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ABSTRACT In this paper, we present a new complete and constructive characterization of all the stabilizing
regions in the PID gain space. It is based on D-partition theory and the fact that for a given proportional
gain kp the stability boundaries in the plane of integral and derivative gains are all straight lines. Actually,
we present the notion of the critical kp point, which is defined in the sense that the topology of theD-partition
of (ki, kd ) plane can change when the kp crosses a critical kp point. Moreover, we identify seven types of
critical kp points and provide formulas for their computation. With the availability of all critical kp points,
the stabilizing kp intervals can be exhaustively and exactly determined. By sweeping the kp parameter over the
stabilizing kp intervals, the whole set of stabilizing PID controllers for a given plant is created. In addition,
it allows for an efficient test of the existence of a stabilizing PID controller set without sweeping the kp
parameter. To validate the newly presented analytical and constructive characterization of stabilizing PID
controller sets and demonstrate the existence of seven types of critical kp points, five examples are provided.

INDEX TERMS Stabilizing PID controller set, D-partition theory, parametric-space method, stability
domain.

I. INTRODUCTION
As evidenced by the vast amount of research literature on
proportional-integral-derivative (PID) controllers, the classi-
cal PID control algorithm is still widely applied in a variety
of industrial control systems [1], [2], [3], [4], [5]. The main
reason for the longstanding use of PID control in vari-
ous applications is that the principle of the control law is
understandable by control engineers, and its control actions
provide satisfactory performance for a wide class of pro-
cesses. Moreover, with the advent of low-cost programmable
microprocessors, the implementation and tuning of the PID
control algorithm have become advantageous and flexible.
Nowadays, the PID control scheme also finds pervasive
applications in high-tech industries and products, such as
networked control and robots [6], [7], [8].

Despite the advances in modern control synthesis method-
ologies, such as Youla-Kucera parametrization [9] and
Wiener-Hopf spectral factorization method [10], [11], [12],
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the task of optimal tuning parameters for PID controllers still
relies on parametric design methods because a PID controller
has only three adjustable gain parameters. Conventional para-
metric PID design methods rely on graphical approaches,
such as Nyquist plot [13], [24], root locus [14], [15], Bode
diagram [16], [17], Nichols chart [18], [19], and D-partition
theory [20], [21], [22], [23].

The last two decades have witnessed renewed interest in
developing new approaches for parametric-space PID design
methods. Especially, considerable effort has been devoted
to constructing stability/performance feasible domains in
the controller parameter space. By searching within these
stability/performance feasible domains, the designed PID
controllers naturally meet the stability and performance
requirements. The regained attention on this research topic
by the systems and control researchers can be attributed to
the following facts: (i) the stringent performance and stability
requirements in control; (ii) the algorithmizations of graph-
ical methods, such as the D-partition technique [22], [23],
the Nyquist criterion [13], [24], and generalized Hermite-
Biehler Theorem [25]; (iii) the revelation of more structural
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properties of stabilizing PID controller sets [25], [26], [27],
[28], [29], [30], [31], such as for a given value of the pro-
portional gain kp parameter, the stable domain in the (ki, kd )
plane consists of a finite number of disjoint convex poly-
gons [24], [25], [26], [27], [28], [29], [30], [31].
Since the finding [25] that for a given value of proportional

gain kp the D-partition boundaries in the (ki, kd ) plane are all
straight lines, several research efforts [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41] have been
devoted to constructing stable regions in the PID parameter
space by sweeping the proportional gain kp. Regarding the
efficiency of a method based on the kp-sweeping approach
for the construction of the whole stabilizing PID domain or
for the inspection of the existence of stabilizing PID con-
trollers, a particularly crucial task is to assert the so-called
stabilizing kp-intervals within which each kp guarantees the
existence of at least one stable polygon in the (ki, kd ) plane.
However, rather surprisingly, it has seldom been mentioned
in the literature, despite the fact that an exact determination
of stability will not lead to a conservative stable region or
not waste effort in sweeping parameters over unnecessary
kp-intervals. In [25], an effective method was proposed to
identify stabilizing kp-intervals within which the existence
of a stable polygon in the (ki, kd ) plane was guaranteed.
An improvement to this method was recently given in [40]
by relaxing an unnecessary condition so that the number of
stable checks could be reduced. Using the Nyquist stability
criterion, Bajcinca [34] derived a necessary condition for
discriminating the intervals on the kp axis over which no
stable polygons in the (ki, kd ) plane exist. However, the use
of such conditions can lead to conservative results.

Since stability is the foremost requirement in any control
loop design, the stabilizing PID controller set in the gain
space is crucial for initiating the optimal tuning process.
The availability of the entire stabilizing set of PID controller
gains can greatly facilitate optimal PID controller design by
eliminating the stability check step in the search process. This
is especially important for the multi-objective PID control
design case. Therefore, it is essential to have an exact and
exhaustive construction of the entire stabilizing PID con-
trollers for a given plant.

The objective of this paper is to show that, to date, the
problem of determining exactly the stabilizing kp-intervals
has not been solved thoroughly by presenting a new and
complete characterization of the entire set of stabilizing PID
controllers for a given plant. More precisely, we identify all
seven critical conditions for which any one holds can lead to
a change in the topology of the D-partition domains of the
PID controller gain space. With these seven types of critical
kp points, an exact and complete characterization of all sta-
bilizing PID can be achieved. The main contributions of this
study are as follows:

• It identifies seven types of critical kp points and ana-
lytically characterizes the entire set of stabilizing PID
controllers.

• It provides mathematical formulas for calculating all
types of critical kp points for a given plant controlled by
a standard PID controller.

• It fully solves the problem of determining exactly and
exhaustively the stabilizing kp-intervals. As a result, the
entire set of stabilizing PID controllers for a given plant
can be constructed efficiently by sweeping the kp param-
eter over all stabilizing kp-intervals without wasting time
in sweeping kp over non-stabilizing kp ranges.

• It can now be claimed that the new characterization
of all stabilizing PID controllers for a given linear
time-invariant system is complete and constructive.

The remainder of this study is organized as follows.
In Section II, the basics ofD-partition technique are reviewed
briefly. In Section III, a new and complete characterization of
the D-partition boundaries of the PID controller gain space
for a given arbitrary order linear time-invariant system is
presented. Section IV presents numerical examples to show
that seven types of critical kp points indeed exist among the
systems controlled by the PID controller. Finally, conclusions
are presented in Section V.

II. A BRIEF REVIEW OF THE D-PARTITION THEORY
The D-partition theory originated by Neimark [21] and plays
a fundamental role in the characterization of stable domains
in the parameter space of control systems. It has been
widely applied to solve robust stability problems and design
lower-order controllers. In particular, the recent progress in
constructing an entire set of PID controllers for a given plant
is due to a clearer exploration of the topological or geomet-
ric properties of the stability domains of the PID controller
parameter space. Before presenting our main results, the
idea of the D-partition technique is briefly described in this
section.

For a continuous-time system with the characteristic poly-
nomial

p (s; γ ) = c0 (γ ) + c1 (γ ) s+ c2 (γ ) s2 + . . . + cn (γ ) sn

(1)

where the coefficients ci (γ ) , i = 0, 1, 2, . . . n are continuous
functions of the m parameters γ = (γ1, γ2, . . . , γm), and the
technique of D-partition establishes a direct correspondence
between the points in the m-dimensional vector space 0m,
where γi are coordinates, and the number of the left (right)
half-plane roots of the polynomial p(s, γ ) in (1). More pre-
cisely, using the D-partition technique, the m-space 0m of
parameters γi can be partitioned into domains D (nu) , nu =

0, 1, 2, . . . ,n, which correspond to the polynomial p(s, γ )
having nu roots with positive real parts. Here, D (nu) , nu =

1, 2, . . . ,n, are referred to as stability domains, and, D (0)
is stable domain. It is noted that the domain D (nu) may
be composed of disjoint regions in the m-space. According
to the boundary crossing theorem [42], as a point γ in the
parameter space 0m varies continuously across the boundary
of two adjacent stability domains, one of the following root
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FIGURE 1. A typical unity feedback control system.

movements occurs: (i) a pair of complex conjugate roots of
p(s, γ ) moves across the imaginary axis; (ii) a real root moves
from one half plane to the other through the origin s = 0; and
(iii) an infinite root jumps from one half of the plane to the
other, corresponding to the characteristic polynomial p(s, γ )
having a degree drop.

Based on the above description of D-partition theory,
we see that the power of D-partition theory lies in that it
provides a concrete characterization of the stability domain
boundaries of the D-partition of the parameter space. For
the m-dimensional gain parameter space 0m, the D-partition
boundaries consist of the following three types of surfaces:
(i) real root boundary (RRB) ∂D0 : c0 (γ ) = 0; (ii) infinite
root boundary (IRB) ∂D∞ : cn (γ ) = 0; (iii) complex root
boundary (CRB) ∂Dω : p(±jω; γ ) for all ω ∈ (0, ∞) , where
j =

√
−1. The CRB is a parametric representation of the

boundary surface.
Before leaving the section, it should be mentioned that in

the western literature, the D-partition technique also named
as D-decomposition technique [43], [44], [45]. In the past,
the D-partition method has been applied to analyze graph-
ically the stability of various dynamic systems, including
continuous systems [20], [46], discrete systems [47], [48] and
nonlinear systems [49], [50], in the two-dimensional param-
eter plane. Recent advances in D-partition technique include
the algorithmization of the method [40], [51] and the robust
stability analysis of systems with uncertain parameters [52],
[53], [54].

III. THE D-PARTITION OF THE PID GAIN SPACE
Consider the block diagram of a unity feedback control sys-
tem shown in Fig. 1, where Gp (s) stands for the plant to
be controlled, and Gc (s) is the controller. Without a loss of
generality, let the transfer function of the plane be

Gp (s) =
b0 + b1s+ . . . + bmsm

a0 + a1s+ . . . + ansn

:=
B (s)
A (s)

,m < n (2)

and Gc (s) be a PID controller, i.e.,

Gc (s) = kp +
ki
s

+ kd s (3)

where kp, ki, and kd are the proportional, integral, and deriva-
tive gains, respectively, of the PID controller. Throughout this
paper, we assume that polynomialB (s) never vanishes for any
s on the imaginary axis.

It is well known that the stability investigation of the
continuous-time PID control system shown in Fig. 1 involves

the root location of the characteristic polynomial

p (s;k) = sA (s) +

(
ki + kps+ kd s2

)
B (s) (4)

where k = (kp, k i, kd ) denotes the PID controller parameter
vector. Let K denote the three-dimensional vector space with
kp, ki, and kd as the coordinates, andK(nu) the subset ofK for
which the characteristic polynomial p (s;k) has nu roots with
positive real parts. Over the past two decades, the D-partition
of the parameter space K associated with characteristic poly-
nomial p (s;k) have received constant attention [20], [21],
[22], [23], [55], [56], [57], [58], [59], [60] with a focus on
the construction of the entire set K(0) of stabilizing PID
controllers for a given linear time-invariant plant. The interest
in exploiting the D-partition technique for PID controller
design problems may be ascribed to the finding that the
special form of the parameters and kp, ki, and kd entering the
coefficients of the characteristic polynomial p (s;k) , which
for a fixed value of the stability domains in the (k i, kd ) plane,
are convex polygons [25]. In the past two decades, several
authors [25], [29], [34], [41] have attempted to solve the prob-
lem of exactly and exhaustively determining the stabilizing
kp intervals where for each kp stable region(s) in the (k i, kd )
plane is guaranteed to exist. However, as demonstrated below,
this problem has not yet been fully resolved. In the follow-
ing, we present the notion of the critical kp to reveal all
intervals in which the topology of the D-partition of (k i, kd )
plane remains invariant. The computation of critical kp values
allows for a complete characterization of all stabilizing PID
controller set K(0).

Let ∂D denote the set of D-partition boundaries of the
PID parameter space K. This boundary set consists of the
following three types of stability boundaries:

RRB : ∂D0 =

{
k ∈R3

:p (0;k) = 0
}

(5)

CRB : ∂Dω =

{
k ∈R3

:p (±jω;k) = 0 ∀ω ∈ (0, ∞)
}

(6)

IRB : ∂D∞ =

{
k ∈ R3

:q (0;k) = 0,
q (s;k) = snp(1/s;k)

}
(7)

where q(s;k) is the reciprocal polynomial of p (s;k) . Here
it is worth noting that when the PID parameter point k
moves from one D-partition region into an adjacent region
by crossing their common RRB, at least one real root of
the characteristic polynomial p (s;k) will move across the
imaginary axis of the complex s-plane through the origin
s = 0. It is also important to note that the IRB ∂D∞

exists only when one or more PID parameters enter the lead-
ing coefficient of characteristic polynomial p (s;k). In such
cases, the degree of the polynomial p (s;k) will drop at least
by one, and a real root of p (s;k) will jump from −∞ to
+∞ or from +∞ to −∞ as the real leading coefficient
varies continuously from 0− to 0+. Hence, the condition of
zero leading coefficient of the polynomial defines the IRB
∂D∞. Since the polynomial q (s;k) defined in (7) is the
reciprocal polynomial of p (s;k) , q (s = 0;k) is equivalent to
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p (±∞;k). It is mathematically clear to express the condition
of zero leading coefficient of p (s;k) by q (0;k) = 0.
According to (5), the equation for describing the boundary

∂D0 can be obtained simply by setting s = 0 in (4), as follows:

∂D0 : b0k i = 0 (8)

Assuming of b0 ̸= 0, RRB ∂D0 is a plane in the
three-dimensional gain space K or a vertical line ki = 0 on
the (k i, kd ) plane. As for the IRB ∂D∞, it exists when the
degree m of B (s) is one less than that of A (s) , i.e., m =

n − 1. In other words, the boundary set ∂D∞ may be empty,
depending on the relative degrees of polynomials A(s) and
B (s) . Based on its definition given in (7), the boundary ∂D∞

is characterized by

∂D∞:

{
an + kdbn−2 = 0, if m = n− 1
∅, otherwise

(9)

Next, we consider the characterization of the CRB set ∂Dω.

To this end, we note that the characteristic equation p (s;k) =

0 can be rewritten in the form:

ki + kps+ kd s2 = −
sA (s)
B (s)

(10)

Substituting s = jω into the above equation and making
rearrangement, we have(

ki − kdω2
)

+ jkpω = −
jωA (jω)B (−jω)

B (jω)B (−jω)
(11)

Because polynomial B(s) is assumed to have no purely imag-
inary roots, the denominator in (11) never vanishes. Noting
that the coefficients of polynomials A(s) and B(s) are real,
their real and imaginary decompositions for s = jω can be
represented as

A (jω) = AE
(
ω2

)
+ jωAO

(
ω2

)
(12a)

B (jω) = BE
(
ω2

)
+ jωBO

(
ω2

)
(12b)

Substituting these two decompositions into (11), we obtain
the real and imaginary parts of the equation as follows:

ki − ukd = −
X (u)
Z (u)

(13a)

kp = −
Y (u)
Z (u)

:= f (u) (13b)

where u = ω2 is the squared frequency, and

X (u) = u(AE (u)BO (u) − AO (u)BE (u)) (14a)

Y (u) = AE (u)BE (u) + uAO (u)BO (u) (14b)

Z (u) = BE (u)BE (u) + uBO (u)BO (u) (14c)

Let F
(
u; kp

)
be the kp-parametrized u-polynomial defined as

F
(
u; kp

)
= Y (u) + kpZ (u) (15)

Hence, for a fixed proportional gain kp = k̃p, there is a finite
number of squared frequencies ũi, i= 1, 2, . . . , ñ that satisfy
the following polynomial equation

F
(
ũi; k̃p

)
= 0, i = 1, 2, . . . , ñ (16)

In fact, ũi are the positive real roots of the polynomial
F

(
u; kp

)
. In the sequel, these ũi are referred to as singular fre-

quencies. For a singular frequency ũ, (13a) defines a straight
line in the (k i, kd ) plane. The following theorem characterizes
the stability boundaries of theD-partition of the (k i, kd ) plane.
Theorem 1: Given a characteristic polynomial p (s;k)

in (4), the set of stability boundaries of the D-partition of the
(k i, kd ) plane corresponding to a fixed kp = k̃p consists of the
following types of straight lines:

L0 : ki = 0 (17a)

L∞ : kd = −
bm
an

, if m = n− 1 (17b)

Ll : ki = ũlkd +
X (ũl)
Z (ũl)

, l = 1, 2, . . . , ñ (17c)

where ũl, l = 1, 2, . . . , ñ are the positive real roots of the
polynomial (15) for kp = k̃p.
Theorem 1 is a slight modification of the result given by

Söylemez et al. [29], and its proof follows directly from the
derivations of (11)-(15). Here, it is noted that boundary lines
L0 and L∞ (if they exist) are independent of the proportional
gain parameter kp whereas the line Ll depends implicitly on
the kp parameter. It should also be noted that the finite number
of boundary lines defined by (17) divides the (k i, kd ) plane
into a finite number of non-overlapped convex polygons. This
geometric property was first demonstrated by Ho et al. [25]
using the Hermite-Biehler theorem and the linear program-
ming technique.

Having characterized the D-partition stability regions in
the two-dimensional (k i, kd ) plane, we now proceed to
provide a geometric or topological characterization of the D-
partition of the three-dimensional parameter space K. In fact,
we are going to identify the critical points on the kp axis
for which a change in the topology of the D-partition of
the (kp, ki, kd ) parameter space can occur only when the kp
parameter crosses a critical-kp point.
Theorem 2: The topology of the D-partition of the

(kp, ki, kd ) space can change only when the kp parameter
crosses a critical point that satisfies one of the following
conditions:

(i) Two distinct singular lines Li and Lk coincide.
(ii) One singular line Li and border lines L0 and L∞ inter-

sect at a single point.
(iii) Two distinct singular lines Lii and Lk intersect the

border line L0 at a common point.
(iv) Two distinct singular lines Li and Lk intersect the

border line L∞ at a common point.
(v) Three distinct singular lines Li, Lk and Ll intersect at a

single point.
(vi) Value of the kp function f (u) at u = 0.
(vii)The bounded limit value of the kp function as u

approaches to ∞.
Before presenting a proof of this theorem, we first consider

the issue of computing the aforementioned critical kp points.
To facilitate later explanations and references, we refer the
critical kp points that satisfy the conditions numbered (i)-(v)
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as types 1-5 critical kp points, while conditions (vi) and (vii)
are type-0 and type-∞ critical kp points, respectively.

• Type-1 critical kp points:
As shown in Fig. 2 (in Section IV), when the value of the kp

function f (u) tends toward one of its local minima or maxima,
two adjacent singular frequencies tend to move together.
Consequenctly, the two corresponding singular lines tend to
overlap. From such an obvious argument, we know that type-
1 critical kp points occur at those singular frequencies for
which the kp function f (u) has local extrema. The necessary
condition for the existence of the local extrema of the function
f (u) is given by

f ′ (u) =
df (u)
du

= 0 (18)

Let the singular frequencies that satisfy the above condition
be denoted by ũ1l , l = 1, 2, . . . , n1. From (15), we know that
these singular frequencies are exactly the positive real roots
of the polynomial:

V (u) = Y ′ (u)Z (u) − Y (u)Z ′(u) (19)

Hence, type-1 critical kp points are evaluated as:

k̃1p,l = −
Y

(
ũ1l

)
Z

(
ũ1l

) , l = 1, 2, . . . , n1 (20)

• Type-2 critical kp points:
Suppose that border lines L0 and L∞ exist. Hence, the

integral and derivative gains ki and kd corresponding to these
lines are specified by (17a) and (17b), respectively. When
a singular line L in the (k i, kd ) plane passes through the
point (k0i , k

∞
d ) = (0, −an/bn−1), the intersection point of the

border lines L0 and L∞, the corresponding singular frequency
ũ must satisfy the condition:

(k0i − k∞
d ũ)Z (ũ) − X (ũ) = 0 (21)

which is obtained from (13a). It can be seen that for a given
ki and kd the above equation is a polynomial in the variable ũ.
Let the positive real roots of the polynomial (21) be denoted
by ũ2l , l = 1, 2, . . . , n2, the type-2 critical kp points are then
evaluated as:

k̃2p,l = f
(
ũ2l

)
(22)

• Type-3 critical kp points:
Let L1 and L2 be singular lines corresponding to two

distinct singular frequencies ũ1 and ũ2, respectively. Then,
the three lines L1, L2 and L0 intersect at a single point if the
following conditions hold.(

k0i − kd ũl
)
Z (ũl) − X (ũl) = 0, l = 1, 2

kpZ (ũl) − X (ũl) = 0, l = 1, 2 (23)

The above four equations allow one to obtain four unknowns
ũ1, ũ2, kp, and kd . Since the solutions to (23) are not neces-
sarily unique, we denote the solution set as(

k̃3p,l, k̃
3
d,l, ũ

3
1,l, ũ

3
2,l

)
, l = 1, 2, . . . , n3 (24)

The kp values k̃3p,l, l = 1, 2, . . . , n3 appearing in the above
solution set are referred to as type-3 critical kp points.

• Type-4 critical kp points:
Suppose that the border line L∞ exists, i.e. m = n − 1.

Let L1 and L2 be singular lines corresponding to two distinct
singular frequencies ũ1 and ũ2, respectively. Then the three
lines L1, L2 and L∞ intersect at a single point if the four
conditions hold:(

ki − k∞
d ũl

)
Z (ũl) − X (ũl) = 0, l = 1, 2

kpZ (ũl) − X (ũl) = 0, l = 1, 2 (25)

The above four polynomial equations allow one to find the
four unknowns ũ1, ũ2, kp, and ki. As before, let the solution
sets of (25) be denoted by(

k̃4p,l, k̃
4
d,l, ũ

4
1,l, ũ

4
2,l

)
, l = 1, 2, . . . , n4 (26)

In the plane of kp = k̃4p,l, the singular lines L1 and L2,
which correspond to the singular frequencies ũ41,l and ũ

4
2,l,

respectively, and the border line L∞ intersect at the point in
three-dimensional gain space, the point (k i, kd ) = (k̃4i,k , k̃

∞
d ).

In the sequel, the kp values k̃4p,l, l = 1, 2, . . . , n4, are referred
to type-4 critical kp points.

• Type-5 critical kp points:
To determine the values of kp for which the singular lines

associated with three distinct singular frequencies intersect
at a single point in the associated (k i, kd ) plane, we set the
equations.

(ki − kd ũl)Z (ũl) − X (ũl) = 0,

kpZ (ũl) − X (ũl) = 0, l = 1, 2, 3 (27)

We solve this set of six simultaneous polynomial equations
for the six unknowns to obtain the solution set(

k̃5p,l, k̃
5
i,l, k̃

5
d,l, ũ

5
1,l, ũ

5
2,l, ũ

5
3,l

)
, l = 1, 2, . . . , n5 (28)

The kp values k̃5p,l shown above are the type-5 critical kp
points.

• Type-0 critical kp point:
The unique value of kp function f (u) evaluated at the zero

singular frequency u = 0 is referred to as the type-0 critical
kp point and is denoted by

k̃0p = f (0) < ∞ (29)

• Type-∞ critical kp points:
Depending on the relative degrees of polynomials A(s)

and B(s) the kp function f (u) may approach a finite value
as the singular frequency u tends to ∞. In this case, the
corresponding limit

k̃∞
p = lim

u→∞
f (u) (30)

is referred to as the type-∞ critical point.
It should be mentioned that in [29] type-0 and type-1

critical kp points were used to determine the stabilizing kp-
intervals. In this text, the presentation of type-3 and type-4
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FIGURE 2. (a). The plot of kp function f (u) vs u for Example 1. (b). The D-partition of the (ki , kd ) plane for kp = k̃1
p,5−0.0002 = 6.1523 in Example 1.

(c). The D-partition of the (ki , kd ) plane for kp = k̃1
p,5 in Example 1. (d). The D-partition of the (ki , kd ) plane corresponding to the type-5 critical

kp = k̃5
p,3 = 3.13093 for Example 1.

critical kp points was inspired by [41]. Nevertheless, type-2,
type-5, and type-∞ critical kp points are identified for the
first time. In other words, for linear continuous time-invariant
systems, types 2-5 and type-∞ critical kp points in the text are
all newly presented.

Having identified the above seven types of possible critical
points, we provide the following simple proof of Theorem 2.
The proof is based on the property of the root-continuity
argument [62], [63] and a simple geometrical interpretation of
the deformation of plane polygons formed by a set of straight
lines.
Proof of Theorem 2: As indicated in Theorem 1 the D-

partition stability domains on each (k i, kd ) plane of the
three-dimensional PID gain space K are non-overlapped con-
vex polygons that are formed by a set of singular lines
together with the border lines L0 and L∞. The border lines L0
and L∞ are independent of the proportional gain parameter kp
whereas the singular lines are functions of singular frequen-
cies, which in turn depend on parameter kp. It is well known
that the roots of a polynomial are continuous functions of its

coefficients. As shown in (16), the singular frequencies ũk are
the roots of the polynomial F(ũ; kp) and parameter kp enters
the coefficients of the polynomial F(ũ; kp) in a linear manner.
Moreover, the singular lines are continuous functions of kp,
that is, their slopes and axis intercept points vary continuously
with respect to the continuous change in kp. Consequently,
the vertices of each stability polygons are also continuous
functions of the proportional gain kp. This fact implies that
the topology or geometric structure of the D-partition sta-
bility polygons in the (k i, kd ) plane can change only as the
number of vertices of the stability polygons change when the
parameter kp is varied continuously. Indeed, when kp moves
continuously across a type-1 critical kp point, the two singular
lines coincide. In addition, when three D-partition boundary
lines intersect at a single point, at least one stability triangle
region disappears. Moreover, as kp parameter passes through
the type-0 or type-∞ (if any) critical kp point, the number of
singular lines can change, which in turn causes the topology
of D-partition of the (k i, kd ) plane to change. The proof is
now completed based on the above arguments.
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To construct the set of all stabilizing PID controllers, it is
necessary to determine exactly and exhaustively the stabiliz-
ing kp intervals within which each kp corresponds to at least
one stable region in the (k i, kd ) plane. The following theorem
serves as a means to identify the stabilizing kp intervals from
all critical kp points.
Theorem 3: Let k̃p,l, l = 1, 2, . . . , nc denote all distinct

critical kp points arranged in ascending order, i.e. k̃p,l <

k̃p,l+1. If for an arbitrary kp ∈ (k̃p,l, k̃p,l+1) := kp,l a stable
polygon in the corresponding (k i, kd ) plane exists, then there
exists stable polygon(s) in the corresponding (k i, kd ) plane
for each kp ∈ kp,l . Contrarily, if for a given kp there is no
any stable polygon in the correspondin g(k i, kd ) plane then
there has no kp in the interval kp,l to which the corresponding
(k i, kd ) plane has stable polygon.
Proof of Theorem 3: From (15), the singular frequencies u

are the positive real roots of the kp-parametrized polynomial
F(u; kp). Hence, by the implicit function theorem we know
that the root function u(kp) is continuous with respect to kp
everywhere except at the type-1 critical kp points. Accord-
ing to the notion of critical kp points, the topology of the
D-partition of the (k i, kd ) plane can change only when kp
moves across any of the kp critical points. Consequently,
the topology of the D-partition of the (k i, kd ) plane remains
invariant as kp moves along the interval kp,l which is formed
by two adjacent critical kp points. Hence, the existence or
non-existence of stable region(s) in the (k i, kd ) plane remains
unchanged when the proportional gain kp is varied within the
interval kp,l This completes the proof.

Before leaving this section, it is remarked that besides com-
puting critical kp values, all other computations involved in
the construction of stabilizing PID set are essentially trivial.
For a given plant, all the critical kp values can be obtained
by finding the real solutions of the four algebraic polynomial
systems in (21), (23), (25), and (27), which respectively have
one, two, four, and six unknowns. As commands or computer
codes for computing all the real roots of polynomial systems
have now become a quite standard feature of many com-
mercially available mathematical software packages (e.g.,
Mathematica, Maple, and Matlab), determining all critical kp
values for a given plant can be easily accomplished.

IV. ILLUSTRATIVE EXAMPLES
To demonstrate the existence of seven types of critical
kp points and the construction of all stabilizing PID con-
trollers, we provide five examples in this section. In the
sequel, the blue figure labeled at the center of each polygon
of the D-partition of (k i, kd ) plane represents the number
of unstable roots of the associated PID-controlled closed-
loop. The numerical results and graphic drawings presented
in this section were obtained using Wolfram Mathematica
software [61] with double-precision computations. In the
following five examples, the computer times spent to cal-
culate the critical kp values are 12, 12, 4, 2, and 2 seconds,
respectively, on a PC equipped with Intel(R) i9-2.4GHz CPU.

Example 1: Consider the plant [29]:

Gp,1 (s) =
−4s4 − 7s3 − 2s+ 1

s6 + 11s5 + s4 + 95s3 + 109s2 + 74s+ 24

The polynomials X (u), Y (u) and Z (u) defined by (14) are
evaluated to be

X (u) = −122u+ 481u2 − 792u3 + 229u4 + 4u5,

Y (u) = 24 − 275u+ 730u2 − 579u3 + 31u4 + u5,

Z (u) = 1 + 4u− 30u2 + 49u3 + u4.

Following the procedure given in Section III, we obtain the
following critical kp values and associated singular frequen-
cies. (

k̃0p,1, ũ
0
)

= (−24, 0) ,(
k̃0p,2, ũ

1
1

)
= (−4.50738, 0.506408) ,(

k̃5p,3, k̃
5
i,3, k̃

5
d,3, ũ

5
1, ũ

5
2, ũ

5
3

)
= (3.1309, 12.5617, 4.74246,

0.208996, 1.156356, 8.30647),(
k̃1p,4, ũ

1
2

)
= (3.99, 0.258438) ,(

k̃1p,5, ũ
1
3

)
= (6.15252, 3.05170) .

Here the superscripted number stands for the type of critical
kp value.

The plot kp function f (u) is shown in Fig. 2(a), in which all
the critical kp values are also depicted. In this plot, the blue
segment on the kp-axis represents the stabilizing kp interval.
Referring to Fig. 2(a), the coordinate of the black-dotted
point on the curve of f (u) is

(
u, kp

)
=

(
ũ13, k̃

1
p,5

)
=

(3.0517, 6.1525). It can be seen from this figure that the
horizontal line of constant kp with its value slightly less than
the critical kp value k̃1p,5, will intersect with the kp function
f (u) at two points. For instance, the horizontal line of kp =

k̃1p,5 − ε = 6.1523, ε = 0.0002, and the two intersection
points are at u1 = 3.0260 and u2 = 3.0776, which are
very close to the singular frequency u = ũ13. As shown in
Fig. 2(b), the boundary lines L1 and L2 corresponding to
these two singular frequencies on plane kp = 6.1523 are
almost parallel to each other because their slopes are 1/u1
and 1/u2 respectively. As kp↑k̃

1
p,5, the corresponding singular

frequencies u1↑ũ13 and u2↓ũ13. This indicates that the two
boundary lines L1 and L2 coincide as kp↑k̃1p,5, as shown in
Fig. 1(c).
The D-partition of the (k i, kd ) plane associated with the

type-5 critical kp point, k̃5p,3, was constructed as shown in
Fig. 2(d). It can be observed that three singular lines intersect
at a single point (k i, kd ) = (k̃5i,3, k̃

5
d,3).

Example 2: For the plant’s transfer function

Gp,2 (s) =
−s4 − 5s3 + 8s2 − s− 1

s5 + 3s4 + 29s3 + 15s2 − 3s+ 1
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all its critical kp points and the corresponding singular fre-
quencies are as follows:(

k̃∞

p,1, ũ
∞

)
= (−2, ∞) ,(

k̃1p,2, ũ
1
1

)
= (−0.77850, 0.28893) ,(

k̃3p,3, k̃
3
i,3, k̃

3
d,3, ũ

3
1, ũ

3
2

)
= (−0.059346, 0, −3.017424,

0.87070),(
k̃0p,4, ũ

0
)

= (1, 0) ,(
k̃1p,5, ũ

1
2

)
= (2.17883, 7.94694) ,

A plot kp function, f (u), is shown in Fig. 3(a). Since the rela-
tive degree of the denominator and numerator polynomials of
Gp,2(s) is one, both border lines L0 and L∞ exist, i.e., ki = 0
and kd = 1. Moreover, a type-∞ critical kp point exists. The
data above also indicate that there is a type-3 critical kp point
at which two boundary lines and the border line L0 intersect
at a single point (k i, kd ) =

(
k̃3i,3, k̃

3
d,3

)
= (0, −3.17424) on

the (k i, kd ) plane. This can be verified by the D-partition of
the (k i, kd ) plane with kp = k̃3p,3 shown in Fig. 3(b).
Example 3: Consider the six-order plant

Gp,3 (s) = (1 − s)Gp,1 (s)

=
s5 + 6s4 − 7s3 + 2s2 − 3s+ 1

s6 + 11s5 + s4 + 95s3 + 109s2 + 74s+ 24

where Gp,1(s) denotes the plant shown in Example 1. All
poles and zeros of Gp,3(s) are exactly the same as those of
Gp,1(s) except that it has an additional non-minimum-phase
zero at s = 1. The kp function f (u) for this plane is shown in
Fig. 4(a). Clearly, border lines L0 and L∞ exist, i.e., ki = 0
and kd = −1. Subsequently, using the formulas given in (18)-
(30), we obtain six critical kp points for the D-partition of
the PID parameter space. The values and types of critical kp
points and the associated singular frequencies are as follows:(

k̃0p,1, ũ
0
)

= (−24, 0) ,(
k̃1p,2, ũ

1
1

)
= (−5.01468, 315.111) ,(

k̃∞

p,3, ũ
∞

)
= (−5, ∞) ,(

k̃2p,4, k̃
2
i,4, k̃

2
d,4, ũ

2
)

= (4.63153, 0, −1, 1.20748) ,(
k̃4p,5, k̃

4
i,5, k̃

4
d,5, ũ

4
1, ũ

4
2

)
= (5.34403, 7.31838,−1,

0.12294, 0.65058),(
k̃1p,6, ũ

1
2

)
= (14.4637, 0.29311) .

As indicated in the above data set or in Fig. 4(a), there are five
different types of critical kp points. Fig. 4(b) shows the D-
partition of the (k i, kd ) plane with the type-2 critical kp point,
kp = k̃2p,4. It can be observed from this figure that the singular
line L2 associated with u = ũ2 passes through the point
(k i, kd ) = (0, −1) which is the intersection point of the
border lines L0 and L∞. For the type-4 critical kp point, kp =

FIGURE 3. (a). The plot of kp function f (u) vs u for Example 2. (b). The
D-partition of the (ki , kd ) plane corresponding to kp = k̃3

p,3 for
Example 2.

k̃4p,5, the D-partition of the corresponding (k i, kd ) plane is
depicted in Fig. 4(c). As can be observed, the three boundary
lines L∞, Lũ41

and Lũ42
intersect at point (k i, kd ) =

(
k̃4i,5, −1

)
.

Example 4: Consider the plant

Gp,4 (s) =
s3 + 3s2 + 9

s4 + 2s3 + 3s2 + 7s+ 14

The kp function, f (u), is plotted in Fig. 5(a). It can be seen
from this figure that there are two disjoint stabilizing kp
intervals, i.e., (k̃1p,1, k̃

1
p,3) and (k̃1p,4, k̃

1
p,6) The entire set of

stabilizing PID controller parameters is shown in Fig. 5(b).
In addition, seven critical kp points are identified. The seven
critical kp points shown in this figure and their associated
singular frequencies are listed below:(

k̃1p,1, ũ
1
1

)
= (−1.87078, 1.36615) ,(

k̃2p,2, ũ
2
1

)
= (−1.73465, 0.73135) ,(

k̃0p,3, ũ
0
)

= (−1.55555, 0) ,(
k̃1p,4, ũ

1
2

)
= (0.315687, 8.62419) ,
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FIGURE 4. (a). The plot of kp function f (u) vs u for Example 3. (b). The
D-partition of the (ki , kd ) plane corresponding to the type-2 critical
kp = k̃2

p,4 (c). The D-partition of the (ki , kd ) plane corresponding to the

type-4 critical kp = k̃4
p,5.

(
k̃2p,5, ũ

2
2

)
= (0.51243, 4.102) ,(

k̃1p,6, ũ
1
3

)
= (0.533262, 3.70234) ,(

k̃∞

p,7, ũ
∞

)
= (1, ∞) ,

From the data set shown above, we see that there are two type-
2 critical kp points, i.e., kp = k̃2p,2 and kp = k̃2p,5. Hence, it can
be verified that in the (k i, kd ) plane associated with kp = k̃2p,2
(resp. kp = k̃2p,5), and boundary lines L0, L∞ and L(u = ũ21)
(resp. L(u = ũ22)) intersects at point (k i, kd ) = (0, 1).
To show the detail of constructing D-partition of the

(ki, kd )-plane associated with the k̃p = −1.80272, which is
the mid-point of the stabilizing kp-interval [k̃1p,1, k̃

2
p,2]. The

positive real roots of the polynomial F[u, k̃p] are found to
be ũ1 = 0.96975 and ũ2 = 1.6447. The four D-partition
boundary lines are thus given by

L0 : ki = 0

L∞ : kd = −1

L1 : ki − 0.96975kd = 1.08406

L2 : ki − 0.96975kd = 2.70038

With these four lines the partition of the (ki, kd )-plane
is shown in Figure 5(c). In this figure, the (ki, kd )-plane
is divided into 11 non-overlapped polygons and each
blue-colored figure signify the number of unstable roots
of the corresponding characteristic polynomial with (ki, kd )
controller parameters being taken from each stability
domain while keeping k̃p = −1.80272. The existence
of stable polygon (0 unstable roots) with the vertices
(0, −1.11787), (−1.23818,−2.39468), and (0, −1.64185),
confirms that [k̃1p,1, k̃

2
p,2] belongs to the set of stabilizing

kp-intervals. The geometric center of the stable polygon is
evaluated to be (k̃i, k̃d ) = (−0.412727,−1.71813). For the
PID controller setting (k̃d , k̃i, k̃d ), the closed-loop character-
istic polynomial is given by

P(s) = −3.71454 − 2.22446s− 9.70139s2 − 2.82088s3

− 4.95712s4 − 0.718134s5

which has the following five roots:

− 6.60969,

− 0.108054 ± 0.733117 i,

− 0.0384902 ± 1.19315 i

All the real parts of these roots are negative, the
PID-controlled system is thus stable.
Example 5: Consider the control of the discrete-time sys-

tem

Gp,5 (z) =
100sz3 + 8z2 + 3z+ 11

100z5 + 2z4 + 5sz3 − 41z2 + 52z+ 70

using a discrete-time PID controller of the form

Gc (z) = Kp +
Ki

(1 − z−1)
+ Kd (1 − z−1)

The application of bilinear transform

z =
s+ 1
s− 1
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FIGURE 5. (a). The plot of kp function f (u) for Example 4. (b). The entire
set of stabilizing PID controller parameters for Example 4, in which the
stabilizing kp intervals are

(
k̃1

p,1, k̃1
p,3

)
= (−1.87078, −1.55555 and(

k̃1
p,4, k̃1

p,6

)
= (0.315687, 0.533262). (c). The D-partition of the

(k i , kd )-plane associated with the kp value kp= − 1.80272 for Example 4.

leads to the following equivalent characteristic polynomial

p
(
s; kp, ki, kd

)
= A (s) +

(
ki + kps+ kd s2

)
B(s)

where

A (s) = 63 + 389s+ 480s2 + 1094s3 + 963s4 + 117s5

+ 94s6

B (s) = 45 + 74s− 150s2 − 44s3 + 17s4 + 58s5

Hence, the RRB ∂D0 and IRB ∂D∞ of the D-partition of the
(kp, k i, kd ) parameter space are given by

∂D0 : ki = −A(0)/B(0) = −1.4

∂D∞ : kd = 0

For the characteristic polynomial p
(
s; kp, ki, kd

)
, the kp func-

tion, f (u), is plotted in Fig. 6(a). All critical kp points and their
corresponding singular frequencies are obtained as follows:(

k̃0p,1, ũ
0
)

= (−6.34222, 0) ,(
k̃∞

p,2, ũ
∞

)
= (−1.62069,∞) ,(

k̃2p,3, k̃
2
i,3, k̃

2
d,3, ũ

2
)

= (−1.48947, −1.4, 0, 131.441) ,(
k̃4p,4, k̃

4
i,4, k̃

4
d,4, ũ

4
1, ũ

4
2

)
= (0.050947, −0.09676, 0,

0.366004, 9.3496),(
k̃1p,5, ũ

1
)

= (3.0669, 1.56195) .

The stabilizing kp interval is found to be
(
k̃∞

p,2, k̃
4
p,4

)
. To ver-

ify that the type-∞ critical kp point k̃∞

p,2 is the endpoint
of the stabilizing interval, we construct the D-partitions of
(k i, kd ) planes with kp = −3.98146 and kp = −1.55508,
respectively, which are the middle points of the intervals(
k̃0p,1, k̃

∞

p,2

)
and

(
k̃∞

p,2, k̃
2
p,3

)
. For kp = −3.98146, the D-

partition of the associated kp = −3.98146 plane is shown
in Fig. 6(b). As shown in the figure, none of the stability
regions are stable. However, for kp = −1.55508, we take
{ki, kd } = {−0.90614, 0.00107}, which is the center of the
stable polygon, to form the characteristic polynomial

p
(
s; kp, ki, kd

)
= 22.224+251.967s+500.893s21367.211s3

+ 1015.859s4 + 37.9604s5 + 3.82355s6

+ 0.0620s7

It can be checked that the above polynomial is Hurwitz stable.
In Table 1, we summarize all the critical kp points on

the kp-axis for the plants considered in this section. In this
table, different types of kp points are marked with different
colors, and the stabilizing kp intervals are shown in green line
segments. It can be seen from the table that seven types of
critical kp points exist for the PID control of different plants.
In addition, except for type-2 and type-5 critical kp points, all
the other five types of critical kp ]points may appear as one
of the endpoints of a stabilizing kp interval. In the literature,
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FIGURE 6. (a). The plot off kp function f (u) vs u for Example 5. (b). The
D-partition of the kp = −3.98146 plane in the PID parameter space.

TABLE 1. Critical points and types for plants in examples 1-5.

only type-0 and type-1 critical kp points have been used to
determine the stabilizing kp intervals, which can lead to an
inexact PID stabilizing set. For example, by the criterion
given in the existing literature, e.g., [29], only type-0 and

type-1 critical kp points k̃1p,2 = −0.77850,k̃0p,4 = 1, and
k̃1p,5 = 2.17883 would be identified. By sampling any kp

point from the interval I4,5 = (k̃
0
p,4, k̃

1
p,5), one can conclude

that interval I4,5 is not a stabilizing kp -interval. However, the
lack of type-3 critical k̃3p,3 = −0.059346 would lead one to

conclude that I4,5 = (k̃
0
p,2, k̃

1
p,4) is a stabilizing kp-interval if a

kp point is sampled from the interval I2,3 = (k̃
0
p,2, k̃

3
p,3), or that

I4,5 is not a stabilizing kp-interval if a kp is sampled from

the interval I3,4 = (k̃
4
p,3, k̃

1
p,4). However, the finding of type-3

critical k̃3p,3 = −0.059346 allows one to conclude exactly that
the interval I2,3 is a stabilizing kp-interval while the interval
I3,4 is not. An exact determination of stabilizing kp-intervals
will occur for Example 5 if only type-0 and type-1 critical kp
points are used without taking into account the existence of
type-∞ and type-4 critical kp points k̃∞

p,2 = −1.62069 and
k̃4p,4 = 0.050947.

V. CONCLUSION
In this study, the problem of finding the entire set of sta-
bilizing PID controllers for a linear time-invariant plant of
arbitrary order has been fully solved. The successful res-
olution of the problem is based on using the D-partition
technique and the unique feature of the stabilizing PID con-
troller set that for a given proportional gain kp, theD-partition
boundaries in the (ki, kd ) plane are all straight lines. By char-
acterizing the topology change of the D-partition regions in
the (ki, kd ) plane with the respective proportional gain param-
eter kp, we have presented the notion critical kp points. More
importantly, we have identified seven types of critical points
and provided their computational formulas. Consequently, all
stabilizing kp-intervals can be determined exactly and exhaus-
tively. Thus, the presented analytical characterization of the
stabilizing PID controller set is complete and constructive.
This new characterization can facilitate the construction of
controller parameter domains that meet design specifications
such as gain margin, phase margin, degree of stability and
sensitivity. Therefore, it is believed that the presented results
will enlarge the application of the D-partition technique to
cases where the number of controller parameters is more than
three.
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