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ABSTRACT This study introduces a novel neural network approach integrating q-spherical fuzzy rough
Frank aggregation operators, aiming to enhance AI systems’ resilience to uncertain and imprecise data in
military transport systems. Three new operators are developed: q-spherical fuzzy rough Frank weighted
averaging (q-SFRFWA), q-spherical fuzzy rough Frank ordered weighted averaging (q-SFRFOWA), and
q-spherical fuzzy rough Frank hybrid weighted averaging (q-SFRFHWA), tailored to handle complex
decision-making scenarios. We demonstrate their efficacy in multiple attribute decision-making using
q-spherical fuzzy rough data, providing valuable insights and expanding the knowledge base in this domain.
Through numerical examples, we illustrate the practical application of these operators, validating their effec-
tiveness and relevance in real-world settings. Comparative and sensitivity analyses further corroborate the
superiority of our proposed approach over existing methods. This research offers a robust decision-making
framework equipped to manage intricate and unreliable data, promising significant advancements in military
transport systems and beyond.

INDEX TERMS q-spherical fuzzy rough sets, Frank operators, neural network in artificial intelligence.

I. INTRODUCTION
In the realm of artificial intelligence (AI), the integration
of neural networks with advanced mathematical concepts
has indeed ushered in significant progress. However, despite
these strides, there persist notable technical gaps, particularly
in the realm of handling uncertainty and imprecision within
decision-making scenarios. These gaps are particularly evi-
dent in domains such as military transport systems, where
decisions frequently hinge on uncertain and ambiguous con-
ditions, thereby posing substantial challenges to the efficacy
of AI systems. Addressing these technical gaps necessi-
tates a nuanced comprehension of the inherent challenges
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associated with managing ambiguous data, as well as an
acknowledgment of the limitations of current approaches
in adequately addressing uncertainty. Traditional neural net-
work models, for instance, often encounter difficulties in
effectively managing ambiguous or imprecise data, thereby
resulting in suboptimal decision outcomes. Furthermore,
existing AI methodologies lack the requisite sophistication
to effectively tackle uncertainty within complex decision-
making environments—a crucial aspect for ensuring reli-
able and robust decision-making in practical applications.
By acknowledging and delineating these technical gaps,
our study seeks to underscore the pressing need for novel
approaches that can effectively address uncertainty and
imprecision within decision-making scenarios. Through a
comprehensive exploration of these challenges, we aim to
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lay the groundwork for the development of advanced AI
systems capable of navigating the complexities of uncer-
tain and ambiguous data, particularly within domains as
critical as military transport systems. The current study
endeavors to bridge these technical gaps by introducing
q-spherical fuzzy rough Frank aggregation operators into
neural network frameworks. This innovative approach seeks
to augment AI systems’ capabilities by leveraging neural
networks’ learning prowess alongside the advanced uncer-
tainty handling techniques provided by q-spherical fuzzy
rough Frank aggregation operators. By integrating these oper-
ators into neural network architectures, we aim to enhance
the resilience and effectiveness of AI systems in navigating
complex decision-making scenarios, particularly in domains
characterized by uncertain and ambiguous data, such as mil-
itary transport systems. The gap arises due to the limitations
of traditional AI methodologies, including neural networks,
in adequately addressing uncertainty and ambiguity. While
neural networks demonstrate remarkable learning capabili-
ties, they often struggle when confronted with uncertain or
imprecise data, resulting in unreliable decision outcomes.
Additionally, current AI techniques lack sophisticated mech-
anisms for comprehensively handling uncertainty, leaving
decision-making processes vulnerable to errors and inaccura-
cies. Therefore, the research question emerges: How can AI
systems be enhanced to better handle uncertainty and ambi-
guity in decision-making scenarios, particularly in domains
like military transport systems? To address this question and
bridge the identified gap, this study proposes the integration
of q-spherical fuzzy rough Frank aggregation operators into
neural network frameworks. These operators offer advanced
techniques for handling uncertainty and ambiguity in data,
providing a solid foundation for robust decision-making in
complex scenarios. By leveraging the learning capabilities of
neural networks alongside the specialized uncertainty han-
dling techniques offered by q-spherical fuzzy rough Frank
aggregation operators, this study aims to enhance AI systems’
resilience and effectiveness in navigating the challenges
posed by uncertain and ambiguous data, ultimately improving
decision-making outcomes in critical domains like military
transport systems. The motivation behind this study is rooted
in the pressing need to address these technical gaps and
empower AI systems with the ability to make informed,
reliable, and robust decisions in real-world settings. The
application of our proposed approach in military transport
systems underscores the urgency of developing advanced
decision-making frameworks capable of coping with uncer-
tain and ambiguous data, thereby improving operational
efficiency and effectiveness. Identifying and addressing these
technical gaps and proposing a novel solution, our study aims
to significantly advance the capabilities of AI systems and
enhance their practical applicability in critical domains like
military transport systems.We appreciate the reviewer’s feed-
back and will ensure that the Introduction section adequately
discusses the technical gaps associated with the problem at
hand.

A. DECISION-MAKING PROCESS IN TRANFORT SYSTEM
OF MILITARY ORGANIZATION
The American Army is part of the organizational structure
that enables administration. Its organs, notably the traffic
service organs, play an important role in decision-making.
The Army’s decision priority levels vary from everyday
operations to strategic. Regardless of the decision level, the
decision-making process remains relevant. Traffic support
organs are sometimes compelled to select between accept-
ing or rejecting a single action. However, traffic support
organizations regularly face situations in which they must
decide which of multiple proposed remedies is best and
should be implemented. The ranking procedure comprises
analyzing the various activities and selecting based on the
best-demonstrated results of each activity. Such findings
underline the need to consistently and methodically approach
the decision-making process, regardless of the nature of the
challenges at hand. This is because any wrong decision might
jeopardize the American army’s fighting readiness. Most of
the decision-making inside a military organization occurs
in the lack of relevant knowledge, in situations of more
or lesser ambiguity about future environmental actions, the
consequences of alternative decisions, and so on. Decision-
making, as a leadership strategy, is distinct and more precise
than other methods. It links the conclusion (decision) as the
culmination of the conceptual process to action as the start
of execution. Because of its importance, decision-making
is classified into two categories: leadership preparation and
action preparation. This implies that decision-making con-
nects two dimensions of human activity: intellectual endeavor
and material realization, theory and implementation. This
suggests that decision-making plays a significant role in the
leadership process [1], [2].

B. LITERATURE REVIEW
The decision-making process may not always follow this
exact sequence. During the process, the influence of compo-
nents is not restricted to certain phases; rather, it intertwines,
repeats, and complements. Furthermore, the intensity varies
according to the circumstance. The decision-making pro-
cess in a military organization involves certain elements [3],
including:

• Objectives
• Criteria
• Problem formulation
• Alternatives
• Modelling
• Implementation of decisions

Decisions are taken to accomplish specified goals. Deter-
mining the system’s objectives is a difficult undertaking
that often necessitates preliminary investigations of a variety
of data. In the context of military organizations, objec-
tives relate to the tasks that the observed military system,
or military unit, must do. An aim might be, for example,
the ability to do a given amount of damage to the oppo-
nent. A military organization, like any other, must work
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efficiently during decision-making. A criterion is a quanti-
tative measure of success in achieving a certain objective.
It might be claimed that every problem has optimal criteria.
Because of the unpredictable nature of military systems,
selecting the suitable criterion for varied decision-making
conditions is a difficult challenge. Common criteria in mil-
itary systems include task execution time, expected loss
ratio, likelihood of target achievement, mathematical task
expectation, and so on. Models are an important part of the
decision-making process because they connect the objectives,
alternatives, consequences, and criteria of a specific choice
issue.

The implementation of the decision unmistakably shows
the shortcomings of the choices made. However, whether
the option is excellent or bad, inadequate execution will
fail to achieve the expected results. This is especially true
for military decisions concerning the structure and execu-
tion of combat operations. Artificial intelligence (AI) is a
scientific field that studies computing systems for sensing,
reasoning, and decision-making. Expert systems in artificial
intelligence are a chain of knowledge connected by rules.
During reasoning, search occurs in all directions, branching
across the knowledge base’s structure in a tree-like manner.
As the depth of the search increases, so does the breadth
of the ‘‘tree.’’ Artificial intelligence is divided into various
divisions and subcategories, the most noteworthy of which
are fuzzy logic and artificial neural networks. Fuzzy logic
simulates uncertainty and imprecision in systems, whereas
artificial neural networks replicate the functioning of the
human brain and are used for machine learning and pattern
recognition. These methodologies are critical components of
artificial intelligence, allowing computers to examine com-
plex data and make decisions in ways similar to the human
mind. The origins of fuzzy logic [4] may be traced back
to the standard crisp set theory. In addition, Zadeh intro-
duced the notion of a fuzzy set, which focuses solely on
the grades that received a positive evaluation. Atanassov [5]
introduced the intuitionistic fuzzy set (IFS) to expand upon
the concept of fuzzy sets. The intuitionistic fuzzy set (IFS)
incorporates both the positive and negative grades with the
stipulation that their cumulative value should not exceed 1.
Pythagorean fuzzy sets (PFS) were proposed by Yager et al.
[6] in 2013. The authors proposed Pythagorean fuzzy sets
as an extension of classical fuzzy sets to cope with ambi-
guity and vagueness in decision-making processes [1]. The
Pythagorean fuzzy set architecture incorporates both mem-
bership and non-membership degrees, resulting in a more
comprehensive representation of uncertainty than traditional
fuzzy sets. In 2014, Coung and Kreinovich expanded upon
the concepts of fuzzy sets and IFS introduced a ground-
breaking notion known as the picture fuzzy set (PFS) [7].
This innovation provided a fresh perspective within this
field of study. Within the framework of PFS, the author
delved into the categorization of grades into positive, neutral,
and negative classifications. Gündoğdu and Kahraman [8]

propose a spherical fuzzy set (SFS) as a possible way to
address this challenge. Scholarly interest in the subject of
SFS has grown in recent years. Kahraman et al. and his
research team [9] suggested the innovative conception of (q-
SFS) in their determinations to concentrate the descendants
of uncertainty. This innovative perception has provided evi-
dence to be favorable in accompanying students in making
well-informed varieties. The concept of rough sets (RS) was
first introduced by Pawlak [10], [11] as a means of deal-
ing with uncertainty. When examined from a mathematical
perspective, this configuration demonstrates attributes that
could be construed as vagueness and indeterminacy. Rough
set theory (RST) is a modification of the traditional set theory,
that uses the notion of connection to elucidate the operations
of information systems. Researchers have acknowledged that
the applicability of the equivalence relation in Pawlak’s rela-
tional semantic theory is subject to notable constraints in a
range of real-world situations, a point emphasized by multi-
ple scholars. It is well acknowledged to initiate the concept
of a ‘‘q-spherical fuzzy set.’’ Every single element in the
q-SFS framework is classified as either positive, neutral,
or negative. The notions of q-SFRS were first presented by
Azim et al. [12] in their research paper published in 2023.
This fuzzy set combines the advantages inherent in both
the RS and the q-SFS. This research introduces a practi-
cal approach to decision-making within the framework of
q-spherical fuzzy rough sets, thereby expanding the exist-
ing knowledge in this field. Within q-SFRS, three distinct
parameters involve lower and upper approximations. In the
context of Industry 4.0, Azim and their team [13] proposed a
project prioritization method using the q-SFR analytic hier-
archy process in 2023. Similarly, Ali et al. [14] introduced
the concept of averaging aggregation operators within the
framework of q-ROPFStS in 2023, exploring their applica-
tions in multiple attribute decision-making (MADM). The
work by Srinivasu et al. [27] proposes a novel approach for
cluster head identification and data encryption in wireless
sensor networks, leveraging probabilistic buckshot-driven
methods. Ahmed et al. [28] present a software framework
aimed at enhancing security measures for sensor data within
the context of Ambient Assisted Technology. Krishna et al.
[29] introduce a secure software framework tailored for
mobile healthcare applications in the Internet of Medical
Things (IoMT) domain. Rashid and Bhat [30] conduct a
systematic review exploring the transition from topologi-
cal methods to deep learning approaches for identifying
influencers in online social networks. Srinivasu et al. [27]
presented a method for probabilistic buckshot-driven clus-
ter head identification and accumulative data encryption in
wireless sensor networks (WSN). Kumar et al. [31] propose
a method for secure data aggregation in wireless sensor net-
works through the use of homomorphic encryption.Westhoff,
et al. [32] present a concealed data aggregation technique
for reverse multicast traffic in sensor networks, address-
ing encryption, key distribution, and routing adaptation.
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Vinodha and Anita [33] provide a comprehensive review
of secure data aggregation techniques for wireless sensor
networks, summarizing various approaches and their effec-
tiveness. Ullah et al. [34] propose a scheme for secure critical
data reclamation in isolated clusters within IoT-enabled
wireless sensor networks, focusing on enhancing data secu-
rity. The primary inquiry guiding this research is centered
on enhancing the capabilities of AI systems to effectively
navigate decision-making scenarios characterized by uncer-
tainty and ambiguity, with a specific focus on domains such
as military transport systems. This study seeks to address
the following research question: What novel approaches
can be devised to bolster AI systems’ capacity to handle
uncertain and ambiguous data within decision-making con-
texts, particularly in critical domains like military transport
systems?

The motivation behind this article lies in the recognition
of q-SFRS offering greater flexibility compared to PFS and
SFS in studying decision-making (DM) problems. The article
addresses the complexity of MADM problems influenced by
imprecise factors within the q-SFRS environment. It high-
lights the limitations of existing operators and proposes a
beyond-state-of-the-art method to overcome these limita-
tions, providing excellent findings for various information
categories represented by q-SFRS data. Frank aggregation
operators are a versatile family of operators that are widely
used in information fusion and decision-making, particularly
in fuzzy collections. This essay explores their fundamen-
tal concepts, properties, and applications. In MADM and
other disciplines requiring the aggregation of diverse infor-
mation, Frank aggregation operators offer a great answer
since they can used to provide different emphasis to different
inputs based on their significance or expert opinion. These
operators account for intrinsic ambiguity and vagueness and
consider using fuzzy set representations or alternative uncer-
tainty models. The integration of q-SFRSs through the Frank
aggregation operators presents an intriguing potential for
analysis in the dynamic field of decision-making. This com-
bination aims to enhance the flexibility and precision of
decision-making across various domains. The utilization of
q-spherical fuzzy rough CODAS to address uncertainty and
hesitancy in real-world decision situations has contributed to
its popularity. The flexible background offered by q-SFRS
theory, capable of managing and interpreting vague infor-
mation, facilitates a more representative categorization of
complex decision environments. Frank aggregation operators
(FAOs) have emerged as a valuable tool for multi-attribute
group decision-making (MAGDM) and information fusion,
particularly in cases of uncertainty and imprecision. This
is demonstrated by their growing application in a variety
of industries, as indicated by: Wang et al. [15] proposed
an improved MAGDM approach that uses FAOs to handle
reluctant fuzzy data, resulting in more robust and adapt-
able decision-making. Du et al. [16] improved FAOs to
accommodate complex q-rung ortho pair fuzzy information,

making them more effective in information fusion tasks with
incomplete or ambiguous data. Ullah et al. [17] developed a
multi-attribute decision-making process based on T-spherical
fuzzy frank prioritized aggregation operators, proving its
utility in complex decision-making scenarios. Yahya et al.
[18] employed FAOs in a probabilistic hesitant fuzzy mul-
tiple attribute decision-making approach. Liu et al. [19]
employed FAOs in conjunction with neutrosophic sets to
improve information in the multi-attribute decision-making
process. These experiments demonstrate how adaptable and
effective FAOs are in MAGDM and information fusion, par-
ticularly when faced with uncertainty and imprecision. Their
ability to handle many data types, apply weights, and man-
age compensatory effects makes them a viable option for a
wide range of decision-making and information-processing
tasks.

Tang et al. [20] employed a multiple-attribute decision-
making approach based on dual hesitant fuzzy Frank aggrega-
tion operators. By leveraging the synergies between q-SFRSs
and FAOs, this research endeavors to equip decision-makers
with a tool capable of navigating the intricacies and nuances
in complex decision-making scenarios. The ultimate objec-
tive is to foster a comprehensive and adaptable decision
validation framework for the advancement of decision
knowledge.
1. Using q-spherical fuzzy rough Frank aggregation oper-

ators to demonstrate how these sets may deal with
ambiguity and uncertainty in actual decision-making
settings.

2. Describing the adaptable framework provided by
q-spherical fuzzy rough set theory for dealing with and
modeling misinformation. Emphasizing the need to pro-
vide a more genuine picture of the decision’s complicated
environment.

3. Recognizing the weaknesses of standard decision mod-
els, particularly in the context of imprecise and random
data, and providing a rationale for exploring novel tech-
niques, such as merging Frank aggregation operators with
q-spherical fuzzy rough sets. The subsequent sections of
the study are structured as follows:

Section II offers a comprehensive overview of various con-
cepts, including FS, IFS PFS, SFS, q-SFS, RS, and q-SFRS,
providing a foundational understanding for the subsequent
sections. In section III, we delve into the operational laws
governing the q-SFR framework, focusing on Frank aggrega-
tion operators and their results based on section II. Section IV
presents the applications and the proposed algorithm for solv-
ing the MCDM problem. Section V shows the use of the
algorithm with the help of numerical examples. Section V
offers the comparative analysis, sensitivity analysis, advan-
tages, and limitations for the proposed operators. Section VI
offers concluding remarks and future direction. To provide
a structured and cohesive exploration of these concepts, our
manuscript follows a systematic organization, as depicted in
Figure 1.
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FIGURE 1. Structure of the research article.

II. PRELIMINARIES
This section will look at various mathematical ideas, begin-
ning with an in-depth review of FS, IFS, PFS, SPS, q-SFS,
and RS.

FIGURE 2. Some graphical representations of fuzzy spaces.

Definition 1: In 1965, Zadeh [4] proposed the idea of a
fuzzy set as an extension of the conventional crisp set. The
formal definition of a fuzzy set can be represented mathe-
matically as follows:

A = {⟨ , ζA( )⟩ : ∈ X} (1)

where 0 ≤ ζA ( ) ≤ 1.
Definition 2: In 1986, Atanassov [5] proposed the intu-

itionistic fuzzy set (IFS) as an extension of the fuzzy set. The
formal mathematical representation of an IFS is as follows:

A = {⟨ , ζA ( ) , ξA ( )⟩ : ∈ X} (2)

where 0 ≤ ζA ( ) + ξA ( ) ≤ 1.
Definition 3 ( [6]): Let X be a non-empty finite set.

A PyFS A over ∈ X is defined as follows:

A = {⟨ , ζA ( ) , ξA ( )⟩ : ∈ X} (3)

where ζA ( ) and ξA ( ) represent the MD and NMD of A

respectively such that ζA ( ) , ξA ( ) ∈ [0, 1] and where 0 ≤

(ζA ( ))2 + (ξA)2 ≤ 1.
Definition 4: Building on the fundamental principles of

FSs and IFSs, Cuong and his team [7] introduced the idea

FIGURE 3. A comparison of the differences between Pythagorean and
intuitionistic fuzzy spaces.

of a picture fuzzy set in 2014. Its definition can be expressed
mathematically as follows:

A = {⟨ , ζA ( ) , ηA ( ) , ξA ( )⟩ : ∈ X} (4)

where 0 ≤ ζA ( ) + ηA ( ) + ξA ( ) ≤ 1.
The following symbols represent the representation of the

membership functions for a fuzzy set in this situation, which
includes positive, neutral, and negative aspects:

ζA ( ) ( ) : X → [0, 1], ηA ( ): X → [0, 1] and
ξA ( ): X → [0, 1] respectively.

FIGURE 4. Picture membership grade space.

Definition 5: Gündoğdu et al. [8] introduced the idea of
a spherical fuzzy set in 2019, further advancing the picture
fuzzy set framework. The concept can be expressed in the
following way from a mathematical standpoint:

A = {⟨ , ζA ( ) ( ) , ηA (x) , ξA ( )⟩ : ∈ X (5)

where 0 ≤ (ζA ( ))2 + (ηA ( ))2 + (ξA ( ))2 ≤ 1.
Where the positive, neutral, and negative member-

ship function for a fuzzy set is represented by ζA ( ):
X → [0, 1], ηA ( ): X → [0, 1] and ξA ( ): X → [0, 1]
respectively.
Definition 6: The idea of a q-SFS was introduced by

Kahraman et al. [9] in the year 2020, as an extension of the
existing notion of a spherical fuzzy set. Mathematically, the
concept may be formally defined in the following manner.

A = {⟨ , ζA ( ) ( ) , ηA ( ) , ξA ( )⟩ : x ∈ X} (6)

VOLUME 12, 2024 104219



A. B. Azim et al.: q-Spherical Fuzzy Rough Frank Aggregation Operators in AI Neural Networks

FIGURE 5. The condition 0 ≤
(
ζA ( )

)2
+

(
ηA ( )

)2
+

(
ξA ( )

)2
≤ 1

describes a spherical fuzzy set in three-dimensional space.

Such that 0 ≤ (ζA (x))q + (ηA (x))q + (ξA (x))q ≤ 1 for all
q ≥ 1.

Where ζA:X → [0, 1], ηA:X → [0, 1] and ξA:X → [0, 1]
correspond to the positive, neutral, and negative membership
functions, respectively.

FIGURE 6. Graphical representation of the difference between picture
fuzzy set, spherical fuzzy set and q-spherical fuzzy set.

Definition 7: Pawlak [10] introduced the notion of RS in
back 1982. The definition of rough set is as follows: The
triplet (G1, G2, R) is referred to as an approximation space
when considering an arbitrary binary relation R on G1×G2.
The R (A) and R (A) are defined for sets X ⊆ G1 and
A ⊆ G2. (

R (A) = { ∈ G1 : [ ]A ⊆ X}

R (A) =
{

∈ G1 : [ ]A
⋂

X ̸= φ
}) (7)

where [ ]A represents the idea of indiscernibility.
The set

(
R (A) , R (A)

)
is sometimes referred to as a

rough set.
Definition 8 ( [12]): A q-spherical fuzzy relation R in is

a q-spherical fuzzy subset of G1×G2. and is given by

R =
{
⟨( , ) : ζR ( , ) , ηR ( , ) , ξR (r, s)⟩ :

(
(ζR ( , ))q

+ (ηR ( , ))q + (ξR ( , ))q
)

≤ 1 : ∀ ∈ G1, ∈ G2
}
,

where ζR:G1×G2 → [0, 1], ηR:G1×G2 → [0, 1]
and ξR:G1×G2 → [0, 1].

Definition 9: Azim et al. [12] introduced the concept of a
q-spherical fuzzy rough set, which is defined as:

For a universal set G1 and G2 is a set of attributes. Let R
be a q-SF relation from G1toG2. Then the triplet (G1, G2, R)
is called q-SF approximation space. Now for any element

∈ G1, the lower and upper approximation space of w.r.t
approximation space (G1, G2, R) are presented and given as:

A =

(
A, A

)
=

{
,

(
ζ

A
( ) , ζ

A
( ) , ζ

A
( ) ,

ζA ( ) , ζA ( ) , ζA (w)

)
: ∈ G1

}
(8)

where,

ζ
A

( ) = ∧x∈G2 {ζR ( , x) ∧ ζA (x)} ,

η
A

( ) = ∨x∈G2 {ηR ( , x) ∨ ηA (x)} ,

ξ
A

( ) = ∨x∈G2 {ξR ( , x) ∨ ξA (x)} ,

ζA ( ) = ∨x∈G2 {ζR ( , x) ∨ ζA (x)} ,

ηA ( ) = ∧x∈U2 {ηR ( , x) ∧ ηA (x)} ,

ξA ( ) = ∧x∈G2 {ξR ( , x) ∧ ξA (x)} ,

with the condition that (0 ≤ ζ
q
A ( )+η

q
A ( )+ξ

q
A ( ) ≤ 1))

and
(
0 ≤ ζ

q
A ( ) + η

q
A ( ) + ξ

q
A ( ) ≤ 1

)
.

The q-SFRS is defined as a pair of q-SFSs, where A is
distinct from A. To facilitate comprehension, we will denote
the given concept as A = (A, A), which is referred to as a
q-spherical fuzzy rough number. The notation Ai represents
the set that encompasses all q-SFR numbers.

FIGURE 7. Graphical representation of q-spherical fuzzy rough set-in
three-dimensional space.

Definition 10 ( [12]): Let A1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1),

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) and A = (ζ , η, ξ, ζ , η, ξ ) be

any three q-SFRNs, and ω > 0, then,
1. As shown in the equation at the bottom of the next page.
2. As shown in the equation at the bottom of the next page.
3.

Aω

=

〈 ζω, q
√
1−(1−ηq)ω, q

√
(1−ηq)ω−

(
1−ηq − ξq

)ω

,

ζ
ω
, q
√
1−(1−ηq)ω, q

√
(1 − ηq)ω −

(
1 − ηq − ξ

q
)ω

〉
,
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4.

ωA =

〈 q
√
1 − (1 − ζ q)ω, ηω, q

√(
1 − ζ q − ξq

)ω

,

q
√
1 − (1 − ζ

q
)
ω
, ηω, q

√(
1 − ζ

q
− ξ

q
)ω

〉
,

5. A1 = A2 if and only if ζ
1

= ζ
2
, η

1
= η

2
ξ
1

= ξ
2
and

ζ 1 = ζ 2, η1 = η2ξ1 = ξ2.
Definition 11 ( [12]): Let A = (ζ , η, ξ, ζ , η, ξ ) be a

q-SFRN. Then the score value which is denoted as AQ can
be determined by the following function.

Sco(A) =

2 +

(
ζ
)q

+
(
ζ
)q

−

(
η
)q

− (η)q −

(
ξ
)q

−
(
ξ
)q

3
(9)

where,

0 ≤ Sco (A) ≤ 1.

The notation Sco(A) introduced in equation (9) represents the
score value associated with a q-SFRN A = (ζ , η, ξ, ζ , η, ξ ).
In this context, ‘‘Sco’’ stands for ‘‘score,’’ and it serves as
a metric to quantify the characteristics or properties of the
q-SFRN. The function Sco(A) is derived from a specific
formulation, as described in equation (9), where the com-
ponents of the q-SFRN are raised to the power of q, and
certain arithmetic operations are performed. The resulting
score value Sco (A) is bounded between 0 and 1, reflect-
ing the normalized assessment of the q-SFRN’s attributes.
In essence, Sco(A) provides a quantitative measure of the
q-SFRN’s features or attributes, enabling comparisons and
evaluations within the framework of q-spherical fuzzy rough
sets. We appreciate your inquiry regarding the notation, and
we hope this clarification adequately addresses your question.
Definition 12 ( [12]): Let A = (ζ , η, ξ, ζ , η, ξ ) be a

q-SFRN. The accuracy of A is calculated by using the for-
mula mentioned in Equation No. 10.

Acc (A) =

(
ζ
)q

+

(
ζ
)q

−

(
ξ
)q

−
(
ξ
)q

2
(10)

where −1 ≤ Acc (A) ≤ 1.
Definition 13 ( [12]): Let A1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1)

and A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) are two q-SFRNs, then

1) If Sco(A1) < Sco(A2) then A1 < A2,
2) If Sco(A1) > Sco(A2) then A1 > A2,
3) If Sco (A1) = Sco(A2) then

• If Acc(A1) < Acc(A2) then A1 < A2,
• If Acc(A1) > Acc(A2) then A1 > A2,
• If Acc(A1) = Acc(A2) then A1 = A2.

Definition 14 ( [12]): Let A1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1)

and A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) and A = (ζ , η, ξ, ζ , η, ξ )

be any three q-SFRNs, and ω, ω1 and ω2 are any positive
integers then the following properties are held.
1. A1 ⊕ A2 = A2 ⊕ A1,
2. A1 ⊗ A2 = A2 ⊗ A1
3. ω (A1 ⊕ A2) = ωA1 ⊕ ωA2,
4. ω1A ⊕ ω2A = (ω1 + ω2) A,
5. (A1 ⊗ A2)

ω
= Aω

1 ⊗ Aω
2 ,

6. Aω1 ⊗ Aω2 = Aω1+ω2 .
Definition 15 ( [25]): The Frank t-norm and t-conorm are

mathematical operations defined for real numbers r and s,
where r and s fall in the interval [0, 1]. The formulas for these
operations are as follows:

Frank t-norm (Fr):

Fr (r, s) = logτ

(
1 +

(τ r − 1) (τ s − 1)
τ − 1

)
(11)

Frank t-conorm (Fr ′):

Fr ′ (r, s) = 1 − logT

(
1 +

(
τ 1−r − 1

) (
τ 1−s − 1

)
T − 1

)
(12)

Here (r, s) ϵ [0, 1] × [0, 1] and τ is any value except 1.
By applying limit theory, the following is derived byWang

et al. [26] in 2009.
As τ approaches 1, the Frank t-conorm tends to r + s− rs

and the Frank t-norm tends to rs.
As T approaches infinity, the Frank t-conorm tends to

min {r + s, 1} and Frank t-norm tends to max {0, r + s− 1} .

III. PROPOSED OPERATIONAL LAWS FOR q − SFRNs
In this section, we develop a set of operational laws using
Equations (11) and (12) in the context of q-spherical fuzzy
rough numbers. Using these established operational laws,
we provide a diversified collection of Aggregation Operators
(AOs) designed specifically for the integration of q-spherical

A1 ⊕ A2 =

〈 q
√

ζ
q
1 + ζ

q
2 − ζ

q
1ζ

q
2, η

q
1η

q
2,

q

√(
1 − ζ

q
2ξ

q
1 + 1 − ζ

q
1ξ

q
2

)
− ξ

q
1ξ

q
2,

q
√

ζ
q
1 + ζ

q
2 − ζ

q
1ζ

q
2, η

q
1η

q
2,

q

√(
1 − ζ

q
2ξ

q
1 + 1 − ζ

q
1ξ

q
2

)
− ξ

q
1ξ

q
2

〉
,

A1 ⊗ A2 =

〈ζ
q
1ζ

q
2,

q
√

η
q
1 + η

q
2 − η

q
1η

q
2,

q

√(
1 − η

q
2ξ

q
1 + 1 − η

q
1ξ

q
2

)
− ξ

q
1ξ

q
2,

ζ
q
1ζ

q
2,

q
√

η
q
1 + η

q
2 − η

q
1η

q
2,

q

√(
1 − η

q
2ξ

q
1 + 1 − η

q
1ξ

q
2

)
− ξ

q
1ξ

q
2

〉
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fuzzy rough information. This technique greatly increases
the flexibility and accuracy of aggregation procedures within
the stated framework, resulting in higher decision-making
efficacy in complex settings.

A. OPERATIONAL LAWS
Definition 16: Let A1 = (ζ

1
, η

1
, ξ

1
, ζ 1, η1, ξ1), A2 =

(ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) andA = (ζ , η, ξ, ζ , η, ξ ) be any three

q-SFRNs, where ω > 0. let τ be any real number except 1.
The essential Frank’s operations for q-SFRNs are presented
as follows:

(i) .A1 ⊕ A2=



〈

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)(
τ
1−ζ

q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)(
τ

η
q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)(
τ

ξ
q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)(
τ
1−ζ

q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)(
τ

η
q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)(
τ

ξ
q
2−1

)
τ−1



〉



(ii) .A1 ⊗ A2=



〈

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)(
τ

ζ
q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)(
τ
1−η

q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ

ξ
q
1−1

)(
τ

ξ
q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ
1−ζ

q
1−1

)(
τ
1−ζ

q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)(
τ 1−τ

η
q
2
−1
)

τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
1−1

)(
τ 1−τ

ξ
q
2
−1
)

τ−1



〉



(iii) .ωA =



〈

q

√√√√1 − logτ

(
1 +

(
τ 1−ζq

−1
)ω

(τ−1)ω−1

)

q

√√√√logτ

(
1 +

(
τ

ηq
−1
)ω

(τ−1)ω−1

)
, ,

q

√√√√logτ

(
1 +

(
τ ξq

−1
)ω

(τ−1)ω−1

)
, ,

q

√√√√1 − logτ

(
1 +

(
τ 1−ζ

q
−1
)ω

(τ−1)ω−1

)
,

q

√
logτ

(
1 +

(
τηq−1

)ω
(τ−1)ω−1

)
,

q

√√√√logτ

(
1 +

(
τ ξ

q
−1
)ω

(τ−1)ω−1

)

〉



(iv) .Aω
=



〈

q

√√√√logτ

(
1 +

(
τ ζq

−1
)ω

(τ−1)ω−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ
1−ηq

−1
)ω

(τ−1)ω−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ξq

−1
)ω

(τ−1)ω−1

)
,

q

√√√√logτ

(
1 +

(
τ ζ

q
−1
)ω

(τ−1)ω−1

)
,

q

√
1 − logτ

(
1 +

(
τ 1−ηq−1

)ω
(τ−1)ω−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ξ

q
−1
)ω

(τ−1)ω−1

)

〉


Theorem 1: Let ω, ω1, ω2 be any three positive real num-

bers . Then for three q-SFRNs A1 = (ζ
1
, η

1
, ξ

1
, ζ 1, η1, ξ1),

A2 = (ζ
2
, η

2
, ξ

2
, ζ 2, η2, ξ2) and A = (ζ , η, ξ, ζ , η, ξ ), the

FTN and FTCN are defined as follows:
I. A1 ⊕ A2 = A2 ⊕ A1
II. A1 ⊗ A2 = A2 ⊗ A1
III. g (A1 ⊕ A2) = ωA1 ⊕ ωA2
IV. A (ω1 + ω2) = ω1A⊕ω2A

V. (A1 ⊗ A2)
ω

= Aω
1 ⊗ Aω

2
VI. Aω1 ⊗ A 2 = Aω1+ω2 .
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Proof: Using Definition 16, we get

A1 ⊕ A2 =



〈

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)(
τ
1−ζ

q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)(
τ

η
q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)(
τ

ξ
q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)(
τ
1−ζ

q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)(
τ

η
q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)(
τ

ξ
q
2−1

)
τ−1



〉



=



〈

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
2−1

)(
τ
1−ζ

q
1−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

η
q
2−1

)(
τ

η
q
1−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
2−1

)(
τ

ξ
q
1−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
2−1

)(
τ
1−ζ

q
1−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

η
q
2−1

)(
τ

η
q
1−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
2−1

)(
τ

ξ
q
1−1

)
τ−1



〉



= A2⊕A1.

Similarly,

A1⊗A2

=



〈

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)(
τ

ζ
q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)(
τ
1−η

q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)(
τ
1−ζ

q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)(
τ

ζ
q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)(
τ 1−τ

η
q
2
−1
)

τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
1−1

)(
τ 1−τ

ξ
q
2
−1
)

τ−1



〉



=



〈

q

√√√√√logτ

1 +

(
τ

ζ
q
2−1

)(
τ

ζ
q
1−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
2−1

)(
τ
1−η

q
1−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
2−1

)(
τ
1−ζ

q
1−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ζ
q
2−1

)(
τ

ζ
q
1−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
2−1

)(
τ 1−τ

η
q
1
−1
)

τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
2−1

)(
τ 1−τ

ξ
q
1
−1
)

τ−1



〉


= A2⊗A1.
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ω (A1⊕A2)

= ω



〈

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)(
τ
1−ζ

q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)(
τ

η
q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)(
τ

ξ
q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)(
τ
1−ζ

q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)(
τ

η
q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)(
τ

ξ
q
2−1

)
τ−1



〉



=



〈

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)ω(
τ
1−ζ

q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)ω(
τ

η
q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)ω(
τ

ξ
q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)ω(
τ
1−ζ

q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)ω(
τ

η
q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)ω(
τ

ξ
q
2−1

)ω

(τ−1)2ω−1



〉



.

=



〈

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)ω

(τ−1)ω−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)ω

(τ−1)ω−1

,

q

√√√√logτ

(
1 +

(
ξ
q
1−1

)ω

(τ−1)ω−1

)
,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
1−1

)ω

(τ−1)ω−1

,

q

√√√√√logτ

1 +

(
τ

η
q
1−1

)ω

(τ−1)ω−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
1−1

)ω

(τ−1)ω−1



〉



⊕



〈

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
2−1

)ω

(τ−1)ω−1

,

q

√√√√√logτ

1 +

(
τ

η
q
2−1

)ω

(τ−1)ω−1

,

q

√√√√logτ

(
1 +

(
ξ
q
2−1

)ω

(τ−1)ω−1

)
,

q

√√√√√1 − logτ

1 +

(
τ
1−ζ

q
2−1

)ω

(τ−1)ω−1

,

q

√√√√√logτ

1 +

(
τ

η
q
2−1

)ω

(τ−1)ω−1

,

q

√√√√√logτ

1 +

(
τ

ξ
q
2−1

)ω

(τ−1)ω−1



〉


= ωA1⊕ωA2
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Therefore, ω (A1⊕A2) = ωA1⊕ A2.

ω1A⊕ω2A

=



〈

q

√√√√1 − logτ

(
1 +

(
τ 1−ζq

−1
)ω1

(τ−1)ω1−1

)
,

q

√√√√logτ

(
1 +

(
τ

ηq
−1
)ω1

(τ−1)ω1−1

)
,

q

√√√√logτ

(
1 +

(
τ ξq

−1
)ω1

(τ−1)ω1−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ζ

q
−1
)ω1

(τ−1)ω1−1

)
,

q

√
logτ

(
1 +

(
τηq−1

)ω1
(τ−1)ω1−1

)
,

q

√√√√logτ

(
1 +

(
τ ξ

q
−1
)ω1

(τ−1)ω1−1

)

〉



⊕



〈

q

√√√√1 − logτ

(
1 +

(
τ 1−ζq

−1
)ω2

(τ−1)ω2−1

)
,

q

√√√√logτ

(
1 +

(
τ

ηq
−1
)ω2

(τ−1)ω2−1

)
,

q

√√√√logτ

(
1 +

(
τ ξq

−1
)ω2

(τ−1)ω2−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ζ

q
−1
)ω2

(τ−1)ω2−1

)
,

q

√
logτ

(
1 +

(
τηq−1

)ω2
(τ−1)ω2−1

)
,

q

√√√√logτ

(
1 +

(
τ ξ

q
−1
)ω2

(τ−1)ω2−1

)

〉



=



〈

q

√√√√1 − logτ

(
1 +

(
τ 1−ζq

−1
)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√√√√logτ

(
1 +

(
τ

ηq
−1
)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√√√√logτ

(
1 +

(
τ ξq

−1
)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ζ

q
−1
)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√
logτ

(
1 +

(
τηq−1

)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√√√√logτ

(
1 +

(
τ ξ

q
−1
)ω1+ω2

(τ−1)ω1+ω2−1

)

〉



= A (ω1⊕ω2) .

(A1⊗A2)
ω

=



〈

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)(
τ

ζ
q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)(
τ
1−η

q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
1−1

)(
τ
1−ξ

q
2−1

)
τ−1

,

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)(
τ

ζ
q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)(
τ
1−η

q
2−1

)
τ−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
1−1

)(
τ 1−τ

ξ
q
2
−1
)

τ−1



〉



ω
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=



〈

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)ω(
τ

ζ
q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)ω(
τ
1−η

q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
1−1

)ω(
τ
1−ξ

q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)ω(
τ

ζ
q
2−1

)ω

(τ−1)2ω−1

,

q

√√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)ω(
τ 1−τ

η
q
2
−1
)ω

(τ−1)2ω−1

,

q

√√√√√√1 − logτ

1 +

(
τ
1−ξ

q
1−1

)ω(
τ 1−τ

ξ
q
2
−1
)ω

(τ−1)2ω−1



〉



=



〈

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)ω

(τ−1)ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)ω

(τ−1)ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
1−1

)ω

(τ−1)ω−1

,

q

√√√√√logτ

1 +

(
τ

ζ
q
1−1

)ω

(τ−1)ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
1−1

)ω

(τ−1)ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
1−1

)ω

(τ−1)ω−1



〉



⊗



〈

q

√√√√√logτ

1 +

(
τ

ζ
q
2−1

)ω

(τ−1)ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
2−1

)ω

(τ−1)ω−1

,

q

√√√√√1 − logτ

1 +

(
τ

ξ
q
2−1

)ω

(τ−1)ω−1

,

q

√√√√√logτ

1 +

(
τ
1−ζ

q
2−1

)ω

(τ−1)ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−η

q
2−1

)ω

(τ−1)ω−1

,

q

√√√√√1 − logτ

1 +

(
τ
1−ξ

q
2−1

)ω

(τ−1)ω−1



〉



= Aω
1 ⊗Aω

2 .

Aω1⊗Aω2

=



〈

q

√√√√logτ

(
1 +

(
τ ζq

−1
)ω1

(τ−1)ω1−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ
1−ηq

−1
)ω1

(τ−1)ω1−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ξq

−1
)ω1

(τ−1)ω1−1

)
,

q

√√√√logτ

(
1 +

(
τ ζ

q
−1
)ω1

(τ−1)ω1−1

)
,

q

√
1 − logτ

(
1 +

(
τ 1−ηq−1

)ω1
(τ−1)ω1−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ξ

q
−1
)ω1

(τ−1)ω1−1

)

〉
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⊗



〈

q

√√√√logτ

(
1 +

(
τ ζq

−1
)ω2

(τ−1)ω2−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ
1−ηq

−1
)ω2

(τ−1)ω2−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ξq

−1
)ω2

(τ−1)ω2−1

)
,

q

√√√√logτ

(
1 +

(
τ ζ

q
−1
)ω2

(τ−1)ω2−1

)
,

q

√
1 − logτ

(
1 +

(
τ 1−ηq−1

)ω2
(τ−1)ω2−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ξ

q
−1
)ω2

(τ−1)ω2−1

)

〉



=



〈

q

√√√√logτ

(
1 +

(
τ ζq

−1
)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ
1−ηq

−1
)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ξq

−1
)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√√√√logτ

(
1 +

(
τ ζ

q
−1
)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√
1 − logτ

(
1 +

(
τ 1−ηq−1

)ω1+ω2

(τ−1)ω1+ω2−1

)
,

q

√√√√1 − logτ

(
1 +

(
τ 1−ξ

q
−1
)ω1+ω2

(τ−1)ω1+ω2−1

)

〉


= Aω1+ω2 .

B. q-SPHERICAL FUZZY ROUGH FRANK AVERAGING
AGGREGATION OPERATORS
We present a variety of averaging operators in this section
that use the rules from Section III. These operators can effec-
tively combine and simplify information, which facilitates
data analysis and decision-making.

Definition 17: Let Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1,

2, . . . , n) be a set of q-SFRNs with their corresponding
weight vector ωi (i = 1, 2, . . . , n) such that

∑n
i=1 ωi = 1

and ωi∈ [0, 1]. Then the operator q − SFRFWA :An
→ A is

defined as

q − SFRFWA (A1, A2, . . . ,An) = ⊕
n
i=1ωiAi

=



〈

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ ξ

q
i − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ ξ

q
i − 1

)ωi
)

〉



(13)

Theorem 2: The aggregated value obtained by
q − SFRFWA operator of q − SFRNs is still a q − SFRN ,
and

q − SFRFWA (A1, A2, . . . ,An) = ⊕
n
i=1ωiAi

=



〈

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ ξ

q
i − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ ξ

q
i − 1

)ωi
)

〉



(14)

Proof: This theorem is established by using mathemati-
cal induction.

Step 1. For n = 2, we have

q − SFRFWA (A1, A2) = ω1A1 ⊕ ω2A2

〈

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
1 − 1

)ω1
)
,

q

√
logτ

(
1 +

(
τ η

q
1 − 1

)ω1
)
,

q

√
logτ

(
1 +

(
ξ
q
1 − 1

)ω1
)
,

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
1 − 1

)ω1
)
,

q

√
logτ

(
1 +

(
τ η

q
1 − 1

)ω1
)
,

q

√
logτ

(
1 +

(
τ ξ

q
1 − 1

)ω1
)

〉
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⊕



〈

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
2 − 1

)ω2
)
,

q

√
logτ

(
1 +

(
τ η

q
2 − 1

)ω2
)
,

q

√
logτ

(
1 +

(
ξ
q
2 − 1

)ω2
)
,

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
2 − 1

)ω2
)
,

q

√
logτ

(
1 +

(
τ η

q
2 − 1

)ω2
)
,

q

√
logτ

(
1 +

(
τ ξ

q
2 − 1

)ω2
)

〉



=



〈

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
1 − 1

)ω1
(
τ 1−ζ

q
2 − 1

)ω2
)
,

q

√
logτ

(
1 +

(
τ η

q
1 − 1

)ω1
) (

1 +

(
τ η

q
2 − 1

)ω2
)
,

q

√
logτ

(
1 +

(
τ ξ

q
1 − 1

)ω1
) (

1 +

(
τ ξ

q
2 − 1

)ω2
)

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
1 − 1

)ω1
(
τ 1−ζ

q
2 − 1

)ω2
)
,

q

√
logτ

(
1 +

(
τ η

q
1 − 1

)ω1
(
τ η

q
2 − 1

)ω2
)
,

q

√
logτ

(
1 +

(
τ ξ

q
1 − 1

)ω1
(
τ ξ

q
2 − 1

)ω2
)

〉



=



〈

q

√
1 − logτ

(
1 +

∏2
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏2
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏2
i=1

(
τ ξ

q
i − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏2
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏2
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏2
i=1

(
τ ξ

q
i − 1

)ωi
)

〉



.

where
∑2

i=1 ωi = 1.
Consequently, when n equals 2, the assertion holds.
Step 2. Assume the validity of the result for n = k, i.e.,

q − SFRFWA (A1, A2, . . . ,Ak) = ⊕
k
i=1ωiAi

=



〈

q

√
1 − logτ

(
1 +

∏k
i=1

(
τ 1−ζ

q
i − 1

)ωk
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ η

q
i − 1

)ωk
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ ξ

q
i − 1

)ωk
)
,

q

√
1 − logτ

(
1 +

∏k
i=1

(
τ 1−ζ

q
i − 1

)ωk
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ η

q
i − 1

)ωk
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ ξ

q
i − 1

)ωk
)

〉



Step 3. To demonstrate Equation (14) is true for the case
where n = k + 1 i.e.,
q − SFRFWA (A1, A2, . . . ,Ak⊕Ak+1)

= ω1A1 ⊕ ω2A2⊕ . . . ⊕ωkAk ⊕ ωk+1Ak+1

=



〈

q

√
1 − logτ

(
1 +

∏k
i=1

(
τ 1−ζ

q
i − 1

)ωk
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ η

q
i − 1

)ωk
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ ξ

q
i − 1

)ωk
)
,

q

√
1 − logτ

(
1 +

∏k
i=1

(
τ 1−ζ

q
i − 1

)ωk
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ η

q
i − 1

)ωk
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ ξ

q
i − 1

)ωk
)

〉



⊕



〈

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
k+1 − 1

)ωk+1
)
,

q

√
logτ

(
1 +

(
τ η

q
k+1 − 1

)ωk+1
)
,

q

√
logτ

(
1 +

(
τ ξ

q
k+1 − 1

)ωk+1
)
,

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
k+1 − 1

)ωk+1
)
,

q

√
logτ

(
1 +

(
τ η

q
k+1 − 1

)ωk+1
)
,

q

√
logτ

(
1 +

(
τ ξ

q
k+1 − 1

)ωk+1
)

〉



=



〈

q

√
1 − logτ

(
1+

∏k
i=1

(
τ 1−ζ

q
k −1

)ωk
(
τ 1−ζ

q
k+1−1

)ωk+1
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ η

q
k − 1

)ωk
(
τ η

q
k+1 − 1

)ωk+1
)
,

q

√
logτ

(
1+

∏k
i=1

(
τ ξ

q
k −1

)ωk
(
τ ξ

q
k+1−1

)ωk+1
)
,

q

√
1 − logτ

(
1+

∏k
i=1

(
τ 1−ζ

q
k −1

)ωk
(
τ 1−ζ

q
k+1−1

)ωk+1
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ η

q
k − 1

)ωk
(
τ η

q
k+1 − 1

)ωk+1
)
,

q

√
logτ

(
1 +

∏k
i=1

(
τ ξ

q
k − 1

)ωk
(
τ ξ

q
k+1 − 1

)ωk+1
)

〉



=



〈

q

√
1 − logτ

(
1 +

∏k+1
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏k+1
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏k+1
i=1

(
τ ξ

q
i − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏k+1
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏k+1
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏k+1
i=1

(
τ ξ

q
i − 1

)ωi
)

〉


where

∑k+1
i=1 ωi = 1.
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Thus, Equation (14) holds for k + 1. By mathematical
induction, we conclude that the result is true for all values
of n.
Theorem 3 (Property of Idempotency): If the q − SFRNs

Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) are identical,

i.e., be a Ai = A for all i, where A = (ζ , η, ξ, ζ , η, ξ ), then
q− SFRFWA (A1, A2, . . . ,An) = A.
Proof. As Ai = A, for all i, then we obtain

q − SFRFWA (A1, A2, . . . ,An)

=



〈

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ ξ

q
i − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ 1−ζ

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ η

q
i − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ ξ

q
i − 1

)ωi
)

〉



=



〈

q

√√√√1 − logτ

(
1 +

∏n
i=1

(
τ 1−ζ

q
i − 1

)∑k+1
i=1 ωi

)
,

q

√√√√logτ

(
1 +

∏n
i=1

(
τ η

q
i − 1

)∑k+1
i=1 ωi

)
,

q

√√√√logτ

(
1 +

∏n
i=1

(
τ ξ

q
i − 1

)∑k+1
i=1 ωi

)
,

q

√√√√1 − logτ

(
1 +

∏n
i=1

(
τ 1−ζ

q
i − 1

)∑k+1
i=1 ωi

)
,

q

√√√√logτ

(
1 +

∏n
i=1

(
τ η

q
i − 1

)∑k+1
i=1 ωi

)
,

q

√√√√logτ

(
1 +

∏n
i=1

(
τ ξ

q
i − 1

)∑k+1
i=1 ωi

)

〉



=



〈
q

√
1 − logτ

(
1 +

(
τ 1−ζ q

− 1
))

,

q

√
logτ

(
1 +

(
τ ηq

− 1
))

,

q

√
logτ

(
1 +

(
τ ξq

− 1
))

,

q

√
1 − logτ

(
1 +

(
τ 1−ζ

q
− 1

))
,

q
√
logτ

(
1 +

(
τ ηq − 1

))
,

q

√
logτ

(
1 +

(
τ ξ

q
− 1

))

〉


=

(
ζ , η, ξ, ζ , η, ξ

)
= A

Therefore, the result can be derived from the information
provided.
Theorem 4 (Property of Boundedness): Assuming Ai =(

ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) be a family of

q− SFRNs. If
A−

= min {A1, A2, . . . ,An} and
A+

= max {A1, A2, . . . ,An}, then
A−

≤ q− SFREWG (A1, A2, . . . ,An) ≤ A+.
Proof: Let A−

=

(
ζ−, η−, ξ−, ζ

−
, η−, ξ

−
)
and

A+
=

(
ζ+, η+, ξ+, ζ

+
, η+, ξ

+
)
. Therefore, we have

ζ−
= min

i

{
ζ
i

}
, η−

= max
i

{
η
i

}
,ξ

i
= max

i

{
ξ
i

}
,

ζ
−

= min
i

{
ζ i
}
, η−

= max
i

{
ηi
}
,ξ

−
= max

i

{
ξ i
}
,

ζ+
= max

i

{
ζ
i

}
, η+

= min
i

{
η
i

}
,ξ+

= min
i

{
ξ
i

}
,

ζ
+

= max
i

{ζ i}, η
+

= min
i

{ηi},ξ
+

= min
i

{ξ i}

q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ−q

− 1
)ωi
)

≤
q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ

q
i − 1

)ωi
)

≤
q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ+q

− 1
)ωi
)
,

q

√
logτ

(
1 +

∏n

i=1

(
τ η−q

− 1
)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ η

q
i − 1

)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ η+q

− 1
)ωi
)
,

q

√
logτ

(
1 +

∏n

i=1

(
τ ξ−q

− 1
)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ ξ

q
i − 1

)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ ξ+q

− 1
)ωi
)
,

q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ

−q
− 1

)ωi
)

≤
q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ

q
i − 1

)ωi
)

≤
q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ

+q
− 1

)ωi
)
,

q

√
logτ

(
1 +

∏n

i=1

(
τ η−q

− 1
)ωi)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ η

q
i − 1

)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ η+q

− 1
)ωi)

,

q

√
logτ

(
1 +

∏n

i=1

(
τ ξ

−q
− 1

)ωi
)
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≥
q

√
logτ

(
1 +

∏n

i=1

(
τ ξ

q
i − 1

)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ ξ

+q
− 1

)ωi
)
.

Therefore,

A−
≤ q− SFRFWA (A1, A2, . . . ,An) ≤ A+.

Theorem 5 (Property of Monotonicity): Assuming Ai =(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) and A∗

i

=

(
ζ ∗

i
, η∗

i
, ξ∗

i
, ζ

∗

i , η
∗
i , ξ

∗

i

)
(i = 1, 2, . . . , n) be a collec-

tion of two q − SFRNs such that Ai ≤ A∗
i for

all i, then q − SFRFWA (A1, A2, . . . ,An) ≤ q −

SFRFWA
(
A∗

1, A
∗

2, . . . ,A
∗
n
)
.

Proof: As, ζ
i

≤ ζ ∗

i
, η

i
≥ η∗

i
, ξ

i
≥ ξ∗

i
, ζ i ≤ ζ

∗

i , ηi ≥

η∗
i and, ξ i ≥ ξ

∗

i

So q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ

q
i − 1

)ωi
)

≤
q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ

∗q
i − 1

)ωi
)

q

√
logτ

(
1 +

∏n

i=1

(
τ η

q
i − 1

)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ η

∗q
i − 1

)ωi
)

q

√
logτ

(
1 +

∏n

i=1

(
τ ξ

q
i − 1

)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ ξ

∗q
i − 1

)ωi
)

q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ

q
i − 1

)ωi
)

≤
q

√
1 − logτ

(
1 +

∏n

i=1

(
τ 1−ζ

∗q
i − 1

)ωi
)

q

√
logτ

(
1 +

∏n

i=1

(
τ η

q
i − 1

)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ η

∗q
i − 1

)ωi
)

and

q

√
logτ

(
1 +

∏n

i=1

(
τ ξ

q
i − 1

)ωi
)

≥
q

√
logτ

(
1 +

∏n

i=1

(
τ ξ

∗q
i − 1

)ωi
)

Hence

q− SFRFWA (A1, A2, . . . ,An)

≤ q− SFRFWA
(
A∗

1, A
∗

2, . . . ,A
∗
n
)
.

C. q − SFRFOWAOPERATOR

Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n)

ne a collection of q-SFRNs, the q-spherical fuzzy rough
Frank ordered averaging operator (q-SFRFOWA) operator is

defined as a mapping q − SFRFOWA : An
−→ A associ-

ated with the weight vector (ω1, ω2, . . . , ωn)
T adhering the

condition ωi > 0 and the constrain
∑n

i=1 ωi = 1.

q− SFRFOWA
(
Aδ(1), Aδ(2), . . . ,Aδ(n)

)
= Aδ(1) ⊕ Aδ(2), . . . ,⊕Aδ(n) = ⊕

n
i=1

(
ωiAδ(i)

)
where δ (1) , δ (2) , . . . , δ (n) is a permutation of (1, 2, 3, .., n)
such that Aδ(1) ≤ Aδ(i−1) for all i = 1, 2, 3, .., n.

Now,
Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) be

a collection of q-SFRNs and ω = (ω1, ω2, . . . , ωn)
T be the

weight vector adhering to the condition ωi > 0 and the
constrain

∑n
i=1 ωi = 1. Then

q− SFRFOWA
(
Aδ(1), Aδ(2), . . . ,Aδ(n)

)

=



〈
q

√
1 − logτ

(
1 +

∏n
i=1

(
τ
1−ζ

q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

η
q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

ξ
q
δ(i) − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ
1−ζ

q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

η
q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

ξ
q
δ(i) − 1

)ωi
)

〉


Theorem 6: Assuming Ai = (ζ

i
, η

i
, ξ

i
, ζ i, ηi, ξ i)(i = 1,

2, . . . , n) be a collection of q-SFRNs and ω =

(ω1, ω2, . . . , ωn)
T be the weight vector adhering to the con-

dition ωi > 0 and the constrain
∑n

i=1 ωi = 1.1 If it meets the
requirements, it is known as q− SFRFOWAoperator.

q− SFRFOWA
(
Aδ(1), Aδ(2), . . . ,Aδ(n)

)

=



〈
q

√
1 − logτ

(
1 +

∏n
i=1

(
τ
1−ζ

q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

η
q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

ξ
q
δ(i) − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ
1−ζ

q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

η
q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

ξ
q
δ(i) − 1

)ωi
)

〉


Proof: The proof is the same as Theorem 2.
Theorem 7 (Idempotency): AssumingAi =

(
ζ
i
, η

i
, ξ

i
, ζ i,

ηi, ξ i
)
(i = 1, 2, . . . , n) be a collection of q − SFRNs

and (ω1, ω2, . . . , ωn)
T signifies the weight vector adher-

ing to the condition ωi > 0 and the constrain∑n
i=1 ωi = 1. Ai (i = 1, 2, . . . , n) are the same ∀i, then

q− SFRFOWA
(
Aδ(1), Aδ(2), . . . ,Aδ(n)

)
= A

Proof: The proof is the same as Theorem 3.
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Theorem 8 (Boundness): Assuming Ai = (ζ
i
, η

i
, ξ

i
,

ζ i, ηi, ξ i) (i = 1, 2, . . . , n) be a collection of q − SFRNs
and (ω1, ω2, . . . , ωn)

T signifies the weight vector adher-
ing to the condition ωi > 0 and the constrain∑n

i=1 ωi = 1.LetA−
= min {A1, A2, . . . ,An} and A+

=

max {A1, A2, . . . ,An}, then
Then

A−
≤ q− SFRFOWA

(
Aδ(1), Aδ(2), . . . ,Aδ(n)

)
≤ A+

Proof: The proof is the same as Theorem 4.
Theorem 9 (Monotonicity): Assuming

Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) and

A∗
i =

(
ζ ∗

i
, η∗

i
, ξ∗

i
, ζ

∗

i , η
∗
i , ξ

∗

i

)
(i = 1, 2, . . . , n) be a collec-

tion of two q − SFRNs such that Ai ≤ A∗
i for all I, then

q− SFRFOWA
(
Aδ(1), Aδ(2), . . . ,Aδ(n)

)
≤ q− SFRFOWA

(
A∗

δ(1), A
∗

δ(2), . . . ,A
∗

δ(n)

)
.

Proof: The proof is the same as Theorem 5.

D. q − SFRFHWAOPERATOR

Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) ne a

collection of q-SFRNs, the q-spherical fuzzy rough Frank
hybrid averaging operator (q-SFRFHWA) operator is defined
as a mapping q − SFRFHWA : An

−→ A associated with
the weight vector (ω1, ω2, . . . , ωn)

T adhering the condition
ωi > 0 and the constrain

∑n
i=1 ωi = 1.

q− SFRFHWA
(
Aα(1), Aα(2), . . . ,Aα(n)

)
= Aα(1) ⊕ Aα(2), . . . ,⊕Aα(n) = ⊕

n
i=1

(
ωiAα(i)

)
where α (1) , α (2) , . . . , α (n) is a permutation of (1, 2,
3, .., n) such that Aα(1) ≤ Aα(i−1) for all i = 1, 2, 3, .., n.

Now,
Assuming Ai =

(
ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i

)
(i = 1, 2, . . . , n) be

a collection of q-SFRNs and ω = (ω1, ω2, . . . , ωn)
T be the

weight vector adhering to the condition ωi > 0 and the
constrain

∑n
i=1 ωi = 1. Then

q− SFRFHWA
(
Aα(1), Aα(2), . . . ,Aα(n)

)

=



〈

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ
1−ζ

q
α(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

η
q
α(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

ξ
q
α(i) − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ
1−ζ

q
α(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

η
q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

ξ
q
α(i) − 1

)ωi
)

〉


where α(i), the ith greatest value as determined by the overall
order of Aα(1) ≥ Aα(2) ≥ · · · ≥ Aα(n) where Aα(i) has the
ith highest weighted value.

Theorem 10: Assuming Ai = (ζ
i
, η

i
, ξ

i
, ζ i, ηi, ξ i)(i = 1,

2, . . . , n) be a collection of q-SFRNs and ω =

(ω1, ω2, . . . , ωn)
T be the weight vector adhering to the con-

dition ωi > 0 and the constrain
∑n

i=1 ωi = 1.1 If it meets the
requirements, it is known as q− SFRFHWAoperator.

q− SFRFHWA
(
Aα(1), Aα(2), . . . ,Aα(n)

)

=



〈

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ
1−ζ

q
α(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

η
q
α(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

ξ
q
α(i) − 1

)ωi
)
,

q

√
1 − logτ

(
1 +

∏n
i=1

(
τ
1−ζ

q
α(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

η
q
δ(i) − 1

)ωi
)
,

q

√
logτ

(
1 +

∏n
i=1

(
τ

ξ
q
α(i) − 1

)ωi
)

〉


Proof: The proof is the same as Theorem 2.
Theorem 11 (Idempotency): Assuming Ai = (ζ

i
, η

i
, ξ

i
,

ζ i, ηi, ξ i)(i = 1, 2, . . . , n) be a collection of
q − SFRNsand (ω1, ω2, . . . , ωn)

T signifies the weight vec-
tor adhering to the condition ωi > 0 and the constrain∑n

i=1 ωi = 1.Ai (i = 1, 2, . . . , n) are the same ∀i, then

q− SFRFHWA
(
Aα(1), Aα(2), . . . ,Aα(n)

)
= A

Proof: The proof is the same as Theorem 3.
Theorem 12 (Boundness): Assuming Ai = (ζ

i
, η

i
, ξ

i
, ζ i,

ηi, ξ i)(i = 1, 2, . . . , n) be a collection of q − SFRNs
and (ω1, ω2, . . . , ωn)

T signifies the weight vector adher-
ing to the condition ωi > 0 and the constrain∑n

i=1 ωi = 1.LetA−
= min {A1, A2, . . . ,An} and A+

=

max {A1, A2, . . . ,An}, then
Then A−

≤ q − SFRFHWA(Aα(1), Aα(2), . . . ,

Aα(n)) ≤ A+

Proof: The proof is the same as Theorem 4.
Theorem 13 (Monotonicity): Assuming Ai = (ζ

i
, η

i
,

ξ
i
, ζ i, ηi, ξ i) (i = 1, 2, . . . , n) and A∗

i = (ζ ∗

i
, η∗

i
, ξ∗

i
, ζ

∗

i , η
∗
i ,

ξ
∗

i ) (i = 1, 2, . . . , n) be a collection of two q − SFRNs such
that Ai ≤ A∗

i for all i, then

q− SFRFHWA
(
Aα(1), Aα(2), . . . ,Aα(n)

)
≤ q− SFRFHWA

(
A∗

α(1), A
∗

α(2), . . . ,A
∗

α(n)

)
.

Proof: The proof is the same as Theorem 5.

IV. APPLICATIONS
This section focuses on solving MADM problems using
the previously described operators and q-SFR numbers.
An example is presented to demonstrate the effectiveness and
use of these operators in real-world scenarios.

Consider the following sets: V = {V1, V2, V3, . . . ,Vm}
for the m alternatives, J = {J1, J2, J3, . . . , Jn} for n
criteria, and D = {D1, D2, D3,.., Dk} for k experts.
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Consider the corresponding weight vector for criteria as ω =

(ω1, ω2, . . . , ωn)T . The weight vectors meet the identical
requirements and are in the closed interval [0, 1], with their
sum equal to one. Let Aij = (ζ

ij
, η

ij
, ξ

ij
, ζ ij, ηij, ξ ij)(i =

1, 2, . . . , n) and (j = 1, 2, . . . ,m), where (ζ
i
, η

i
, ξ

i
) and

(ζ i, ηi, ξ i) represents lower set approximation and upper aet
approximation, subject to the constraint (0 ≤ ζ

q
ij+η

q
ij+ξ

q
ij ≤

1) and (0 ≤ ζ
q
ij + η

q
ij + ξ

q
ij ≤ 1). Following is the procedure

to solve an MCDM problem.
Step 1: Construct D( )

=

[(
A

( )
)]

m×n
( = 1, 2,

3, . . . , d) for decision.
These matrices can be seen as the input features for the

neural network.
Step 2: This step is focused on handling different types

of criteria, especially distinguishing between benefit criteria
and cost criteria, in the context of a neural network-based
decision-making process. If the criteria have two types,
such as benefit criteria and cost criteria, the D( )

=[(
A

( )
)]

m×n
( = 1, 2, 3, . . . , d) can be converted into the

normalized decision matrices R(s)
= (s = 1, 2, 3, . . . , t)

where

r (s) =

A
(k) for benefit type of criteria[(
A

(k)
)]C

for cost type of criteria

where
[(

A
(k)
)]C

is a complement of A
(k).

Step 3: This step aligns with the neural network training
process, with the proposed operators. The aggregation of
matrices into R can be seen as the neural network output. Uti-
lize the proposed operators to aggregateR(k)

=

[(
A

(k)
)]

m×n
into R =

[
A

]
m×n

Step 4: After obtaining the neural network output (R),
this step corresponds to evaluating the score of different
alternatives based on the calculated values from the neural
network.

Step 5: This final step aligns with the decision-making
outcome, where the alternative with the highest score, derived
from the neural network, is chosen as the best solution.

The flow chart of the proposed model is shown in Figure 8.

A. NUMERICAL EXAMPLE
To elucidate and illustrate the suggested technique, we offer
an example in this section. In this scenario, the American
army is tasked with selecting a new transport vehicle for its
ground forces. The decision-making process involves eval-
uating four alternative vehicles based on four criteria. The
criteria are: J1 = Mobility, J2 = Payload capacity, J3 = Fuel
efficiency and J4 = Tactical versatility. The alternatives are
V1 = M1 Abrams tank transporter, V2 = Oshkosh defense
JLTV (Joint Light Tactical Vehicle), V3 = Humvee (High
Mobility Multipurpose Wheeled Vehicle) and V4 = Boing
CH-47 Chinook Helicopter. A group of four experts assigns
weights to these criteria ω = (0.3, 0.1, 0.4, 0.2)T . The
weight vector presents the importance of each criterion as

FIGURE 8. Flow chart of the proposed model.

determined by a group of experts in the context of the neural
network approach in artificial intelligence.

The sum of the components of a weight vector being 1
is a fundamental requirement in many decision-making and
optimization techniques, including those utilizing fuzzy sets
and rough sets. This normalization ensures that the weights
assigned to different attributes or criteria collectively rep-
resent the entire decision space without bias or distortion.
The normalization process helps in standardizing the weights,
making them comparable across different attributes or cri-
teria. It ensures that the influence of each attribute on the
decision-making process is appropriately balanced and pro-
portionate. Additionally, a weight vector with components
summing to 1 simplifies the interpretation of the weights,
as they can be directly interpreted as percentages or propor-
tions of importance. The reason behind this normalization
is to avoid any disproportionate influence of individual
attributes on the decision outcome, thereby promoting fair-
ness and consistency in decision-making. By ensuring that
the sum of weights is 1, decision-makers can more accurately
assess the relative importance of each attribute and make
informed decisions based on a comprehensive understanding
of the entire decision space.

Now let’s create a decision matrix D(k)
= (α(k))( = 1,

2, 3, 4) for each transport vehicle. Tables 1-4 provide the deci-
sion matrix for the neural network approach in AI. The goal
is to rank these cars and select the most suitable new transport
vehicle for the ground forces of the American army. Figure 9
illustrates a decision tree used for the neural networks in AI
for selecting new transport vehicles for the ground forces of
the American army.

The values depicted in these (Tables 1-4) were indeed gen-
erated randomly and served as inputs for the neural network
utilized in our study.

Step 1: Construct the decision matrices (Tables 1-4).
Step 2: Construct the normalized decision matrices. Since

none of the above criteria (mobility, payload capacity, fuel
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FIGURE 9. Neural network in AI for selecting new transport vehicles for
the ground forces of the American army.

TABLE 1. Decision matrix D1.

efficiency, or tactical versatility) are identified as cost. Cost
criteria are frequently features for which lower values are
favored, albeit this varies depending on the context of the
decision-making. So, there is no need for normalization.

Step 3. Utilize the q-SFRFWA operator to derive the over-
all aggregated values R.

Utilize the q-SFRFWA operator once again to derive the
overall preference values.

Calculate the overall preference values B ( = 1, 2, 3, 4)
for the alternative Vi(i = 1, 2, 3, 4) using the given data and
the q− SFRFHWA operator as shown below:

B1 =

(
0.5287, 0.5648, 0.3256,
0.2546, 0.5467, 0.5468

)
,

B2 =

(
0.8547, 0.6534, 0.7458,
0.2546, 0.3654, 0.8547

)
,

TABLE 2. Decision matrix D2.

TABLE 3. Decision matrix D3.

B3 =

(
0.2568, 0.4527, 0.7485,
0.7429, 0.8546, 0.6589

)
and

B4 =

(
0.8547, 0.6523, 0.5874,
0.4578, 0.4256, 0.3258

)
.

Step 4: By using Equation (9) we get Sco(B1) = 0.5409,
Sco (B2) = 0.4246, Sco(B3) = 0.3349 and Sco(B4) =

0.7095.
Step 5: Using the score values, we can establish the rank-

ing order of the available alternatives as follows: V4 > V1 >

V2 > V3. Hence V4 = Boing CH-47 Chinook Helicopter is
the best alternative.

By utilizing the q-SFRFOWA operator overall preference
values B ( = 1, 2, 3, 4) for the alternative Vi(i =

1, 2, 3, 4) using the given data and the q−SFRFOWA operator
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TABLE 4. Decision matrix D4.

TABLE 5. Aggregated decision matrix R.

as shown below:

B1 =

(
0.5246, 0.3697, 0.2546,
0.3879, 0.2489, 0.2437

)
,

B2 =

(
0.4569, 0.2463, 0.4897,
0.3658, 0.2543, 0.7458

)
,

B3 =

(
0.2543, 0.2436, 0.8746,
0.2785, 0.2356, 0.5489

)
and

B4 =

(
0.9856, 0.2551, 0.2463,
0.2451, 0.7486, 0.5674

)
.

By using Equation (9) we get Sco (B1) = 0.7019, Sco(B2) =

0.5269, Sco(B3) = 0.3920 and Sco(B4) = 0.7795. Using
the score values, we can establish the ranking order of the
available alternatives as follows: V4 > V1 > V2 > V3.
Hence V4 = Boing CH-47 Chinook Helicopter is the best
alternative.

By utilizing the q-SFRFHWA operator overall preference
valuesB ( = 1, 2, 3, 4) for the alternative Vi(i = 1, 2, 3, 4)
using the given data and the q−SFRFHWA operator as shown
below:

B1 =

(
0.1596, 0.8462, 0.3529,
0.8524, 0.5749, 0.25463

)
,

B2 =

(
0.2549, 0.4785, 0.2439,
0.2874, 0.5283, 0.7534

)
,

B3 =

(
0.7481, 0.4726, 0.1569,
0.5246, 0.9854, 0.6289

)
and

B4 =

(
0.2547, 0.2789, 0.5467,
0.7412, 0.3678, 0.5824

)
.

By using Equation (9) we get Sco(B1) = 0.5890, ,
Sco(B2) = 0.4470, Sco (B3) = 0.4160 and Sco(B4) =

0.6638. Using the score values, we can establish the ranking
order of the available alternatives as follows: V4 > V1 >

V2 > V3. Hence V4 = Boing CH-47 Chinook Helicopter is
the best alternative.

Table 6 provides a succinct illustration of the score’s values
utilizing the q−SFRFWA, q−SFRFOWA, and q−SFRFHWA
operators.

TABLE 6. Alternatives scores and sequence of ranking.

Table 7 provides a succinct illustration of the ranking order
utilizing the q−SFRFWA, q−SFRFOWA and q−SFRFHWA
operators.

TABLE 7. The alternative sequence of ranking.

The graphical representation of score values is shown in
Figure 10.

This study also investigates the applicability of these
operators in cases where decision-makers seek to adjust
their choice aggregation approaches to their preferences.
Table 8 shows the results when various operators are
employed, demonstrating how decision-makers may improve
their decisions by considering both assigned values and
expert opinions at the same time. The previous discus-
sion shows that the proposed aggregation operators offer
decision-makers a more adaptive framework for selecting
viable choices. Furthermore, as compared to conventional
aggregation methods, these operators offer more flexibility.
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FIGURE 10. Graphical representation of score values of q-SFRFWA,
q-SFRFOWA and q-SFRFHWA.

This shows that the proposed operators can handle a broader
range of decision-making scenarios while also providing bet-
ter flexibility and relevance in several settings. By providing
a more adaptive and inclusive framework, these aggregation
operators enable decision-makers tomake informed decisions
that are in line with their needs and preferences. Furthermore,
the generalizability of these operators assures their usefulness
across a wide range of decision domains, hence improving
the overall robustness and reliability of the decision-making
process.

B. EFFECT OF q ON RANKING ORDER AND SCORE VALUES
To fulfill the constraint requirement (0 ≤ ζ

q
A ( )+η

q
A ( )+

ξ
q
A ( ) ≤ 1) and (0 ≤ ζ

q
A ( ) + η

q
A ( ) + ξ

q
A ( ) ≤

1), and then by examining the attribute values, the deci-
sion maker is capable of identifying a minimum numerical
parameter q. For example, while evaluating an alternative,
if the attribute values are (0.54,0.25,0.54,0.96,0.78,0.69), one
should choose q as 3 or q as 4, as both configurations meet
the criterion. However, we employed several values of q
in Step 3 of the novel approach to solve the case to fully
evaluate the effect of parameter q on the experimental results.
Table 9 presents the results of these modifications and indi-
cates that V4 is at the top, followed by V1, V2, and finally,
V3. Notable is the relevance of the best alternative and the
unchanging ranking. Table 10 illustrates this point. Specifi-
cally, when q equals 1. The alternatives and ratings offered
do not adhere to the requirements of either 1 (i.e., under
PFRS environment

(
0 ≤ ζ

A
( ) + η

A
( ) + ξ

A
( ) ≤ 1

)
and

(
0 ≤ ζA ( ) + ηA ( ) + ξA ( ) ≤ 1

)
) or 2 (i.e., under

SFRS environment (0 ≤ ζ 2
A

( ) + η2
A

( ) + ξ2
A

( ) ≤ 1)

and (0 ≤ ζ
2
A ( ) + η2A ( ) + ξ

2
A ( ) ≤ 1).

Table 8 illustrates the consistent consistency in the ranking
order of alternatives at different q-parameter values. This
enduring stability of the hierarchy offers decision-makers a
reliable framework for evaluating test alternatives within a
limited set. It establishes a safe and flexible environment for

TABLE 8. Sorting alternatives according to their respective parameter q
values.

careful examination and informed decision-making based on
defined parameters.

TABLE 9. Ranking result for different values of τ using the q-SFRFWA.

FIGURE 11. Graphical representation of ranking result for different values
of τ using the q-SFRFWA.

TABLE 10. Ranking result for different values of τ using the q-SFRFOWA.

C. TEST OF VALIDITY
To demonstrate the versatility of the proposed technique in
diverse contexts, we use the evaluation protocol introduced
by Wang and Trianafilo [21] as follows:

Step 1: Changing the ranking values of sub-optimal alter-
natives that indicate inferior quality is not expected to affect
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FIGURE 12. Graphical representation of ranking result for different values
of τ using the q-SFRFOWA.

TABLE 11. Ranking result for different values of τ using the q-SFRFHWA.

FIGURE 13. Graphical representation of ranking result for different values
of τ using the q-SFRFHWA.

the identification of optimal alternatives. It preserves the
highest-ranked choice, assuming a constant relative weight
for the criteria.

Step 2. Transitivity should be followed in the procedure.
Step 3.When using the same decision-making process for

a given problem that has been broken into smaller ones, the
initial ranking of the alternatives should be preserved.

Test of validity utilizing criteria 1.
The alternatives ranked by using our suggested method

are V4 > V1 > V2 > V3. Based on test
criteria 1, we replaced the non-optimal alternative A1
with the lowest alternative A∗

1 to evaluate the stability
of the suggested method. (0.25,0.85,0.25,0.63,0.96,0.25),
(0.25,0.85,0.74,0.74,0.58,0.87), and (0.24,0.97,0.12,0.85,
0.78,0.36) were used as the rating values of V∗

3. The aggre-
gated score values for the alternatives were as follows after
we used our suggested methodology: Sco(V1) = 0.7523,
Sco(V2) = 0.6951, Sco(V∗

3) = 0.6589, and Sco(V4) =

0.8954. As a result, V4 > V1 > V2 > V∗

3 is the new
ranking order, and the best alternative still adheres to the
first suggested strategy. Consequently, our method meets test
requirement 1 by producing a consistent result.

Test of validity employing criteria 2 and 3.
The fragmented decision-making subcases are regarded

as {V1, V2, V4}, {V2, V3, V4} and {V1, V3, V4} to assess the
validity based on criteria 2 and 3. They rank in the following
sequence via the procedures mentioned: V4 > V1 > V2,
V4 > V2 > V3 and V4 > V1 > V3. After combining
all the findings, the overall ranking appears as V4 > V1 >

V2 > V3, This is perfectly consistent with the results of the
initial decision-making process. Consequently, our proposed
strategy meets the criteria stated in requirements 2 and 3.

As a researcher, it is crucial to make our findings accessible
and reproducible for fellow academics. Therefore, authors
must provide a structured tabular representation elucidating
the neural network hyperparameters utilized in their study.
This should include essential parameters such as Network
architecture (e.g., number of layers, type of layers) Activa-
tion functions Learning rate Batch size Optimizer algorithm
Regularization techniques (e.g., dropout rate) Loss func-
tion Training epochs Providing this information in a clear
and organized format would not only aid in replicating the
experiments but also allow for a better understanding of
how different hyperparameters may impact the results. Addi-
tionally, the researchers need to address the technical gaps
identified in the introduction by proposing novel approaches
to handle uncertainty and ambiguity within decision-making
scenarios. By integrating q-spherical fuzzy rough Frank
aggregation operators into neural network frameworks, the
study aims to bridge these gaps and enhance the resilience
and effectiveness of AI systems in navigating complex
decision-making scenarios, particularly in domains like mil-
itary transport systems.

TABLE 12. Neural network hyperparameters.

This table provides a clear overview of the key hyperpa-
rameters used in the neural network architecture, including
details on the network’s structure, activation functions, learn-
ing rate, batch size, optimizer algorithm, regularization
technique, loss function, and training epochs.
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V. MANAGERIAL IMPLICATIONS
The framework shows remarkable flexibility and efficacy in
a variety of decision-making contexts. Executives in a variety
of fields can effectively use the q-SFR Frank aggregation
operators for a range of objectives. For example, it demon-
strates its value in the neural network in the AI selection
procedure by subsidiary the estimation of various consid-
erations of the procedure to establish the best beneficial
transport supply. Moreover, it might assist in the choice of
conservation performances, granting supervisors to select the
beneficial approach to preserve their tools or approach. The
additional region where the demonstration may be worked
is in the assessment of machines in developed situations,
which can assist supervisors in deciding the effectiveness
and pertinence of numerous automated organizations. It may
also be consumed in the collection of substantial operating
tackle, and supplementary executives in making sophisticated
findings observing the best and highest beneficial tools for
their requirements. It is significant, nonetheless, to identify
that the executive construction procedure within this struc-
ture is manipulated by the inclinations of specialists and
participants. While the template suggests a systematic and
methodical methodology for decision-making, the assump-
tions and standings are determined by the decision-makers’
conclusions and inclinations. As an outcome, involving pro-
fessionals and participants is significant in confirming the
legitimacy and reputation of the conclusions. Two most
important assessments are conceded out to enhance the trust-
worthiness and sturdiness of the attained outcomes:

Comparative analysis is an effective tool for decision-
makers to rank, consider, and judge conclusions from several
alternatives, each explored using separate conditions. It pro-
motes a better knowledge of trade agreements and allows for
more informed decision-making by highlighting the advan-
tages and disadvantages of each possibility. By performing
a sensitivity analysis, important insights are gained about
the stability and sensitivity of the results. Decision-makers
can examine how various factors influence their choices,
enhancing their ability to make adaptive decisions in a
dynamic environment. Incorporating this analysis into the
decision-making process enables managers to increase relia-
bility and confidence in their strategic decisions. The q-SFR
Frank aggregation operators, combined with comparative and
sensitivity analysis, offers a comprehensive framework that
equips managers in diverse industries and applications with
the tools needed to make informed and flexible decisions.

A. COMPARATIVE ANALYSIS
A comparative study is conducted to validate the robustness
and effectiveness of this research against other contempo-
rary multiple criteria decision-making (MCDM) methods.
To achieve this goal, the problem is solved using eleven
different MCDM models that operate within the frame-
work of T-spherical fuzzy methods. The models selected

for comparison include T-SFEHIA [22], T-SFEHIG [22],
T-SFHHA [23], T-SFHHG [23], T-SFFHA [24],
T-SFFHG [24], CT-SFWA [35], CT-SFWG [35], T-SFG [36],
TSFPWA [37] and TSFPWG [37].
Table 13 presents the evaluation rankings derived from

both the proposed model and the existing eleven MCDM
models, highlighting comparative evaluations in different
decision-making frameworks.

TABLE 13. Score values of different approaches.

The graphical representation of the score values of differ-
ent approaches is shown in Figure. 14.

FIGURE 14. Graphical representation of different approaches and their
score values.

Based on the propositions, calculations, and applications
discussed above, the following comparative remarks and
advantages of employing the notion of q-spherical fuzzy
rough sets emerge:
1. Traditional fuzzy sets and intuitionistic fuzzy sets exhibit

limitations as they may fail to capture complete infor-
mation specifications in certain scenarios. The conditions
of membership degree and non-membership degree may
not always be satisfied, restricting decision makers from
expressing opinions freely.
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2. To address these limitations, Yager proposed Pythagorean
fuzzy sets, extending the representation to ζ 2

+ ξ2 ≤ 1.,
enabling a wider range of applications.

3. In contexts involving uncertain information, such as vot-
ing systems, the introduction of ‘‘degree of refusal’’
necessitates the utilization of picture fuzzy sets. However,
this approach presents its limitations in accommodating
decision-maker flexibility.

4. Spherical fuzzy numbers offer a solution, capable of
representing diverse information sets without exceed-
ing the bounds of unity. This flexibility empowers
decision-makers to allocate membership values according
to their preferences.

5. The utilization of q-spherical fuzzy rough sets and
associated algorithms, as demonstrated in selection pro-
cesses, provides a generalized framework for impactful
applications.

6. The proposed aggregation operators effectively handle
imprecise information with a degree of refusal, offer-
ing superior reliability compared to existing approaches,
as delineated in Table 12 and Table 13.

7. The applicability of q-spherical fuzzy rough sets extends
to various domains, including stock investment anal-
ysis, airline service quality evaluation, investment
banking authority selection, and electronic learning
factor assessment, indicating their broad utility and
relevance.

8. By leveraging the advantages of q-spherical fuzzy rough
sets, decision-makers can navigate complex decision land-
scapes with greater confidence and precision.
Table 14 represents the pros and cons of the proposed

operators and existing operators along with their year of
publications.

TABLE 14. The pros and cons of both the proposed and existing
operators.

It is important to recognize that each approach comes
with its own set of limitations. For example, the FFRS tech-
nique allows decision-makers to rank alternatives within the

constraints of (0 ≤ ζ 3
A

( ) + η3
A

( ) + ξ3
A

( ) ≤ 1) and

(0 ≤ ζ
3
A ( ) + η3A ( ) + ξ

3
A ( ) ≤ 1). To overcome

these limitations, the proposed approach provides a more
flexible environment for decision-makers. By reducing these
constraints, decision-makers can provide more accurate clas-
sifications and make well-informed decisions. The unique
features of different techniques including the comparison of
the proposed approach are presented in Table 15.

TABLE 15. Comparison of characteristics between different methods.

B. SENSITIVITY ANALYSIS
In this study, to validate the developed model, two sepa-
rate sensitivity analyses concerning changes in criteria and
decision-making weights on the final ranking are presented.
In this first study, a temporal sensitivity analysis is performed
based on each criterion. For this purpose, the weight values
of the reference criteria, i.e., high importance, equal impor-
tance, and low importance, are determined to see the effect
of changing the criteria weight on the final ranking. Then,
assigning these reference values to each criterion one by one,
the model is run, and the alternatives are ranked. The results
obtained according to the total 16 scenarios thus obtained are
presented in Figure 15.

In all scenarios, alternative V4 ranks first and alternative
V3 ranks last. Even with extreme values, altering the crite-
rion weights has little effect on model output. In the second
analysis, the weights of the decision makers are significantly
changed, and 15 different scenarios are obtained based on
different values of the weights. Figure 16 presents the final
ranking of the decision makers’ weight distribution. Alterna-
tive V4 is the best choice in all scenarios, while alternative
V3 is the worst choice. Although the ranking order of the
two alternatives may vary depending on the combination of
weights used, the proposed approach generally produces reli-
able results and has reasonable consistency across different
decision-weighting scenarios.

C. ADVANTAGES
The proposed technique has various benefits:

1. The addition of parameter q to the aggregation oper-
ators gives decision-makers a great deal of freedom.
This versatility allows them to tailor the settings to the
individual needs and preferences of the decision-making
scenarios. The decision process’s versatility allows for
varying degrees of membership and non-membership,
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FIGURE 15. Alternative classification considering variations in criteria
weights.

FIGURE 16. Alternative rankings in response to adjustments in
decision-making weights.

making it appropriate for a broad range of real-world
scenarios.

2. The parametric character of the suggested operators
enables decision-makers to fine-tune the impact of
membership and non-membership degrees. This degree of
control enables decision-makers to accurately tailor the
aggregation process to their preferences and the unique
aspects of the situation at hand.

3. The symmetry of the suggested aggregation operators
concerning the parameter ensures that the ranking orders
of alternatives stay generally consistent across parame-
ter values. This stability is critical in decision-making
because it prevents the outcomes from being impacted by
the decision-makers’ pessimism or optimism.

D. LIMITATIONS
Every research endeavor inherently has limitations, and the
methodology proposed in this study is no exception. Below
is a discussion of these constraints:

1. The applicability of the proposed technique may be
limited to specific domains or decision contexts. Under-
standing these limitations is critical to determining the
optimal use of the recommended strategy.

2. As with any research approach, the proposed method
relies on certain assumptions and simplifications to
facilitate analysis. It is important to recognize that these
assumptions may not align perfectly with real-world

scenarios, potentially limiting the broad or practical appli-
cability of the results.

3. The accomplishment of the suggested framework is estab-
lished through a case study including four alternatives
and four characteristics. It is critical to identify that the
pattern may be expanded to integrate more possibilities
and abilities in future efforts.

4. For several values of the parameter q, alternative rank-
ing orders are calculated. It is important to note that
more investigations might be conducted to investi-
gate the hierarchical order for other values of these
considerations.

TABLE 16. Explanation of abbreviations.

VI. CONCLUSION
In conclusion, this paper presents a novel class of aggre-
gation operators, namely the q-SFRFWA, q-SFRFOWA,
and q-SFRFHWA operators, which seamlessly integrate
the advantages of Frank operations with the flexibility of
q-SFRSs. Through extensive experimentation and compara-
tive analysis with existing MCDM models, the effectiveness
and robustness of the proposed operators have been demon-
strated. These operators exhibit superior data aggregation
precision, making them valuable assets in various domains,
including data analysis and decision-making processes. Fur-
thermore, the study recognizes the evolving landscape of
artificial intelligence (AI) and proposes the incorporation
of a neural network approach as a promising avenue for
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future research. By leveraging neural network models, the
capabilities of the proposed aggregation operators can be
further enhanced, offering dynamic and flexible frame-
works for decision-making tasks. Future research directions
include exploring the synergy between neural networks and
aggregation operators to address complex uncertainties and
indeterminacies in real-world scenarios. The introduction of
the q-SFRFWA, q-SFRFOWA, and q-SFRFHWA operators
represents a significant contribution to the field of multiple
criteria decision-making. These operators not only enhance
data aggregation precision but also pave the way for innova-
tive applications in various domains. Embracing the potential
of neural network integration offers exciting opportunities for
advancing decision-making processes and coping with the
challenges of modern decision landscapes.
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