aims to minimize
these costs over the time interval from 0 toN−1, considering
a fixed time interval of one hour. With this understanding,
we formulate J for optimal ESS operation as follows:

J = min
N−1∑
t=0

{CGRID
t PGRIDt + cnew|L̄t+1 − L̄t |}. (5)

In this function, CGRID
t denotes the electricity tariff at

varying times, PGRIDt stands for the power transferred from
the AC grid to the microgrid at time t , and cnew is the cost
of a new ESS system. This formulation rectifies the unit
inconsistency observed in the model from [23] and presents
a cost function framed strictly in monetary terms.

B. CONSTRAINTS
The input power (PGRIDt ), the power of the ESS (PESSt ), and
the SoC level (BSoCt ) have the following boundaries in all

segments.

PGRIDmin ≤ PGRIDt ≤ PGRIDmax (6)

PESSmin ≤ PESSt ≤ PESSmax (7)

BSoCmin ≤ BSoCt ≤ BSoCmax (8)

The only controllable variable in the system is the power
of the ESS (PESSt ), which assumes a positive value during
charging and a negative value during discharging. As a
result, all other variables, such as PGRIDt and BSoCt , should be
expressed in terms of PESSt .
In this microgrid system, the input power (PGRIDt ) is

determined by subtracting the power generated by the solar
power system (PPVt ) from the sum of the ESS (PESSt ) and the
microgrid system’s power consumption (PLOADt ).

PGRIDt = PESSt + PLOADt − PPVt (9)

On the other hand, the SoC level (BSoCt ) is determined by
the power of the ESS (PESS ) and the ESS capacity (qESS ).

BSoCt = BSoCt−1 +
PESSt−1

qESS
· (10)

Additionally, from the above equation, we deduce that the
SoC is measured relative to a new battery’s capacity rather
than its degraded state, as the ESS capacity remains fixed at
its initial value. This recurrence relation (10) can be expressed
as the cumulative value of PESS .

BSoCt = BSoC0 +

t−1∑
i=0

PESSi /qESS (11)

C. MATRIX REPRESENTATION OF QP
To adapt the existing software to this problem, a transition
is implemented to a matrix representation. Using the vector
PESS , where each element corresponds to the PESSt value for
a segment, we can frame the objective function as follows:

J = min
PESS

1
2
(PESS )TQPESS + b · PESS , (12)

where

Q =
2cnewβ2

(qESS )2
IN (13)

b = CGRID
+
cnewβ1

qESS
(M + M′)T1N (14)

A detailed derivation is available in the Appendix.
Here, IN represents an N-dimensional identity matrix,

and 1N is an N-dimensional vector with values of 1. M is
an N-dimensional square matrix where all strictly lower
triangular elements are 1 and the rest are 0. M′ is a matrix
obtained from M by changing only its diagonal elements
to 1.

The input power (PGRIDt ) constraint in (6) and the ESS
power (PESSt ) constraint in (7) are related to Equation (9). For
an efficient solution-finding method, these constraints can be
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combined to define the upper and lower bounds of ESS power
(PESS ) as follows.

PLBi = max{PGRIDmin − PLOADi + PPVi ,PESSmin }

PUBi = min{PGRIDmax − PLOADi + PPVi ,PESSmax}

By introducing vectorized representation of PLBt , PUBt into
PLB, PUB, the constraints (6), (7), and (8) are organized in the
following matrix form.

IN
−IN
M

−M

PESS ≤


PUB

−PLB

qESS (BSoCmax − BSoC0 )1N

qESS (−BSoCmin + BSoC0 )1N


IV. RESULTS AND DISCUSSION
This section designs and performs an empirical study of the
proposed problem. Throughout this simulation study, we aim
to address the following three questions.

1) Does the adaptation of the proposed quadratic degrada-
tion model into ESS operation lead to cost savings?

2) How does the consideration of degradation property
impact the usage pattern of the ESS?

3) How does the usage pattern of the ESS vary across the
lifespan of the ESS?

A. THE DATA-DRIVEN SIMULATION DESCRIPTION
The dataset used in our study is derived from the operation
of the microgrid system at Seoul National University of
Science and Technology (Seoul-Tech), located in Seoul,
South Korea, in July 2022. The electricity consumption
of the microgrid system for the month was 1,876 kWh,
accounting for approximately 3-4% of SeoulTech’s total
electricity consumption. The PV system accounts for about
13% of the microgrid’s total power consumption, with the
remaining portion to be purchased from the external grid.
The simulations described in this study were conducted using
Python with the CVXOPT library version 1.3.2, chosen
for its robust capabilities in handling complex optimization
problems.

Table 1 summarizes the constants related to the optimiza-
tion problem discussed in the previous section. The external
power input into the microgrid is expressed as a positive
value, limited to a maximum of 200 kW to prevent exceeding
the system’s peak load. This restriction ensures the prevention
of power shortages and any potential impact on the operation
of the ESS. The ESS functions within a -50 kW to 50 kW
range, with negative values denoting discharge and positive
indicating charge. To mitigate risks of overcharging and deep
discharging, the SoC of the ESS is restricted to a range
between 20% and 80%, with an initial SoC set at 50%. This
operational constraint is informed by studies [32], [33], [34]
which note that such SoC limitations can enhance battery
safety, longevity, and reduce its internal resistance.

The ESS comprises three batteries, each with a capacity
of 183 kWh, totaling 549 kWh. The cost of a new battery

TABLE 1. Parameter values.

is 428,220,000 KRW, equivalent to approximately $317,220,
based on an exchange rate of 1,350 KRW/$. Assuming the
residual value of the battery at end-of-life to be zero and the
battery to be unusable when its SoH declines from 100%
to 80%, the depreciation expense for each 1% reduction in
SoH is 5% of the cost of a new battery. Therefore, cnew in
Equation (5) should be five times the cost of a new battery.
Notably, the actual end-of-life value of a battery is rarely
zero, and assessing this value is complex. For our analysis,
we take a conservative stance on battery degradation and set
the residual value at 50% of the cost of a new battery. While
this assumption may seem arbitrary, our results show that
adjusting the residual value influences numerical outcomes
without altering the main conclusion of our study. This
adjustment sets cnew at 2.5 times the cost of a new battery,
equating to 1,070,550,000 KRW.

Concerning the battery disposal occurring at an SoH
of 80% and the limitation of ESS operation to an SoC
below 80%, the following points need to be addressed.
As previously indicated in Equation (10), SoC is gauged
against the capacity of a new battery. Despite the battery’s
degradation and diminished charging capacity, the maximum
charging threshold is maintained at 80% of a new battery’s
capacity, aligning with the operational constraints of the ESS
until disposal.

The ToU pricing for the microgrid system is depicted in
Figure 4. Rates are tiered into three levels: on-peak hours are
marked by red stripes at 163.2 KRW/kWh;mid-peak hours by
yellow stripes at 97.3 KRW/kWh; and off-peak hours in white
at 52.5 KRW/kWh. Higher rates correspond to periods of
elevated electricity demand. A special reduced rate is applied
during the lunch hour from 12:00 to 13:00, which is pivotal
for the operation of the ESS, a point to be discussed further.

The power readings from the grid, PV, and load, initially
captured at 5-second intervals, were averaged to align with
our ESS’s hourly operational cycle. Consequently, the PESS

vector consists of 744 (24 × 31) data points. The solution,
PESS , for the optimal operation of the ESS, was derived from

88540 VOLUME 12, 2024



K. J. Choi et al.: Quadratic Formulation of ESS Degradation and Microgrid Operation Strategy

FIGURE 4. ToU over 24 hours.

the objective function defined in Equation (5) under three
scenarios: excluding degradation effects (where cnew is zero),
with moderate sensitivity to degradation at SoH levels from
80% to 90%, and with high sensitivity to degradation from
96% to 97%. Given that daily variations are not significant,
average daily results are presented and analyzed. First, the
operational costs of the microgrid for each scenario are
compared, followed by a detailed examination of how the
ESS operation patterns differ across the scenarios.

B. MICROGRID OPERATION COST
This section delves into the first of the three questions
outlined earlier. We present the operational costs of the
microgrid as defined in Equation (5) and compare them to
a scenario where the degradation term is absent, effectively
setting cnew to zero. This comparison is made to contrast our
model with the one presented in a previous study [23], which
did not adequately consider the appropriate degradation
factors in its ESS optimization model.

Without considering battery degradation, microgrid opti-
mization focuses solely on electricity rates, which may lead
to a shorter lifespan of the expensive ESS. The analysis is
conducted under two conditions: one where ESS degradation
is less significant (an older battery with a SoH between 80%-
90%), and another where the degradation is more substantial
(a newer battery with SoH between 96%-97%).

Table 2 provides a summarized comparison of the monthly
costs associated with the operation of the ESS, both with and
without accounting for degradation. The analysis starts by
examining a battery with a SoH between 80%-90%. When
degradation is not considered, the monthly electricity bill is
calculated to be 4,327,000 KRW. Accounting for degradation

TABLE 2. Microgrid operation cost (1,000 KRW).

within the SoH range of 80%-90% causes a marginal increase
in the bill to 4,358,000 KRW. However, when degradation
is accounted for within the SoH range of 80%-90%, the
cost attributable to depreciation is substantially reduced from
1,013,000 KRW to 824,000 KRW. As a result, the total cost
excluding degradation effects is approximately 3% higher,
totaling 5,340,000 KRW compared to 5,182,000 KRW when
degradation is considered.

The impact of degradation is further highlighted within
the SoH range of 96%-97%, where the effects per cycle
are more severe. When degradation is excluded from the
ESS operation, it leads to a monthly depreciation cost of
5,089,000 KRW, which is strikingly over half of the total
monthly expenses, overshadowing the regular electricity
bill. In contrast, considering degradation raises the elec-
tricity bill to 4,996,000 KRW but significantly reduces the
depreciation costs to 2,697,000 KRW, culminating in an
overall expense of 7,693,000 KRW. This is substantially
lower than the 9,416,000 KRW incurred when degradation
is disregarded, indicating an 18% rise in costs. In the
microgrid domain, where the cost of ESS is significant,
our model’s consideration of degradation factors plays
a crucial role. By accurately capturing the impact of
degradation on the overall operational costs, our approach
demonstrates its effectiveness in optimizing microgrid per-
formance while minimizing expenses associated with ESS
degradation.

C. OPERATIONAL PATTERNS WITH AND WITHOUT
DEGRADATION CONSIDERATION
In addressing the second research question, this section
evaluates the impact of degradation consideration on the
usage patterns of the ESS. A comparative analysis between
operational strategies, with and without degradation, is con-
ducted to understand their implications on the battery’s
SoH.

Figure 5 showcases the average hourly optimal PESSt
values and the corresponding SoC fluctuations over a month.
These are observed under three distinct scenarios: a) where
degradation is not included in the model, b) with the battery’s
SoH ranging from 80%-90%, and c) at a SoH of 96%-97%.
The plotted points represent the average PESSt for each hour,
taken across a month-long period.

From Figure 5 (a), we note that the battery’s charging
cycle commences at 23:00 to coincide with the lowest
electricity rates and continues until the SoC attains the 80%
threshold. Afterward, the battery discharges during peak
pricing periods. The regression equation (4) highlights a
direct correlation between SoC and degradation, indicating
that high SoC levels are not cost-effective once degradation
is factored into the costs. In response, Figure 5 (b) illus-
trates how the charging onset is deliberately delayed when
degradation is considered, with the SoC only reaching 80%
by 9:00, thereby aligning with the beginning of mid-peak
hours.
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FIGURE 5. Daily averaged optimal ESS power inflow (PESS ) and SoC (BSoC ).

Furthermore, a comparison of SoC levels between
Figure 5 (a) and (b) reveals that while the SoC peaks at
80% by 6:00 in (a), it does so at 9:00 in (b), indicating a
strategic shift in charging times to accommodate degradation
effects.

Additionally, a closer examination of the 9:00 to 10:00
interval across both figures reveals a discrepancy: Figure 5 (b)
registers a significant discharge, which is then offset by
a charging period from 12:00 to 13:00. As the electricity
rates remain constant during these intervals, the observed
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discharge and subsequent charge cannot be justified by rate
differences alone. Instead, this pattern emerges from the need
to mitigate degradation, which is more costly at higher SoC
levels. Therefore, despite the immediate costs associated with
charging, the inclusion of degradation into the operational
strategy proves to be more advantageous when assessing
the cumulative impact on the efficiency and cost of the
system.

D. IMPACT OF SEVERE DEGRADATION ON ESS USAGE
PATTERNS
This section tackles the last research question proposed
earlier: With increased sensitivity to battery cycles, what
variations can be observed in the operational patterns of the
ESS?

The operation of a nearly new battery, which suffers
more significant degradation with each charging cycle,
is depicted in Figure 5 (c). This figure demonstrates a cautious
operational approach within the microgrid, maintaining the
SoC below 40%. This conservative charging behavior is
pronounced, with the battery opting to charge primarily
between 9:00 and 10:00, the mid-peak hours. In comparison
to Figure 5 (b), the charging activity between 12:00 and 13:00
is substantially higher. These operational decisions are strate-
gic, deliberately aiming to minimize SoC levels to mitigate
the high costs associated with battery degradation. Despite
opportunities to charge more economically, the priority is
to consistently maintain a low SoC, which is beneficial in
curtailing degradation linked to DoD fluctuations.

This strict restriction on ESS activity may imply that,
given the current conditions, the costs linked with the
ESS may surpass the advantages of fully leveraging ToU
tariffs. Simultaneously these results highlight the critical
importance of including battery degradation considerations
in the operational planning of the ESS.

E. DISCUSSION
In microgrid operations, cost savings realized by accounting
for ESS battery degradation are achieved by strategically
managing the SoC andDoD at their optimal low levels, taking
into account both electricity rates and depreciation. While
the conventional approach involves charging the ESS during
periods of low electricity rates, it is vital to delay the charging
time to optimize the SoC. In addition, we highlight that during
significant battery degradation phases, particularly at high
SoH levels, the model inherently optimizes for a conservative
battery operation strategy. This optimization occurs not
through artificially imposed SoC constraints, but by allowing
the model to determine the optimal charge-discharge actions
based on degradation considerations. This approach naturally
results in operations that favor a lower SoC range, thereby
minimizing DoD without the need for predefined SoC
limits.

When incorporating battery degradation into the operation
of the ESS, there may be instances where charge-discharge

scenarios seem less efficient compared to when only
considering electricity rates. This is due to the reduction
in ESS degradation offsetting losses from electricity costs.
Since implementing this approach mandates a sophisticated
battery degradation model and a comprehensive objective
function within a framework, this study thus introduces a
viable candidate for utilizing QP.

V. CONCLUSION
Microgrids play a vital role in modern power systems, offer-
ing improved resilience, sustainability, and energy efficiency.
As these systems incorporate elements such as PV, ESS,
and ToU tariffs, optimizing their operations becomes crucial.
Given the high costs and inevitable wear of batteries over
time, it is important to account for their degradation when
determining the most cost-effective operation strategies.

This research addresses the shortcomings of past microgrid
optimization methods, which often overlooked or inade-
quately tackled battery degradation. We have introduced an
advanced quadratic battery degradation model that captures
both SoC and DoD dynamics. Incorporating the financial
impacts of degradation into our optimization process made
our approach both practical and financially insightful.

Applying QP to our refined problem, we observed a
notable reduction in operational costs ranging from 3% to
18%. This optimization not only streamlines operations but
also demonstrates a keen understanding of the financial
implications of battery wear.

The findings of this study contribute to advancing smarter
microgrid operations. By incorporating precise insights into
battery degradation in the optimization process, decision-
makers can achieve a balance between efficient operations
and battery lifespan.

In this study, we focused on the integration of PV
and ESS systems in an educational institution setting.
However, we believe that our research has the potential to
extend to various industrial applications beyond microgrid
operation. For example, our proposed degradation model
could be applied to Electric Vehicles (EVs) to develop
optimal charging strategies that mitigate battery degradation.
By considering the specific characteristics of EV batteries
and their usage patterns, our model could help extend the
lifespan of EV batteries and reduce the overall cost of
ownership for EV users.

Furthermore, our study could be extended to optimize the
installation capacity and the number of energy storage sys-
tems. Future studies may leverage our QP formulation to ana-
lyze the economic benefits of different battery configurations
and identify the optimal capacity for specific applications.
Additionally, investigating the potential economic advantages
of using multiple batteries with lower individual SoH could
be a valuable area for further research. These extensions
could help maximize the industrial value of ESSs by lever-
aging analytical optimizations and the quadratic degradation
model.

VOLUME 12, 2024 88543



K. J. Choi et al.: Quadratic Formulation of ESS Degradation and Microgrid Operation Strategy

APPENDIX
QP FORMULATION DERIVATION
To represent the objective function in matrix form, we define
the following vectors:1

PGRID =


PGRID0

PGRID1
...

PGRIDN−1

 , PESS =


PESS0

PESS1
...

PESSN−1

 ,

BSoC =


BSoC0

BSoC1
...

BSoCN−1

 , BSoC
′
=


BSoC1

BSoC2
...

BSoCN

 .

The relationship (9) can be represented in matrix form as
follows:

PGRID = PESS + PLOAD − PPV . (15)

The vector BSoC and its lead vector BSoC ′ can be
represented as follows:

BSoC = BSoC0 1N + MPESS/qESS , (16)

BSoC
′
= BSoC0 1N + M′PESS/qESS , (17)

where

M =


0 0 . . . 0 0
1 0 . . . 0 0
1 1 . . . 0 0

...

1 1 . . . 1 0

 , M′
=


1 0 . . . 0 0
1 1 . . . 0 0
1 1 . . . 0 0

...

1 1 . . . 1 1

 .

Applying the above to the objective function yields the
following:

J = min
PESS

CGRID
· (PESS + PLOAD − PPV )

+ cnew[β0N + β1(2NBSoC0 +
1

qESS
1
T
N (M + M′)PESS )

+ β2(
1

qESS
)2PESS · PESS ]. (18)

Excluding the constant term,

J = min
PESS

CGRID
· PESS +

cnewβ1

qESS
1
T
N (M + M′)PESS

+
cnewβ2

(qESS )2
PESS · PESS . (19)

It can be rearranged into the general form of a QP problem
as follows:

J = min
PESS

1
2
(PESS )TQPESS + b · PESS , (20)

1CGRID, PPV , PLOAD are also defined in the same manner.

where

Q =
2cnewβ2

(qESS )2
IN, (21)

b = CGRID
+
cnewβ1

qESS
(M + M′)T1N . (22)

The second inequality of the constraint condition (6) can be
rewritten as follows, according to the relation equation (9):

PESSt ≤ PGRIDmax − PLOADt + PPVt . (23)

Therefore, this can be combined with constraint condi-
tion (7):

PESSt ≤ min{PGRIDmax − PLOADt + PPVt ,PESSmax}. (24)

Accordingly, we define the upper and lower boundary
matrices and express the constraint condition in the form of
the PESS matrix:

PLB ≤ PESS ≤ PUB, (25)

where

PLBi = min{PGRIDmin − PLOADi + PPVi ,PESSmin },

PUBi = min{PGRIDmax − PLOADi + PPVi ,PESSmax}.

To summarize the above, constraint conditions (6), (7),
and (8) are arranged in the following matrix form:

IN
−IN
M

−M

PESS ≤


PUB

−PLB

qESS (BSoCmax − BSoC0 )1N
qESS (−BSoCmin + BSoC0 )1N

 .
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