IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 22 May 2024, accepted 5 June 2024, date of publication 14 June 2024, date of current version 1 October 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3414651

== RESEARCH ARTICLE

Rethinking Deep CNN Training: A Novel
Approach for Quality-Aware Dataset
Optimization

BOHDAN RUSYN “'2, OLEKSIY LUTSYK !, ROSTYSLAV KOSAREVYCH ', OLEG KAPSHII 3,
OLEKSANDR KARPIN3, TARAS MAKSYMYUK “34, (Member, IEEE),
AND JURAJ GAZDA >

! Department of Remote Sensing Information Technologies, Karpenko Physico-Mechanical Institute, NAS of Ukraine, 79060 Lviv, Ukraine
2Department of Informatics and Teleinformatics, University of Radom, 26-600 Radom, Poland

3 Advanced Systems Research Group, Infineon Technologies, 79000 Lviv, Ukraine

#Department of Telecommunications, Lviv Polytechnic National University, 79000 Lviv, Ukraine

SDepartment of Computers and Informatics, Technical University of Kosice, 040 01 Kogice, Slovakia

Corresponding author: Juraj Gazda (juraj.gazda@tuke.sk)
This work was supported in part by the National Academy of Science of Ukraine under Project #0117U000519, in part by Ukrainian
Government ‘“‘Development the Innovative Methods and Means for the Deployment of the Dual-Purpose Information Infrastructure for the

Digital Transformation of Ukraine”” under Project # 0123U100232, and in part by Slovak Research and Development Agency under
Project APVV-18-0214 and Project VEGA 1/0685/23.

ABSTRACT The informativeness of data has always been of great interest within the machine learning
community. Nowadays, with the skyrocketing advancement of artificial intelligence and massive volumes
of noisy data, it becomes even more essential to develop robust and effective methods for training data
optimization. Existing approaches are mostly based on empirical trial and error, with either stochastic or
deterministic data reduction strategies. The key limitation of such solutions is that they do not consider the
overall informativeness of the resulting training dataset. In this paper, a novel approach for quality-aware
dataset optimization by initial assessment of its informativeness is proposed. As a metric of informativeness,
entropy values are calculated over the target dataset. To alleviate the computational complexity, an initial
clustering of the dataset is performed, and the entropy of each cluster is calculated independently. The dataset
is then optimized by dynamic programming to find a sequence of subsets with low overall entropy according
to imposed size limitations. The experimental evaluation shows that the proposed approach improves over
current best alternatives in terms of accuracy, precision, recall, and F1-score metrics. Moreover, the proposed
approach provides excellent interclass discrimination even for a large number of classes.

INDEX TERMS Deep learning, dataset reduction, training optimization, CNN.

I. INTRODUCTION

Artificial intelligence (AI) applications are currently sky-
rocketing in various industries, gaining momentum driven by
the tremendous growth of average computational capacity.
So far, the semiconductor industry is experiencing a boost
in investment in so-called Al-capable hardware such as
GPUs, TPUs, and neural accelerators. Nowadays, a wide
range of products are developed, from high-end computing
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systems to tiny microcontrollers with different types of neural
accelerators [1], [2].

Consequently, the software side of the Al world is growing
even faster, with new algorithms being released every single
day. Thus, we are now observing a paradigm shift in
Al development. Many new neural networks are explicitly
designed and optimized for specific tasks and hardware,
rather than relying on a typical universal ““training black-box
for any task’ approach [3].

In this context, choosing a proper dataset to train a
neural network is of pivotal importance to achieve target
performance. Irrelevant or noisy data samples can jeopardize
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the model’s ability to generalize information. In addition, all
classes in the dataset should be balanced to avoid biases,
which could lower the accuracy for minor classes [4], [S].
Moreover, to avoid overfitting, the training dataset must be
sufficiently large to comprehensively reflect the addressed
problem.

Particular attention should be given to the zero-data train-
ing problem, where training data are not available for some
classes [6], [7]. Typically, the data for these classes should
be represented by some alternative numerical descriptions
in the form of embedding vectors. A typical example is the
face recognition problem, where the classifier is trained on a
large subset of persons but can then be effectively applied to
recognize other persons who never appeared in the training
dataset [8]. This is achieved by exploiting the natural archi-
tecture of deep neural networks, which consist of a feature
extractor and a classifier [9]. In computer vision problems
(e.g., face recognition), the feature extractor is commonly
based on a convolutional neural network (CNN), which
extracts unique feature embeddings from each image. These
are then classified in the dense neural network classifier (e.g.,
multi-layer perceptron) during training [10]. For deployment,
the classifier can be removed, and the feature extractor can be
used to compare feature embeddings of known and unknown
classes using various distance metrics such as Euclidean,
cosine, etc. In the case of zero-data training, artificial
feature embeddings of the zero-class can be generated and
added directly to the classifier, along with the embeddings
extracted by the feature extractor from the raw data.
Additionally, some augmentation methods can be employed
to enhance the dataset volume or mitigate class imbalance
[11], [12], [13].

The widely accepted approaches for training dataset
selection in deep learning usually involve a combination
of normalization, balancing, and tuning. However, these
approaches are based on empirical trial and error and
do not assess the informativeness of the training dataset.
Informativeness refers to the quality and relevance of the
information in the dataset for solving a specific machine
learning task. An informative dataset should effectively
represent the key patterns and variations that the model can
encounter in its target application domain [14], [15]. Such
a dataset should include diverse, representative examples
covering different scenarios while maintaining minimal
volume to satisfy the required performance for a given
task.

In this paper, a novel approach for quality-aware dataset
optimization is proposed through the initial assessment
of its informativeness. The motivation for this research
is based on the possibility that two datasets of equal
size may differ in informativeness. While both datasets
may have the same training complexity, training with the
more informative one would be more efficient. To mea-
sure informativeness, the entropy of the dataset is pro-
posed as an evaluation metric. Entropy, which measures
uncertainty or randomness in a dataset, can be used to
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quantitatively assess the informativeness of training sam-
ples [16]. The entropy of a training dataset measures
how much information, on average, is needed to describe
or predict the outcome of a random sample from this
dataset.

In essence, entropy in this context serves as a metric for
evaluating how much unique information each element of
the dataset contributes to the overall understanding of the
data distribution. Too high entropy indicates a greater level
of uncertainty or diversity within the dataset, suggesting
that the data contain a wide array of features and patterns
that decrease informativeness. Conversely, too low entropy
implies less diversity and excessively high informativeness
of samples. This can result in overfitting during training and
decrease the robustness of the neural network to noisy data in
real-world tasks.

To alleviate this problem, the whole dataset is clustered
into several subsets, and the entropy values in each subset
are controlled independently. This approach reduces the
probability of too low entropy values in the entire dataset.
Another important advantage of the proposed approach is that
entropy is calculated among the feature embeddings, after the
feature extractor, making it suitable for the above-mentioned
zero-data training problem.

The major contributions of this paper are as follows:

1) A novel approach for dataset optimization is proposed,

using entropy as a metric of informativeness.

2) Dataset clustering into multiple subsets is employed,
and intra-cluster entropy is calculated for each subset
independently.

3) Simulations are conducted to compare the efficiency of
the proposed approach with alternative solutions.

The remainder of this paper is organized as follows.
In Section II, existing research on dataset optimization
for a better trade-off between cost and performance is
reviewed. In Section III, the proposed quality-aware dataset
optimization approach with entropy analysis is described.
Section IV presents comparative simulation results and
discussion. Section V offers additional discussion on the
results and practical applications of the proposed approach.
Finally, the article is concluded in Section VI.

Il. RELATED WORK

A. AN OVERVIEW OF DATA INFORMATIVENESS AND
GENERALIZATION CAPABILITIES OF Al MODELS
Understanding the informativeness and complexity of
datasets in deep learning has gained significant attention,
particularly in relation to the generalization capabilities of
neural network models. In [17], Zhang et al. explored a
remarkable phenomenon of deep learning models. According
to numerous experiments, an arbitrary neural network can
easily fit data with completely random labels, even when
there is no relation between the real class of the sample
and its label in the dataset. In practice, this means that
regardless of mismatch and imbalance between data and
labels, a neural network of sufficient size can achieve 100%
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training accuracy. Furthermore, the authors investigated that
after replacing real images with complete Gaussian noise
and assigning them random labels, the neural network is still
capable of achieving 100% training accuracy. Essentially,
this means that the effective capacity of neural networks
is sufficient for memorizing the entire dataset even if
it is statistically meaningless. This work emphasizes the
need to reconsider our understanding of generalization
in the context of deep learning, indirectly touching upon
the intrinsic complexities and informativeness of training
datasets.

Parallel to these insights, the authors in [18] propose
methodologies for the quantitative assessment of dataset
complexity and informativeness by examining the perfor-
mance of deep learning models with variable settings.
Their approach provides a framework for evaluating how
different types of data affect learning processes, thus serving
as a valuable tool for researchers aiming to optimize
training modes and model architectures depending on data
characteristics.

The impact of individual data samples in a dataset as a
measure of informativeness has been addressed by Ghorbani
and Zou through the concept of Data Shapley value [19].
Deriving from cooperative game theory, the authors proposed
an approach to quantify the contribution of each data point
to the achieved accuracy of a deep learning model. In this
context, Shapley values effectively serve as a metric of
informativeness for training purposes.

In the broader discussion on the underlying mechanics
of machine learning models, the authors in [20] argue
against the prevailing notion of interpretability and infor-
mativeness, pointing out that these concepts are often
misapplied or misunderstood within the machine learning
community. The authors emphasize the importance of clarity
of the informativeness concept in model development and
evaluation.

Further explorations investigate whether specific direc-
tions in the activation space of deep networks are crucial
for generalization. The findings in [21] suggest a system-
atic methodology to assess the generalization capability
of machine learning-based solutions via a novel feature
extraction pipeline.

In most cases, studies [22], [23] establish a correlation
between the size of the training dataset and the probability
of correct classification. These approaches reveal certain
properties of the training dataset as well as the specific
learning model. If the model’s parameters are appropriately
chosen, there generally exists a relationship where increasing
the size of the training dataset leads to improved classification
accuracy. This is attributed to the fact that a larger training set
allows for the model to be trained with more representative
features, reducing the likelihood of overfitting. Among
various solutions for the extraction of more informative
features, principal component analysis (PCA) is the most
widely used, along with its various derivatives [24], [25],
[26].
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B. ENTROPY-BASED ASSESSMENT OF DATA
INFORMATIVENESS IN DEEP LEARNING

Recently, the use of entropy as a measure of informativeness
in machine learning has been extensively studied, reflect-
ing its significance in improving model performance and
decision-making processes. The integration of entropy in
active learning methodologies is well-illustrated by work
exploring representativeness and informativeness for active
learning [27]. This approach utilizes entropy measures to
select samples that could provide the most informative data
for model training, thereby optimizing learning efficiency and
effectiveness.

The paper [28] introduces methods to estimate bounds on
entropy to find the contribution of different variables within
a model to the overall informativeness. This method provides
an accurate model evaluation and enables new applications
for data-driven systems, particularly in medical diagnostics
and personalized medicine.

The impact of entropy on real-world datasets and its
implications for machine learning are discussed in [29].
The authors proposed an entropy-based measure to capture
the nonredundant, noncorrelated core information from the
data by using well-known algorithms from the classification
domain to investigate the quality of the proposed solution.
The paper highlights the practical challenges and benefits
of applying entropy in diverse environments, emphasiz-
ing its role in feature selection, model optimization, and
performance enhancement.

The utilization of entropy in classification tasks is
addressed in [30]. The authors proposed to utilize changes in
entropy-based features for the classification of different types
of DDoS (Distributed Denial of Service) attacks.

Lastly, the broader application of entropy was found
in [31], where the authors have proven that higher entropy
increases a lower bound on a robust objective in reinforce-
ment learning tasks. These findings can be used to learn
robust policies that can handle various disturbances in the
learning dynamics and the reward function.

The works summarized in Table 1, serve as a foundational
guide for understanding the role of entropy in improving
the decision-making processes of various machine learning
algorithms. Nevertheless, there are still some research gaps
in assessing dataset informativeness, particularly in the
computer vision domain, which is dominated by unstructured
image data.

C. UNRESOLVED CHALLENGES IN ENTROPY-BASED
ASSESSMENT OF DATA INFORMATIVENESS

The entropy of a sample is used as a metric of uncertainty.
When the entropy is low, it implies a nearly uniform
distribution of possible training vectors, with low uncertainty.
In this case, the training dataset is more informative as
the possible outcomes are more predictable and carry more
specific information. Models can be trained and generalized
more easily with such training vectors. On the other hand,
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TABLE 1. Overview of the existing solutions for training optimization and
dataset quality estimation in machine learning.

Reference [ Main contribution | Limitations
[17], [21] Reveal the | Do not assess dataset
generalization informativeness
capabilities of neural
networks
[18] Quantitative assess- | No clear measure
ment of dataset com- | to estimate quality
plexity and quality of arbitrary dataset.
Many different
approaches for
different datasets.
[19] Cooperative ~ game | Limited to single
theory approach | samples, complex
for evaluation of | for large datasets
informativeness
[20] Rethink the | Focus on the models,
concept of model | rather than data
interpretability and
transparency
[22], [23] Investigate the rela- | Focused more on the
tion between dataset | number of samples
size and classifica- | rather than quality
tion accuracy
[241-[26] Investigate the fea- | Evaluates the impor-
ture engineering to | tance of the features,
improve the training | not informativeness
performance of the | of the sample
model
[271-[30] Entropy-based Limited to structured
measures to select | data
the most informative
data samples
[31] Utilize entropy to | Not suitable for clas-
learn robust policies | sification tasks
in reinforcement
learning tasks

if the entropy of the sample is high, it indicates a more
dispersed and uncertain distribution of possible vectors,
making the training dataset less informative. In addition,
samples with high entropy are often noisy, ambiguous, and
lack clear distinctions between different classes.

Thus, it’s essential to keep the entropy of the training
samples low to preserve valuable information for the efficient
training of machine learning models. Otherwise, training
with high entropy data can be less informative and may
require larger data volumes, longer training times, and even
additional input context to achieve the same performance of
the machine learning models.

The conventional approach to calculate the entropy of a
training sample involves the following steps:

« Identifying the event of interest from the perspective
of deep learning models, which in this case would be
the prediction the model has to make for a given input
vector.

o Calculating the probabilities of model predictions for
each possible vector based on the training dataset. For a
training sample, this involves estimating the probability
for each element of the sample.

« Computing the entropy for the aggregate set based on
the previously calculated probabilities.
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The main limitation of this approach is that it considers a
general case where entropy is calculated at a global level and
can only deal with structured data, such as:

o Tabular data represented in structures with rows and
columns. Each row represents a sample element, and
each column represents a characteristic or feature of that
element. This type of data is often stored in CSV format.

o Training samples based on data providing a hierarchical
structure using tags. Such data with relationships
between different elements is commonly found in XML
format, facilitating the easy formation of a feature
vector.

o Training samples can be effectively formed based on
other types of data where information is organized in
a structured form with specific rules and relationships
among the elements.

To evaluate the informativeness of unstructured data such
as images, preliminary processing and feature extraction are
necessary [32], [33], [34]. Preliminary processing can yield
features better suited to estimate the informativeness of image
data.

D. FEATURE EXTRACTION FROM UNSTRUCTURED IMAGE
DATA

Currently, several highly effective preprocessing methods for
feature formation are recognized, each with its own strengths
and weaknesses: Scale-Invariant Feature Transform (SIFT)
is used for keypoint detection and descriptor extraction. This
algorithm identifies keypoints that are invariant to image
scaling, rotation, and changes in illumination [35].

Histogram of Oriented Gradients is an effective method
for object detection in images. It calculates gradient ori-
entations and magnitudes in local image areas, forming
histograms to capture shape information [36]. It is useful for
feature extraction from unstructured data.

Color Histograms are based on the distribution of color
information in images. Features extracted using this method
are sensitive to color and consider statistical moments (mean,
variance, skewness) of color distribution [37].

Local Binary Patterns are used for texture analysis. The
algorithm encodes local texture information by comparing the
intensity values of a central pixel with its neighboring pixels,
building chains of features [38].

Gabor Filters are employed for extracting texture features
from images. They are sensitive to different orientations and
frequencies, useful for texture information analysis [39].

Local Phase Quantization is based on the quantization of
local phase. It is used as a texture descriptor that encodes
information about the local phase in images, robust to noise
and changes in illumination [40].

Autoencoders are neural network models based on unsu-
pervised learning principles. They can be used to obtain
a more compact and generalized image representation,
useful for data dimensionality reduction, feature extraction,
or pre-training deep learning models [41].
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Convolutional Neural Networks (CNNs) are deep learning
models [42]. They can obtain hierarchical image characteris-
tics during training, making them versatile and adaptable to
various training samples and learning algorithms.

In the context of data informativeness evaluation,
CNN-based methods are the most suitable. Additionally, the
CNN feature detection method has several advantages over
others, primarily in its adaptive feature determination directly
from raw input data. This is especially useful when working
with complex and multidimensional data such as images.
CNNs can establish hierarchical feature dependencies,
capturing both low-level and high-level semantic features,
like object shape characteristics. They adapt well to the
characteristics of the data they are trained on. By adjusting
the model architecture and dataset size, CNNs can efficiently
learn to extract features most relevant to a specific problem.
They can also be trained on large datasets like ImageNet and
used for feature extraction in related tasks. Thanks to their
good generalization properties, CNN models can easily adapt
to work with other training samples, crucial for real-world
transfer learning tasks.

In terms of computational capabilities, CNNs can be
efficiently parallelized on graphics processors, making them
computationally effective for large-scale datasets. Overall,
using CNNs for feature extraction provides an efficient
approach that can significantly enhance accuracy and relia-
bility in image analysis tasks compared to traditional feature
extraction methods.

A pre-trained model like ResNet50, which was trained on
the ImageNet training dataset, can be used for CNN-based
feature extraction. Since the model is already pre-trained on
a specific image dataset, the images for feature extraction
should match the size of those on which the model was
trained, namely 224 x 224 pixels. During the forward pass
through the model, input data are propagated layer by layer
to the last convolutional layer, after which it is frozen.
These activations are the desired features obtained from
the input data, which can be used as feature vectors for
various purposes, including entropy-based informativeness
assessment. Depending on the target goal, the convolutional
feature vector can be used not only based on the last
convolutional layer but also on any layer of the network that
may represent particular interest.

Ill. A QUALITY-AWARE DATASET OPTIMIZATION BASED
ON ENTROPY ANALYSIS

A. COMMON SOLUTIONS FOR DIMENSIONALITY
REDUCTION

In the area of machine learning, dimensionality reduction is a
powerful process that transforms intricate, high-dimensional
data into a more manageable, low-dimensional format
without sacrificing the essence of the original information.
The task of dimensionality reduction is not only to reduce the
volume of data but also to preserve the core characteristics
that represent the value and meaning of the data.
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This becomes necessary when working with large datasets,
where training can be computationally expensive or time-
consuming. Several approaches can address this issue.

1) RANDOM SUBSET SELECTION

Involves randomly selecting a percentage of data from the
training sample. This method is quick and simple but may
not retain all critical elements in the data, as it is unguided in
terms of informativeness.

2) STRATIFIED SAMPLING

This approach ensures that the reduced dataset preserves the
class distribution of the original data [43]. It is more suitable
if the dataset is unbalanced.

3) CLUSTERING

Used to group similar subsets of data. Then, the redundant
elements, which do not contribute additional informativeness,
are removed to obtain a smaller but representative dataset.

4) IDENTIFYING ACTIVE ELEMENTS

Focuses on the most crucial elements in the training process.
This allows determining the most informative instances
in the dataset and removing the uninformative redundant
samples [44].

5) ACTIVE LEARNING

Unlike previous approaches, which focus on reducing the
dataset by removing non-informative samples, active learning
initially trains the model on a small dataset and iteratively
adds additional samples to improve the model’s accuracy
and precision [45]. This approach allows finding the smallest
subset of data that satisfies the target performance indicators
of the trained model.

B. OPTIMAL SELECTION OF LOW-ENTROPY DATA
SUBSETS

In the diverse space of existing solutions for dimension-
ality reduction and their shortcomings, a new approach is
proposed, combining advantages and alleviating existing lim-
itations. In computer vision, most datasets are extremely large
and diverse, complicating the assessment of informativeness
by entropy calculation. To tackle this problem, the training
dataset is divided into many smaller clusters based on the
similarity of samples. Entropy is then calculated within each
cluster to assess its informativeness [16]:

n
H (X) == px)logaP (xi), (D
i=1
where X = {x{, x2, ..., x,} is a discrete random array with a
probability distribution {p(x1), p(x2), ..., p(xp)}.

The important factor here is to ensure that the number of
clusters is larger than the number of classes in the dataset,
so that the minimization of entropy within each cluster will
not result in an excessively clean dataset.
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The straightforward approach would be to compare all
entropy values and compose a dataset from the clusters
with lower entropy. To achieve better stability, a pairwise
assessment of individual clusters with the dynamic composi-
tion of smaller datasets from particular clusters is proposed,
as described in Fig. 1.

The workflow of the proposed method is described below.

Step 1. Raw images are processed by the pretrained
convolutional neural network to obtain the feature map
Fec (X;) of each image X;.

Step 2. Obtained feature maps are clustered into many
subsets Y;.

Step 3. For each cluster Y%, the entropy is calculated to
assess its informativeness in general H (Yy).

Step 4. The absolute difference of the pairwise entropies of
all possible pairs of clusters is calculated to create the mutual
similarity matrix:

0 s12 -+ Sia
s21 0 - 52,

S=1 . . . )
Sn,1 Sn,2 0

where s;; is an element of the mutual similarity matrix.
The mutual similarity matrix is symmetric with zeros on the
diagonal elements and represents the similarity of entropy
between the i-th and j-th subsets of data.

Step 5. After obtaining the mutual similarity matrix,
dynamic programming is applied to determine the longest
subsequence of clusters. The main goal here is to find
the longest subsequence of clusters with the lowest overall
entropy, considering the imposed dataset limitations. This
process starts at the bottom-left corner of the matrix S, with
further transition to the next smallest element. When there
are few alternative paths that lead to the smallest values,
a movement occurs in the direction that maximizes the length
of the subsequence. As a result, a dynamic matrix D is
obtained, where D; ; is the size of the longest sequence ending
at element D; ;.

Initially, elements of D are defined as follows:

Di1=0, D;;=0. (3)

Let’s suppose that A and B are two different sequences.
Then, in a two-cycle calculation, the result will be the
following:

Dij=Di_1y1+1, if A1 =B 4)
D;j = max (Di_1,y, Di,y—1) 5

Step 6. Based on the obtained longest subsequence, the
corresponding clusters are selected to form the optimal
dataset.

Step 7. Finally, the dataset is checked for inter-class
imbalance. If the imbalance does not exceed the allowed
threshold, the dataset can be rearranged within the determined
subset of optimal clusters.
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The advantage of this approach is its lower computational
cost and optimized selection during the iterative analysis of
the entropy of data aggregates. Since some stages of the
algorithm, such as dividing into sub-samples or choosing
the initial approximation for finding the maximum length
of the sequence from the mutual similarity matrix, are ran-
domly selected, the result may vary, but the informativeness
of the obtained dataset will be approximately in the same
range.

IV. NUMERICAL RESULTS

For validation of the proposed approach, the experimental
workflow is designed according to the most widely adopted
practices in building computer vision training and testing
pipelines [46].

First, two well-known training datasets are selected:
MinilmageNet [47] and MNIST [48]. The original MNIST
database contains images of handwritten characters, with
a total of 60,000 training images and 10,000 test images,
covering 10 classes. The image size is 28 x 28 pixels.
MinilmageNet, on the other hand, is a simplified version
of the famous ImageNet database for training models.
MinilmageNet includes 60,000 images, covering 100 classes
with 600 images per class. The image size is 84 x 84 pixels.
Both training datasets evenly cover the respective classes, and
there is no imbalance in class representation.

According to the experimental workflow, a miniResNet
CNN model is defined for training and testing. Initially,
training is performed on the original dataset. Subsequently,
a series of trainings are conducted on various optimized
datasets. To assess the performance of the proposed
quality-aware dataset optimization in a comparative land-
scape, several alternative solutions are selected. The baseline
for comparison is random subset selection, and the other
two alternatives are clustering and stratified sampling. The
most common metrics used to evaluate model performance
are precision, recall, accuracy, and Fl-score. For brevity,
not all metrics are presented for both MinilmageNet and
MNIST datasets due to their differences. Since the MNIST
dataset has only 10 classes, which are equally balanced, the
precision, recall, and F1-score metrics are less informative,
allowing reliance solely on accuracy values. Conversely,
MinilmageNet covers 100 classes, making the accuracy value
potentially misleading, while precision, recall, accuracy, and
F1-score become much more important metrics.

To ensure that the entropy of the obtained optimized
subsets is not too low, the cumulative distribution function is
compared before and after applying the proposed approach,
as shown in Fig. 2. For clarity, all entropy values are
normalized from O to 1, so that the entropy distribution among
all clusters of the original training dataset follows a normal
probability distribution with a mean entropy value of 0.5.
After optimization of each cluster, the cumulative density
function of normalized entropy moves towards lower values,
with a mean at 0.4, and a quasi-uniform distribution within
the target range of normalized entropy values (0.2-0.6).
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FIGURE 1. Overall workflow of the proposed quality-aware dataset optimization method.
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FIGURE 2. Cumulative distribution functions of entropy in the
MinilmageNet dataset before and after optimization.

Thus, all compared approaches have been tested using the

following procedure.

1) Both MinilmageNet and MNIST datasets are split into
training, validation, and testing parts with approximate
proportions of 70/15/15, respectively.

2) The model is trained on the original training part of the
MinilmageNet dataset, and the precision, recall, and
F1-score metrics are evaluated.

3) The model is trained on the original training part of the
MNIST dataset, and the accuracy metric is evaluated.

4) The training dataset is optimized by random ele-
ment selection, clustering, stratified sampling, and the
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proposed quality-aware optimization method. To deter-
mine the boundaries of possible reduction, different
size limitations for the dataset, ranging from 2,000 to
15,000 samples, are used.

5) For each obtained training subset, training and
evaluation are conducted as described in steps 2 and 3.

Figs. 3 and 4 present the results of the model’s precision
and recall, respectively, after training on all optimized subsets
of MinilmageNet. The number of images per class is evenly
balanced.

When the dataset size is large enough, i.e., at least
15,000 images, the difference in precision between all
tested approaches is negligible. As seen from Fig. 3, all
methods can minimize false positive classifications if the
dataset size is larger than 10,000 images. However, with
further reduction of the dataset size, the advantage of the
proposed approach increases up to 4% in precision for
approximately 2,000 images in the dataset. On the other
hand, in terms of recall in Fig. 4, it is clearly seen
that the proposed approach outperforms all competitive
solutions.

When comparing other alternatives, it is observed that the
stratified sampling method has an advantage over random
selection in terms of balance between classes. The downside
of clustering is the difficulty of accurately predicting the
training dataset size because it is not possible to influence the
cluster detection process of the algorithm. However, due to its
nature, clustering can maintain good precision even for 6,000
images in the dataset because the loss of informativeness is
not severe.
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FIGURE 3. Precision versus the number of training samples with different
optimization methods on the MinilmageNet dataset.
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FIGURE 4. Recall versus the number of training samples with different
optimization methods on the MinilmageNet dataset.

The results of accuracy on the MNIST dataset are presented
in Fig. 5. Here, the random selection performs the worst,
which is expected due to complete randomness. The strategic
sampling and clustering perform almost identically, while
the proposed quality-aware dataset optimization outperforms
them by 2% for subsets of small size. The similarity of
accuracy performance between the different methods is
explained by the low number of classes in the MNIST dataset.

For a more precise assessment of the limitations of
the proposed approach, numerical values of the accuracy,
precision, recall, and Fl-score are compared with other
dataset optimization strategies. Corresponding results for
the accuracy on the MNIST dataset for the different size
limitations are presented in Table 2. Similarly, the results for
precision, recall, and F1-score on the MinilmageNet dataset
are presented in Tables 3, 4, and 5, respectively.

The noticeable advantage of our solution is clearly
visible for the small dataset size (bold numbers), which
highlights much better informativeness of selected samples.
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FIGURE 5. Accuracy versus the number of training samples with different
optimization methods on the MNIST dataset.

TABLE 2. Aggregated results of the accuracy metric with different size
limitations of the optimized MNIST dataset.

N Random Stratified Clustering | Proposed
selection sampling ‘ approach

2000 0.82 0.87 0.87 0.90

2500 0.83 0.88 0.88 0.91

3000 0.83 0.89 0.89 0.91

5000 0.85 0.90 0.90 0.92

15000 0.93 0.94 0.95 0.95

25000 0.95 0.95 0.96 0.95

30000 0.95 0.95 0.96 0.96

45000 0.96 0.97 0.97 0.97

TABLE 3. Aggregated results of the precision metrics with different size
limitations of the optimized MinilmageNet dataset.

N Random Stratified Clustering | Proposed
selection sampling ‘ approach

2000 0.62 0.63 0.56 0.68

2500 0.64 0.65 0.58 0.69

3000 0.65 0.66 0.62 0.71

5000 0.69 0.71 0.72 0.75

15000 0.78 0.78 0.77 0.79

25000 0.80 0.80 0.78 0.81

30000 0.81 0.81 0.79 0.82

45000 0.82 0.83 0.82 0.83

With the further increase of the dataset size, the difference
between different strategies diminishes, because the number
of training samples becomes closer to the original MNIST or
MinilmageNet (50,000 training samples).

To determine a balanced performance, the F1-score
metric is provided, which represents a normalized tradeoff
between precision and recall, useful for imbalanced datasets
where some classes may be represented better than others.
As observed from Table 5, the F1 score correlates with other
metrics, indicating that the model features 15% more false
negatives for the smallest training set compared to the largest
training set.

For a deeper analysis of the performance, several additional
metrics are calculated to provide more insights into the
limitations and capabilities of the model in distinguishing
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TABLE 4. Aggregated results of the recall metric with different size
limitations of the optimized MinilmageNet dataset.

N Random Stratified Clustering | Proposed
selection sampling ‘ approach
2000 0.55 0.56 0.55 0.61
2500 0.55 0.57 0.56 0.62
3000 0.56 0.58 0.56 0.63
5000 0.60 0.61 0.60 0.67
15000 0.71 0.76 0.72 0.74
25000 0.75 0.95 0.72 0.74
30000 0.76 0.76 0.73 0.74
45000 0.77 0.77 0.74 0.76

TABLE 5. Aggregated results of the F1-score metric with different size
limitations of the optimized MinilmageNet dataset.

N Random Stratified Clustering | Proposed
selection sampling ‘ approach

2000 0.58 0.59 0.55 0.64

2500 0.59 0.61 0.57 0.65

3000 0.60 0.62 0.59 0.67

5000 0.64 0.66 0.65 0.71

15000 0.74 0.77 0.74 0.76

25000 0.77 0.87 0.75 0.77

30000 0.78 0.78 0.76 0.78

45000 0.79 0.80 0.78 0.79

images among the 100 classes of the MinilmageNet dataset
(Table 6). These metrics include True Positive Rate (TPR),
True Negative Rate (TNR), Positive Predictive Value (PPV),
Negative Predictive Value (NPV), False Positive Rate (FPR),
False Negative Rate (FNR), and False Discovery Rate (FDR).

TPR and TNR offer insights into the model’s ability to
correctly identify true positives and true negatives, reflecting
its sensitivity and specificity. PPV and NPV measure the
precision of positive and negative predictions, respectively,
providing a detailed view of the model’s predictive accuracy.
FPR and FNR, which are inversely related to TNR and
TPR, highlight the proportion of misclassified negatives and
positives, revealing potential areas for improvement in model
precision and recall. Finally, FDR quantifies the proportion
of false positives among all positive predictions, indicating
the reliability of positive classifications.

Top-5 Accuracy is a widely accepted metric to evaluate
performance in multi-class classification problems, espe-
cially when the number of classes is very large like in our case
of MinilmageNet with 100 classes. In the original accuracy
metric (i.e., Top-1 Accuracy), a 20% drop is observed
between the largest and the smallest training sets, which is
seen from the TPR and FNR indicators in Table 5. However,
for Top-5 Accuracy, only a 10% drop is observed, which
means that the majority of misclassified instances are still
among the top 5 predicted classes. This result indicates that
core essential informativeness is preserved even for a very
small training set, and the trained model can narrow down
the correct label to a small set of likely candidates, which is
important in real-world applications.

A similar trend is observed with Cohen’s Kappa indicator,
which shows the agreement between the predicted and
true labels while adjusting for the possibility of agreement

VOLUME 12, 2024

TABLE 6. Aggregated results of the different performance metrics for the
proposed approach with different size limitations of the optimized
MinilmageNet dataset.

N ‘ TPR ‘ TNR ‘ PPV ‘ NPV ‘ FPR ‘ FNR ‘ FDR

2000 | 0.583 | 0.996 | 0.615 | 0.996 | 0.004 | 0.417 | 0.385
2500 | 0.644 | 0.996 | 0.665 | 0.996 | 0.004 | 0.356 | 0.335
3000 | 0.537 | 0.995 | 0.720 | 0.995 | 0.005 | 0.463 | 0.280
5000 | 0.662 | 0.997 | 0.749 | 0.997 | 0.003 | 0.338 | 0.250
15000 | 0.711 | 0.997 | 0.795 | 0.997 | 0.003 | 0.289 | 0.205
25000 | 0.767 | 0.997 | 0.804 | 0.998 | 0.002 | 0.233 | 0.196
30000 | 0.780 | 0.998 | 0.818 | 0.998 | 0.002 | 0.220 | 0.181
45000 | 0.784 | 0.998 | 0.835 | 0.998 | 0.002 | 0.216 | 0.164

TABLE 7. Aggregated results of the different performance metrics for the
proposed approach with different size limitations of the optimized
MinilmageNet dataset.

N Top-5 | Cohen’s AUROC | TFLOPS Number of
‘ Acc Kappaﬁ ‘ per epoch ‘ parameters

2000 | 0.838 0.578 0.978 1.36

2500 | 0.859 0.640 0.980 1.7

3000 | 0.839 0.533 0.980 2.04

5000 | 0.882 0.659 0.987 3.40 1AM

15000 | 0.903 0.708 0.989 10.2 )

25000 0.932 0.764 0.993 17.0

30000| 0.944 0.778 0.995 20.4

45000 | 0.944 0.782 0.994 30.6

occurring by chance, which is important in multi-class
problems with class imbalance. The observed similarity
between accuracy and Cohen’s Kappa indicates that the
proposed approach maintains a good balance between classes
within the training set, regardless of the imposed size
limitations.

In addition, the Receiver Operating Characteristic (ROC)
is evaluated to estimate the overall ability of the model to
discriminate among many classes. Since ROC is typically
plotted for binary classification problems, it is computed
using the one-vs-rest method in this case. To avoid plotting
100 curves, the Area Under the ROC Curve (AUROC)
is calculated, providing a numerical understanding of the
overall performance. The AUROC metric represents the area
covered by the TPR vs. FPR curve, where AUROC =
1 indicates an ideal case, and AUROC = 0.5 indicates
the worst case. The average AUROC is computed over all
possible combinations (one vs. rest) in the MinilmageNet
dataset.

As seen from Table 7, the trained models show excellent
performance in AUROC regardless of the training set size,
indicating the ability to distinguish any class from all
other classes. This result correlates with low FPR values in
Table 5 and demonstrates the good informativeness of small,
optimized training datasets.

Finally, the total computational complexity per epoch for
model training on each optimized training set is estimated.
For simplicity, the constant backpropagation part related
to specific hyperparameters such as dropout rates and
regularization is excluded. Instead, the complexity of the
forward propagation during one epoch is calculated, which
is directly proportional to the number of training samples.
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As can be seen from the results in Tables 2-5, the proposed
approach achieves the same performance for 2,000 samples
as other studied solutions can achieve with approximately
5,000 samples. Thus, as seen from Table 7, the proposed
approach requires 2 times fewer floating point operations
(FLOPS) to get the same performance of the trained model,
ie., 1.36 TFLOPS vs 3.40 TFLOPS. Assuming training
on commercial cloud infrastructure with a pay-per-use
subscription, this advantage can be converted to noticeable
cost savings in many practical applications.

V. DISCUSSION

The experimental results demonstrate the advantages of the
proposed approach in its ability to reduce training data
while preserving the maximum possible informativeness. The
workflow of the proposed approach is applicable to both
dimensionality reduction and data augmentation problems,
significantly widening its applicability. The applicability
of the proposed approach is indicated by the excellent
performance in the discrimination between a very large
number of classes, e.g., 100 and beyond. With this feature,
the proposed solution can be a good candidate for usage
in combination with other approaches or as a baseline for
transfer learning in specific computer vision applications in
various domains.

For problems where large volumes of training data are
available, the training workflow can be significantly opti-
mized by assessing data informativeness, improving overall
cost-efficiency. This approach helps tackle the challenge of
big and noisy datasets.

Another type of problem relates to the limited data
challenge, observed in various specific domains such
as healthcare, remote sensing, experimental physics, and
chemistry. In these domains, the common solution is data
augmentation. The proposed approach enables smarter data
augmentation by ensuring that each augmented sample
positively contributes to the overall informativeness of the
dataset.

Finally, the findings in this paper can help to save costs for
training on rented cloud infrastructure. This provides more
flexibility to the developers of machine learning solutions,
who will be able to afford more training capacity and develop
more competitive products.

The possible future development of this work is in explor-
ing the possibilities of replacing neural network-generated
features with specific similarity metrics between two images,
which could be designed to account not only color dif-
ferences but also structural and textural aspects of the
image. Here, the mean square error, peak-signal-to-noise-
ratio, structural similarity index measure (SSIM), as well as
their various derivatives, are of great interest. For example,
SSIM is now widely used to assess how well two images
match each other from a human perception perspective,
as it uses brightness, contrast, and the structure of the
image.
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VI. CONCLUSION

In this paper, a novel approach for quality-aware dataset opti-
mization through entropy analysis has been proposed. The
distinguishing feature of this approach is in the combination
of clustering and active learning. Such a workflow allows
splitting the entire dataset into many subsets and analyzing
the informativeness by calculating the individual entropy of
each subset. The optimal dataset is composed by dynamic
programming to find a sequence with the lowest overall
entropy while ensuring balanced representativeness of all
classes.

Experimental evaluation of the proposed dataset opti-
mization solution on MNIST and MinilmageNet datasets
proves its advantage over current best practices by 4% in
precision, by 5% in recall, by 5% in Fl-score, and by 2%
in accuracy. Despite the marginal improvement, it is worth
noting that the slope of performance characteristic curves is
much lower and nearly constant compared to other studied
alternatives. Moreover, the excellent AUROC results indicate
that the proposed approach has very good discriminative
capability even among a large number of classes. Therefore,
in practice, the proposed approach is suitable for a wide range
of real-world applications from data reduction in very large
datasets to data augmentation in very small datasets.

Further research in this direction could include applica-
tions of various similarity metrics between images, which
may indicate how much unique information is present in each
sample of data to complement the entropy evaluation.
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