
IEEE SYSTEMS, MAN AND CYBERNETICS SOCIETY SECTION

Received 23 April 2024, accepted 23 May 2024, date of publication 13 June 2024, date of current version 21 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3414377

Explaining the Business-Technological Age of
Legacy Information Systems
SEBASTIAN ROSENKRANZ 1,2, DANIEL STAEGEMANN 1, MATTHIAS VOLK 1,
AND KLAUS TUROWSKI1
1Magdeburg Research and Competence Cluster, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
2Volkswagen Group, 38440 Wolfsburg, Germany

Corresponding authors: Sebastian Rosenkranz (sebastian3.rosenkranz@ovgu.de), Daniel Staegemann (daniel.staegemann@ovgu.de),
Matthias Volk (matthias.volk@ovgu.de), and Klaus Turowski (klaus.turowski@ovgu.de)

ABSTRACT Aged information systems are commonly referred to as legacy information systems or just
merely as legacy systems. Typically, these are mission-critical systems developed years ago that significantly
resist evolution. Many organizations have lived with these systems for a long time and consider them
a burden because they hold back their businesses and cause unreasonably high evolution and operating
costs. However, they also cannot easily be discarded and replaced by modern solutions. Despite their
relevance, no universally accepted concept exists that explains these systems or themechanisms behind them.
Accordingly, the properties and challenges associated with legacy systems vary significantly depending on
their respective author and intentions. This needs to be improved, and this is alsowhere our research comes in.
To this end, we first describe the causes of information systems’ aging, typical symptoms by which legacy
systems are often recognized, and the consequences of using outdated solutions. Based on this empirical
point of view, we introduce a holistic model to explain legacy systems objectively as well as the concept of
business-technological age to distinguish between chronological age and actual obsolescence of a deployed
system. This approach provides practitioners and researchers with a foundation for stringently explaining the
hitherto fuzzy legacy phenomenon, promoting a common understanding of legacy systems, and simplifying
communication by employing specific concepts. Practitioners can use this approach to better understand
their stock application systems in terms of aging and improve their decision-making regarding evolution.

INDEX TERMS Legacy systems, legacy information systems, legacy software, legacy hardware, software
aging, software erosion, software evolution, literature review.

I. INTRODUCTION
Legacy systems are widespread and are typically defined
as ‘‘large software systems that we don’t know how to cope
with but that are vital to our organization’’ [1]. A vast number
of studies show that the information system inventory of orga-
nizations in some Western countries ranges between around
39% [2] to around 50% [3], [4]. Therefore, a significant
part of the IS in Western industrialized countries should be
considered outdated. However, these systems are not only a
widespread economic problem, but also a problem for society
as a whole, as legacy systems are also a significant problem
for public authorities [5], [6], [7], [8]. Finally, the legacy

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiyan Zhang .

inventory is growing (and hence the associated problems) as
past and current digitization initiatives are generating tomor-
row’s legacies on a large scale.

Legacy systems, once modern IS, evolve over many years,
usually decades, into massive black boxes that are almost
impossible to understand and that cannot be efficiently
adapted to ever-changing requirements. As a result, they
become a burden and an obstacle to the implementation of
business strategies, [9], [10] since increasing amounts of
resources must be devoted to their operation and further evo-
lution1 as such systems remain in service [5], [8], [12], [13],
[14, p. 590]. Replacing them with a modern and economical

1The term ‘evolution’ is understood as a range of activities from small
enhancements to complete re-implementation of information systems [11].

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 84579

https://orcid.org/0000-0002-1854-0991
https://orcid.org/0000-0001-9957-1003
https://orcid.org/0000-0002-4835-919X
https://orcid.org/0000-0003-3406-8954


S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

solution seems obvious given the significant effort involved.
However, they usually cannot be easily discarded or replaced.
Even a major restructuring is often not a trivial matter
[1, 14, p. 590f, 15–17]. This kind of predicament for orga-
nizations is often referred to as legacy dilemma. Either they
continue to evolve and operate their legacy systems despite
the high effort and slow evolution, or they incur high costs
and risks to replace them [1], [5], [14, p. 590f], [15], [18],
and [19, p. 3].
However, research on legacy issues is by no means new.

Indeed, research on software and system aging has been
ongoing since the 1970s [20, p. 2f]. Over the past 50 years,
much knowledge has been gained regarding outdated sys-
tems. Nevertheless, there is no single, commonly accepted
definition and no comprehensive theory of legacy systems,
only a variety of phenomena related to them [12], [21],
[22, p. 33]. No approach provides a holistic understand-
ing of these systems. Instead, legacy systems are usually
only described in a fragmented or one-sided way, and
only certain aspects that are relevant to the intentions
of the respective author are highlighted. Accordingly, the
understanding of these systems varies considerably [9],
[21], [23]. However, a precise and objective comprehen-
sion of the state of IS is vital for executives, policymakers,
and researchers in business, government, and academia,
so that they can make better decisions. This is the sub-
ject of this article and we propose the following research
questions (RQ):
RQ-1: How can the business-technological age of informa-

tion systems be explained in general?
RQ-2: What are the factors that lead to the aging of IS?
RQ-3: Is the lifetime of IS related to obsolescence?
RQ-4: What are the symptoms of legacy systems?
This article is structured as follows: In section II, the under-

lying scientific approach of this paper is explained in detail.
Section III explains the empirical characteristics attributed to
legacy systems and the causes that contribute to the emer-
gence of legacy systems. Section IV presents a theoretical
model that integrates the apparent empirical properties into
a consistent approach and thus resolves the apparent contra-
dictions. This model makes it possible to explain the nature
of legacy systems theoretically. It helps on the one hand in
communication and on the other hand in the design and evolu-
tion of information systems by clearly identifying the drivers
that lead to the development of legacy systems. The devel-
oped and presented contents are then discussed and the
limits as well as the scientific and practical added value are
highlighted.

II. METHODOLOGY
To address the RQs, we took a design science research (DSR)
[24] oriented approach. Fig. 1 shows the six steps of the
design science process: problem identification and motiva-
tion, objectives of the solution, design and development,
demonstration, evaluation, and communication.

The first research activity consists of the problem defini-
tion; thus, the description of the problem field and business
needs. Furthermore, the additional benefit of a solution to
the addressed business need is justified, which should moti-
vate the research task. In the second step, the objectives
of the artifact are expressed in quantitative or qualitative
terms. The third and fourth steps are to build the artifact
according to the requirements and perform the demonstra-
tion. The preliminary outcome must be evaluated against the
objectives that are initially raised. These tasks may be run
several times to improve the artifact with each iteration until
an appropriate level of quality is achieved. After a positive
evaluation, the final artifact is presented to the community
to initiate discourse, contribute the results to the knowledge
base, and allow practitioners to gain an advantage for their
organization [25]. The remainder of this section describes the
implementation of the aforementioned research steps in this
work.

Following this DSR approach, we define the detrimen-
tal effects of evolving and operating legacy systems as the
relevant problem field. The associated evolutionary process,
the system context (typically an organization) of the legacy
system, and the current state of technology are included in
this assessment. Such a holistic view is necessary because a
legacy system is closely intertwined with the associated evo-
lutionary engineering process and the organization it serves.
The legacy phenomenon can only be explained accurately
when all these aspects are considered [26].
We understand legacy systems as socio-technical systems

and those as an instance of the Human Task Technology
System Theory [27, p. 17ff]. Accordingly, legacy systems
are aged IS. Fig. 2 visualizes this theory and its system
elements: human, task, and technology. Since we consider
legacy systems as IS,2 this paper focuses on the underly-
ing basic sciences of business information systems, thus,
on information technology and business management, and
less on the psychological, social, legal, and other aspects that
also influence such systems [30, p. 19ff].

In the context of IS, we regard information as an immaterial
business resource detached from its material foundations.
According to Wiener: ‘‘Information is information, neither
matter nor energy’’ [31, p. 166], we abstract from physi-
cal foundations, although information is always bound to a
carrier of material, energy, or a combination of both [32, p.
95]. Consequently, we neglect aging from an energetic point
of view, such as the excessive power consumption of old
hardware, or material wear and tear, such as occurs in the use
of hard disks or electrolytic capacitors. Therefore, we will
occasionally touch on these aspects, but will not go into great
depth.

In considering the business need of the our research
approach, we have chosen the following research

2Sometimes, especially in older literature, also referred to as ‘business
information technology systems’ [28], or ‘computerized information sys-
tems.’ [29].

84580 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

FIGURE 1. The design science research workflow consists of six research tasks that build on each other.

FIGURE 2. An information system can be explained by the human task
technology systems theory.

goal – enable people who are developing new or evolving
existing IS to understand the impact of obsolescence on those
systems, including its causes and consequences, to make
better decisions. Therefore, we seek an easy-to-understand
model that objectively explains IS and their obsolescence.
In doing so, we strictly separate and implement the following
aspects in the model: (1) the factors that cause or influence
obsolescence, (2) the characteristics and symptoms that make
the state of obsolescence objectively assessable, and (3) the
consequences that result from using such solutions.

After addressing the problem field and objectives of the
artifact, the third step in the DSR workflow is to construct
the artifact that addresses the business need. For this pur-
pose, we have conducted an extensive review of the literature
to understand the subject of this research and to identify
the empirical characteristics of legacies. The result of our
literature review, which consists of the empirically proven
characteristics and statements related to legacy systems,
is presented in section three.

In section four, we elaborate on this artifact, which is a
model that explains legacy systems and their aging drivers.
After introducing the model and the legacy status explained
by the model, we perform a demonstration by mapping the
assessed empirical legacy system properties to the elements
of the proposed model, based on a deductive approach. The
subsequent evaluation was performed using argumentative-
deductive analysis [33]. This provides answers to the pre-
viously stated research questions and discusses the practical

utility of the artifact. Finally, section five concludes the work
and discusses possible limitations as well as potential avenues
for further research.

Finally, the document at hand is a descriptive (also known
as positive or non-normative) research paper and, accord-
ingly, no normative statements will be made in the process,
such as defining thresholds or the extent to which certain
actions should be taken. Since this is a descriptive research
paper, the focus is on the acquisition of knowledge, which
means the description and subsequent explanation of the
object of study. The former was done through an extensive
review of the literature and the latter through the proposed
artifact.

III. LITERATURE REVIEW
It is generally recommended to provide a detailed descrip-
tion of a problem beforehand to effectively explain it later
[27, p. 75ff]. Therefore, understanding legacy systems first
requires a thorough consideration of their empirical nature,
an in-depth knowledge of the causes of obsolescence, and
the impact of their use on the organizations they serve. With
these considerations in mind, we have reviewed the literature
to build a sound empirical description of legacy systems. The
following section presents the parameters, time intervals, and
inclusion and exclusion criteria used in the literature review
to make the process objectively understandable [34]. At the
end of the third section, the results of the literature review are
discussed and summarized.

A. LITERATURE REVIEW PROCESS
A reproducible documentation of the literature search
is important to meet scientific rigor [34]. Accordingly,
we describe the literature review in detail below. We con-
ducted a structured literature review, as recommended by
Levy et al. [35], and applied it to IEEEXplore and ScienceDi-
rect. IEEE Xplore was selected as it covers technical areas
very well. ScienceDirect was added to extend the scope and to
include any peripheral areas not yet covered. An initial query
was performed with the following terms:3

• ‘legacy system’ and ‘legacy systems’

3The quotation marks are part of the keywords.

VOLUME 12, 2024 84581



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

TABLE 1. Query and number of documents found.

• ‘legacy information system’ and ‘legacy information
systems’

This paper is about legacy information systems. Since both
terms, legacy system and legacy information system, are often
used synonymously in the literature, both expressions were
chosen for the literature search. As summarized in Table 1, the
search used IEEE Xplore’s ‘Document Title’ field, resulting
in 287 documents. In ScienceDirect, the search was con-
ducted using the field ‘Title, abstract or author-specified
keywords’ leading to another 329 hits. The query considered
all papers published up to the end of 2023.

In the second phase, we first evaluated articles based on
the abstract, the introduction, and (where applicable) the
conclusion. We considered articles that dealt specifically
with symptoms of legacy information systems, such as archi-
tecture degeneration, software erosion, obsolete hardware,
or obsolete programming languages or engineering models.
If an article describes the problems of legacy systems in
detail, it was included. In contrast, articles were excluded in
which legacy systems were merely used as a value-neutral
reference to an earlier legacy system without addressing its
characteristics. Articles that do not deal with legacy infor-
mation systems, but with legacy systems of other domains,
such as power grids, airplanes or highly integrated real-time
systems were also excluded. Short papers were not explicitly
excluded. In addition, the primary sources of the included
articles were reviewed and considered if these articles were
not found in the initial search. Moreover, a forward search
was conducted to identify and include more recent literature
and evidence where appropriate. The forward search was
conducted with the help of Google Scholar4 and Semantic
Scholar.5 The backward and forward searches have naturally
added other literature databases and a broad amount of arti-
cles, so we believe that the knowledge base is largely covered,
as required for high-quality literature reviews [36]. In addi-
tion to this, only using official publications at conferences,
in journals and books guarantees a minimum level of quality

4Available at: https://scholar.google.de.
5Available at: https://www.sematicscholar.org.

TABLE 2. Inclusion and exclusion criteria.

through the review process associated with the publication.
Therefore, only such quality-assured papers were consid-
ered. To summarize, the Fig. 3 visualizes the search process,
Table 2 lists the Inclusion and Exclusion criteria.
The articles found and included in the way described above

provide detailed characteristics about outdated systems.

B. LITERATURE REVIEW RESULTS
In the following Fig. 4, an overview according to Cooper’s
taxonomy is given to characterize the literature review [37].
The following TABLE 3 lists all articles found and included.
Papers that refer exclusively to the methodology of this
paper are not listed in this table. Some additional refer-
ences that are not part of the literature review were also
not listed in the table, but merely added as footnotes. The
abbreviation ‘FW’ used in the ‘Source’ column stands for
forward search and ‘BW’ for backward search. In addition,
the number of citations for each paper was determined in
March 2024 using Google Scholar. These can be found in the
‘Citations’ column.

C. LEGACY SYSTEM
In the following sections, legacy systems are presented on the
basis of their empirically perceptible characteristics and those
identified through the literature review, focusing on applied
information technology and the business model embodied by
the legacy system. The structure follows the previously given
elements of IS: technology, human, and business (cf. Fig. 2).
The initial section ‘An historical Perspective’ begins with a
short introduction and time-related characteristics of those
systems. The section is summarized by a conclusion.

1) A HISTORICAL PERSPECTIVE
Organizations rarely embark on legacy system develop-
ment [61]; rather, the original developers typically used the
best solutions, technologies, and architectures available at
that time [1], [26], [53], [58], [61], [70], [75]. Over time and
after many changes, these modern information systems then
turn into legacy systems [1].
‘‘no one write [sic] a legacy system; rather they write

a nice and pretty system, which latterly becomes old and
ugly’’ [26].

84582 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

FIGURE 3. Adaption of the literature review by cooper.

FIGURE 4. Visualization of the search process.

The following is a look at the temporal dimension and its
connection to legacy systems.

a: A BRIEF INTRODUCTION AND HISTORY OF LEGACY
SYSTEMS
A legacy system is ‘‘Old code on old hardware’’ [78], thus,
‘‘an aggregate package of software and hardware solutions
whose languages, standards, codes, and technologies belong
to a prior generation or era of innovation’’ [64]. Others refer
to a legacy system when it has reached the serving stage
of its lifecycle and a successor system is already on the
horizon [68]. An often-quoted definition introduces legacy
systems as ‘‘large software systems that we don’t know
how to cope with but that are vital to our organization’’
[1]. Another report states: ‘‘In many ways, these [legacy]
information systems are to an enterprise what a brain is
to the higher species – a complex, poorly understood mass
upon which the organism relies for its very existence’’ [11].
Typically, a legacy system is understood as a large, old
piece of software that is difficult to maintain, but still in
operation and critical to the organization it serves and to
that organization [48]. Because of the demands, costs, and
risks involved in changing them, a typical legacy system
falls short of what is needed by the business department
and the larger the gap, the more outdated the information
system [26].
The first generation of such systems deployed in the

1960-1970s are characterized by applications developed
in machine languages, such as Assembly, or more rarely,
COBOL6 or FORTRAN,7 running on monolithic, central-
ized hardware, typically mainframes. The data is frequently
stored in files and the communication is batch-based in
most cases. The following 2nd generation legacy information
systems (short: LIS) introduced in the late 1970 – 1980s
come along with a degree of modularity and improvements
in data storage, thus, data base systems and data base man-
agement systems. Improvements in hardware performance

6COBOL – COmmon Business-Oriented Language.
7FORTRAN – FORmula TRANslation.

VOLUME 12, 2024 84583



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

TABLE 3. Included papers.

84584 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

TABLE 3. (Continued.) Included papers.

led to smaller servers, such as IBM’s AS/400. COBOL and
some 4G languages became very popular and were widely
used. Online transactions were introduced as an alternative
to batch-based communication. The 3rd generation arose
starting in the late 1980s and featured new architectures,
especially the client-server architecture. The character-based
user interfaces on small screens were replaced by graphical
user interfaces together with the newly invented computer
mouse. Computerization continued to increase. ERP systems
were introduced and networking with other companies via
the emerging Word Wide Web progressed rapidly. Former
individual IT applications that operated in isolation became
more and more globally integrated [53].

However, it must be acknowledged that the IS and asso-
ciated technology from the early 2000s are now reaching the
end of their life cycle. Cloud computing, quantum computing,
and other emerging technologies are revolutionizing the field
and rendering their predecessors obsolete. The history of
legacy systems does not end there, of course, but is driven by
technological advances [1]. We will address the relationship
between time, technology, and legacy systems later in this
article.

b: SOMETHING FROM THE PAST – THE AGE OF LEGACY
SYSTEMS
Strictly speaking, the term ‘legacy’ has neither a negative
nor a positive connotation, but merely refers to ‘‘something

being handed down by a predecessor’’ [62]. A legacy, then,
is something that is left behind after a certain event (typically,
the death of a person). In the context of legacy systems, these
systems typically outlast the original people involved, such as
business analysts, IS architects, or software developers, who
retire, change companies, or leave the field entirely. So this
definition of legacy implies a certain age of a system [48].

Generally, LIS have been around for a long time. Thus they
were created many years ago and are still in operational use.
A typical legacy system is old [1], [9], [15], [23], [60], [65],
[75]. In this context, the term ‘old’ refers to a time frame of
at least 3-5 years. However, usually, the term legacy implies
an age of decades and is not used for newer or younger sys-
tems [40], [42]. Accordingly, IS that have been around for ten
or more years are typically referred to as legacy systems [9],
[23], [60], [79, p. 3]. Further, in the literature, some outdated
systems are said to be 20, 30, or even 40 years old [13],
[17], [40], [43], [48], [51], [53] and are possibly even older
today. Remarkably, some of them have not been maintained
for decades [72]. Legacy systems grow with the companies
they serve. In this sense, legacy systems are typically not
found in young startups, but rather in large, older companies
and government agencies [78].

However, just because a system is labeled ‘old’ it does
not necessarily mean that it is outdated [53]. Of course, it is
possible for an old system to still do its work perfectly, despite
its age, simply because it has been kept up to date through

VOLUME 12, 2024 84585



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

consistent evolution. Conversely, IS can age prematurely if
not handled properly; therefore, legacy systems do not nec-
essarily have to be particularly rich in years [60]. Yet, the
characteristics of outdated IS usually only become noticeable
after many years or decades, when a certain threshold of per-
ception has been exceeded. Conversely, this means that every
information system is (to a certain extent) already a legacy
system, even if the legacy symptoms are not yet perceived as
disruptive8 [62]. Thus, there is no consensus on how old these
systems need to be to reach the obsolescence threshold [48].

c: FREQUENTLY MODIFIED OVER MANY YEARS
‘‘Not only systems and their implementations experience an
ongoing evolution, the same applies for numerous businesses
and the environments they are operating in’’ [81]. These
businesses (and therefore also the information services used)
are in a constant state of flux due to internal and external
factors. Internal drivers for change are typically in the hands
of the organization itself, such as new business opportunities,
the introduction of innovative products or market entry in
new countries with different legal frameworks, currencies,
digitization and cloud strategies, corporate mergers, and cost-
cutting initiatives. Internal drivers also include modifying IS
to correct inaccurate specifications and faulty implementa-
tions. Moreover, IS itself, as part of the reality, considered as
E-type systems,9 drives the change. They are inherently prone
to change and ‘‘evolution is an intrinsic, feedback driven,
property’’ of them [39]. This means that new knowledge is
gained through the creation of the information system and
improvements are derived from it, which, in turn, are placed
as requirements on the IS and thus - without external speci-
fications - contribute to its further evolution [39]. In addition
to internal factors, there are external factors to which an
organization and the IS deployed must adapt and over which
the organization usually has little or no control. These are, for
instance, changes in the law, deregulation, taxation changes,
globalization, competitive forces, changing customer needs,
and new emerging technologies, such as the Internet, new
standards, or ubiquitously available mobile connectivity. The
Y2K problem and the introduction of the Euro in Europe are
other known examples of external threads [6], [10], [23], [42],
[53], [56], [61].

Everything – society, laws, available technologies, reg-
ulations, requirements, and organizations – is constantly
changing. Consequently, the IS in operation must also con-
stantly be adapted to the ever-changing requirements [6],
[10], [42], [55], [61], [81]. If IS are not successfully and con-
tinuously alignedwith ever-changing needs, theywill become

8Some authors exaggerate the situation and postulate that the code
becomes a legacy the moment it is coded [80].

9E-Programs are applications that concern evolutionary activities (such as
human or societal activities).

progressively useless.10 At a certain point, they are called
legacy systems. To some extent, a legacy system ensures the
survival of an enterprise and thus reflects the evolution of the
operating organization that runs the system. Consequently,
it is possible to trace the evolution of an enterprise from
its information systems [9], [18], [53]. Furthermore, some
authors state, that such systems have stood the test of time
[1], [10], [42].

2) A TECHNOLOGICAL PERSPECTIVE
A LIS can be, inter alia, viewed from a technical standpoint.
The following sections present empirical statements that can
be assigned to this technological dimension.

a: USE OF NUMEROUS OUTDATED TECHNOLOGIES
In legacy systems, the lack of standards, hence the existence
of non-standard technologies is common. Some examples
include self-developed database systems, programming lan-
guages, or home-grown memory management [40], [43].
Some features, such as concurrency or the aforementioned
memory management, were not well-known in the early
days of information technology. Accordingly, these features
(today, an integral part of operating systems (OS), or as
COTS) were often not available as standard features in the
past and had to be implemented in an ad hoc manner [1].
Outdated storage technologies, such as file-based data

storage that was used from the 1960s to the 1970s, are also
common. This generation is generally batch-based and runs
on mainframes [17], [69], [82]. Subsequent technologies,
like IBM’s IMS11 and early DB2 databases, should also be
considered legacy from today’s perspective [69]. Besides
outdated storage technologies, old programming languages
such as Assembly or early versions of third-generation
languages, like COBOL, CORAL,12 or FORTRAN-66,
PL/I,13 Visual Basic, and IBMs RPG14 [1], [9], [63], [69],
[79, p. 3], are characteristic of legacy systems. Character-
based user interfaces are also clearly considered depre-
cated; moreover, they are associated with limited usability
[61], [69].

Deprecated hardware can be encountered in legacy sys-
tems, at least in certain cases [42]. Similar to legacy
software, this kind of hardware can be recognized by many
symptoms; particularly, upgrades may be difficult or impos-
sible owing to missing interfaces. At some point, hardware
manufacturers will cease production and then ultimately
support for these products. Then, at the latest, obtaining
spare parts is often deemed challenging, expensive, or even
impossible. Operating outdated hardware is often considered

10This insight is also known as Lehman’s first law of software evo-
lution [50]. Accordingly, such systems have evolved successfully over a
long period of time [5], [43], [51], [60] and contain many modifications,
or customizations in the case of commercial off-the-shelf (COTS) [82], that
reflect the ever-changing requirements [15].

11IMS – Information Management System.
12CORAL – Computer On-line Real-time Applications Language.
13PL/I – Programming Language One; also PL/1.
14RPB – Report Program Generator.

84586 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

challenging as well. Moreover, it frequently does not provide
sufficient processing power, main memory, mass storage,
or network capacity, leading to poor performance [45]. The
installed OS – which must be compatible with the hardware
operated – may be as outdated as the hardware. Often, how-
ever, only the current version of the OSwas not installed [76].

A further characteristic of legacy systems is old and out-
dated architectures [23], [67], [82]. For example, IBM’s IMS,
whichwas designed for earlymainframes such as the AS/400,
is a good illustration of such outdated architectures [17], [53].
In this context, the term ‘legacy system’ is often used as a syn-
onym for the IBMmainframe architecture [78]. Nevertheless,
even the newer client-server architecture is partly labeled as
legacy [23], [67]. Some authors see an outdated architecture
that no longer complies with the current standards as the
defining characteristic of legacy systems [23].
Legacy systems with legacy technology need to be devel-

oped using CASE15 tools and methodologies that are at the
same level of technology as the legacy system. Consequently,
applied tools and engineering methods are generally old and
likely to be outdated as well. In extreme cases, this can
mean that no CASE tools, IDEs,16 compilers, or linkers are
used [15]. It can also be a challenge to obtain these old tools
or keep them operational [64].

New technologies have emerged and influenced IS during
their evolution. New elements with current technologies may
be added to older parts, sometimes called the core, whereby
the core is often described as stable, but highly intertwined
with more unstable peripherals [82]. Consequently, the mod-
ules interfacing the legacy core are often younger, as they
have been built after and around it [55]. Over time, old
and deprecated parts of the legacy system may have been
replaced by newer and (from today’s perspective, already
outdated again) technologies. As a result, legacy parts with
old technologies are often tightly interwoven with younger
system elements that use newer technologies [42], [55]. Thus,
a typical legacy system usually consists of many modules
from different times with different technologies [58]. In some
cases, as an example for high technological entropy, the
application data is stored in both files and in a relational
database, and a core that was implemented in an early 3rd

generation programming language is operated in tandemwith
much more modern web technologies [82]. Other examples
report, that different COBOL dialects are used within an IT
application, some purchased (COTS) and some developed in-
house. The infrastructure consists of various technologies,
thus, of different hardware and OS [66]. This heterogeneity
can then, for instance, be reflected in the use of ten dif-
ferent programming languages and more than 30 different
frameworks [78]. Finally, it must be stated that not all legacy
patterns need to be fully present at all times. In reality, it is
more likely that only some patterns will be found in a partic-
ular system and these vary across different systems [61].

15CASE – Computer-Aided Software Engineering.
16IDE – Integrated Desktop Environment.

b: ERODED, DAMAGED ARCHITECTURES
As we will show later, IS are often changed with poor engi-
neering. As a consequence, ad hoc changes and workarounds
can be observed in operational practice, which lead to rapid
degeneration of the architecture and often compromise con-
ceptual integrity [47], [49]. Moreover, over time, customizing
a solution to meet every unusual change request (over-
customizing) can lead to an extremely layered architecture
that ends up being de facto unmanageable [55]. Often, layers
upon layers build on top of the original architecture and
convolute in this way the whole structure [61]. Original archi-
tectural decisions and assumptions in the problem domain
may be overridden by such changes, rendering the archi-
tecture inappropriate [61]. As a result, the architecture of
LIS is often considered degenerated or eroded [5]. Finally,
such eroded and inflexible architectures occur accidentally
through waves of hacking, meaning perpetual unsolid engi-
neering [58].

As described above, legacy systems often consist of vari-
ous technologies, heterogeneous quality conditions, software
packages, and platforms, making them very complex. This
situation, where different programming languages or tech-
nologies are used within a single IS, is sometimes termed
as ‘Tower of Babel’ and describes the issue that components
with different technologies are less or not at all interoperable.
In these situations, glue code and bidirectional connections
between affected modules can often be observed as a con-
sequence. This, in turn, contributes to an architecture that is
hard to maintain [58].
If we turn away from the architecture to lower abstraction

levels, we must state that another immediate consequence of
recurring changes and unsustainable evolution is increased
entropy. This is especially true if the architecture is not
designed for maintenance and no reengineering has been
done. Under such circumstances, poorly structured, clut-
tered, and bloated code is common and often referred to
as ‘spaghetti code’ or ‘code smells’ [39], [46], [50], [61].
The so-called ‘code decay’ also refers to increasing entropy
and must be considered as another synonym for the same or
very similar concepts as the previous ones [59]. In addition,
programs without any source code, test cases that are no
longer required, or dead program code, which is no longer
accessible via the call graph, can be observed in reality. The
same applies to (temp) files, reports, etc. that are no longer
needed but have not yet been removed from the product [16].
However, redundancy applies not only to the program code
but also to the functional scope. The same functions are
frequently implemented multiple times owing to a lack of
integration [40], [43]. Thus, legacy systems should be seen
as ‘‘functional Silos that contain redundant, fragmented and
inconsistently defined functionality’’ [82] and data [40].

If we look at more modern, less monolithic, and more dis-
tributed legacy systems, it must be stated, that the counterpart
to ‘spaghetti code’ at the systems level is an incomprehensive
web of application systems [46]. As Bennett correctly pre-
dicted decades ago, the legacy problem will take root at the

VOLUME 12, 2024 84587



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

infrastructure level in parallel with the growth of distributed
systems [1]. Spaghetti integration replaces the spaghetti code
of monolithic systems [49], [66]. Redundancies can develop
not only within a legacy system but also across an informa-
tion infrastructure. Isolated, non-integrated legacy systems
should then be seen as functional silos whose function is
implemented multiple times in the information infrastruc-
ture, therefore redundantly; then, over the course of decades,
complex, fragmented landscapes (complex jigsaw puzzles) of
fragile, distributed applications that are highly interconnected
emerge. Such landscapes can then consist of hundreds to
thousands of linked IT applications [78], [79, p. 10].

If reengineering is neglected, constant changes are accom-
panied by increased entropy and this is above all also related
to the geographical dispersion of an organization. Thus,
entropy usually increases as a result of an expansion of a
company or its IS, since this expansion into additional coun-
tries and regions is accompanied by complexity drivers, such
as new currencies, laws, business rules, or languages [55].
This is especially true in the case of a so-called ocean of
isolated or poorly integrated systems or as a consequence of a
series of mergers with competitors who deployed information
systems with very similar functionality [29]. Moreover, as a
consequence of poor legacy knowledge, which we will dis-
cuss in the following sections, the risk is high that a function is
unnecessarily re-implemented, simply because no one knows
that it has already been implemented [16].
As a result of continued poor evolution, structures on a

large (such as architectures) and small scale (such as classes
and methods) lose stringency, decompose, or erode. They
lose their structural integrity and have become inadvertently
inflexible [5], [9], [62] ‘‘So whatever structure originally
existed has long since disappeared’’ [1]. It should also be
mentioned that eroded architectures on a large and small scale
are also expressed using other terms such as poor quality,
pollution, and code-smells. These terms should be considered
synonyms for increased entropy in most cases. Some authors
refer to this issue as software erosion [70].

c: MONOLITHIC AND CHALLENGING TO INTEGRATE
In the early days of computerization, information and com-
munication technologies were expensive, and few routine
tasks could be supported economically or automated by IT.
There was little need for enterprise-wide or cross-company
integrated IS as long as there were no or few other systems in
an organization. Consequently, in the 1960s and 70s, mono-
lithic systems were developed deliberately and the informa-
tion infrastructure typically consisted of many autonomously
operating and isolated application systems [18], [40]. These
early legacy systems with their very limited hardware perfor-
mance (compared to the computing power available today)
usually come with highly optimized architectures and pro-
grams [48].

A monolithic system is difficult to evolve as it hinders
the reuse of functions and modules. In this case, legacy
systems may suffer from tight coupling, where unknown

external applications directly call internal modules and func-
tions of other applications. The applications affected suffer
from reduced adaptability, reusability, and maintainability;
changes to them are often extremely error-prone [58]. For
example, due to the underlying architecture, such as CICS17

transactions in COBOL on a mainframe, the implementation
of a function-sharing mechanism may not be feasible, which
means that a considerable number of components have to be
implemented redundantly [70]. Thus, a monolithic architec-
ture encourages redundancies.

The interfaces of LIS, if they exist at all, are typically
implemented in old technologies that are often incom-
patible with more modern systems. Integration must be
performed using ad hoc mechanisms (glue-code is required,
for example). Consequently, the technical integration of
legacy systems is complex [23]. In addition to technical
integration, semantic integration can also be problematic if
existing interfaces are incomprehensible and cannot be cor-
rectly understood owing to missing documentation, unclear
signatures, and the use of non-standardized data types, for
example. For these technical and semantical reasons, integra-
tion of legacy systems is frequently described as demanding
or impossible [18], [40], [45].

Moreover, these difficulties not only apply to horizontal
but also to vertical integration, whichmeans the connection to
reporting andmanagement information systems [53].Wewill
return to this problem later.

d: RUNTIME AND MEMORY-OPTIMIZED PROGRAMS
Given the limited hardware capacity in the early days of
information technology, the most important design features
at the time were memory optimization and low computa-
tional cost [48]. Software optimization was required to get
the application running at all. To achieve this goal, architec-
tures and programs had to be trimmed for runtime efficiency
at the costs of clarity, evolvability, and structure [1], [70].
The constraints posed by the limited hardware resources
available were undoubtedly considered when making deci-
sions about the architecture [70]. Under such circumstances,
implementing ideal architectures was not always possible.
Consequently, inadequate structures or redundancies need not
necessarily emerge during evolution due to poor engineering.
Rather, they were often intentionally implemented to offset
insufficient hardware [53].
Whether architectural flaws emerged accidentally or

implemented intentionally can often be recognized by occur-
rences such as the use of variable aliasing, single, global
data structures, and hard-coded conditions instead of vari-
ables. Also, purely numeric names are seen, as these can
be processed faster [43], or the user interface layer may be
closely intertwined with the business layer and may contain
constraints that would be better located in the database [61].
A degenerated architecture may also manifest itself in data
access via back doors, or hard-coded, non-customizable

17CICS – the acronym stands for Customer Information Control System.

84588 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

functions [9]. Somewhat generalized, partially intention-
ally implemented poorly layered monolithic systems can
be found, where a strict separation of concerns between
the user interface, data, and business layers is missing
[9], [40], [61], [82].

However, there are cases documented where the initial
architecture decisions do not fit the programming language
used. This seems to be particularly the case with COBOL,
where the object-oriented design already known was taken as
a basis by the architects but this was not supported byCOBOL
(which was still in widespread use at the time) [70]. Thus,
there are some IS with modern architecture, but improper
technologies that do not match the architecture.

e: DOCUMENTATION DEFICIENCIES
The documentation of legacy systems is frequently deemed
insufficient. Therefore, either no or few reliable formal
models are available, and the description of system ele-
ments and functions significantly deviates from actual system
implementation or behavior. This statement refers to both
the business and technical aspects of IS [5], [23], [43],
[79, p. 4, p. 10]. For example, the business process associated
with a program is often undocumented, which means that
the purpose or business logic of the program can no longer
be deduced from the documentation [16], [40]. Older IS are
often considered to be long outdated and users are faced
with applications that do not yet meet their business needs.
In this situation, users tend to create workarounds by using
the system in ways that are not intended. For instance, con-
trol commands or work instructions are hidden in comment
fields, or the users simply do parts of their jobs outside the
systems. The problem here is that these alternative business
processes are typically not documented or communicated.
As a result, entropy increases while comprehensibility at
the organizational level decreases [46]. The problem here is,
if the documentation is imprecise, out of sync, or inscrutable,
it immediately loses a large part of its usefulness [1], [42].
Further, the documentation, if it exists at all, is rather often
seen as an aide-mémoire in which the details, the minutiae
of the business, the design, and the implementation of the
application are documented [28].
With regard to the technical components of IS, there is

often no suitable documentation of the data structures, mean-
ing the implemented data model, especially in connection
with flat-file data storage [44]. It can be roughly assumed that
only half of all legacy systems have a completed data dictio-
nary, while the other half is poorly documented. Furthermore,
the documentation primarily focuses on development rather
thanmaintenance personnel’s need to utilize and expand upon
the documented knowledge [28]. In some cases, there is no
legacy system documentation at all [63]. Often, the code and
the implementation are the last ‘documentation’ of the actual
business model or domain (tacit) knowledge [58]. Various
reasons are cited for the inadequate documentation, which we
discuss in detail in the following section (human perspective).

However, in addition, it also may lead to the assignment of
external staff not familiar with the system and who cannot
match their knowledge to the code. This, in addition, may
contribute to inaccuracy [5]. However, the quality of the
documentation, which must be considered good for new IS,
deteriorates in most cases over time, or more precisely, with
the number of changes made to it. This is due to changes
to the product (and in particular hotfixes, which focus on
restoring the functionality of the system), which are often
not documented or only very superficially.18 Accordingly,
the lack or degradation of documentation is reported to be
directly proportional to the number of conducted changes and
the size of legacy IS [26].

Documentation deficiencies must be seen as a precise
indicator to identify legacy systems [1]. However, caution is
required: It is important not tomake sweeping generalizations
at this point. In some cases, the quality of the documentation
is described as exceptional [17]. Generally, the quality of doc-
umentation often varies considerably between enterprises,
IS within a given organization, and even across modules
within a single information system. It ranges from virtually
no documentation to very good, high-quality documenta-
tion. In summary, the overall quality of documentation must
be classified as out-of-date in most cases [28]. Moreover,
reading and processing the documentation require com-
patible hardware and software, which may be difficult to
obtain [1], [42].

f: LARGE IN TERMS OF SIZE, DATA, AND FUNCTIONALITY
As described before, the steady adjustment of applications to
new requirements is widely known. Accordingly, legacy sys-
tems are typically modified and extended over a long period
of time and become quite large; also well known as Lehman’s
6th law of software evolution [50]. In particular, this can
translate to several million lines of code and thousands of
data structures [5], [40], [72], [79, p. 69]. Although Bennett
mentions the size of legacy systems as a typical characteristic,
the primary argument here is that large programs are consid-
erably more difficult to comprehend and modify than smaller
ones [1].

However, not only the size of the application program
but also the volume of business data generally increases
over time. Substantial amounts of data can accumulate over
years of operation [1], [41]. For example, a telephone service
provider typically handles and stores all transactions for its
customers daily, generating huge volumes of data records
over time that are retained for several years [79, p. 88].
Ultimately, a major part of legacy stock should be regarded as
so-called very large business applications, meaning business
applications that are of strategic importance for the success of
an organization [84] These very large business applications

18It should be noted that software engineers tend to dislike writing docu-
mentation and also dislike getting involved in other people’s convoluted code
[83].

VOLUME 12, 2024 84589



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

are typically found in a variety of business areas, such as
accounting, logistics, sales or marketing [85].

g: DATA INCONSISTENCIES
Business rules are sometimes scattered across the IT appli-
cation, meaning that they are implemented in different
locations. Business rules sometimes also have to be imple-
mented completely redundantly, especially in the case of
isolated, standalone IT applications. Under these circum-
stances, if they need to be changed, it is difficult to find
all the places where the rules have been implemented and
to change them accordingly. However, if business rules are
not changed consistently, inconsistent business decisions and
data inconsistencies result. Moreover, business data is often
reported to contain many redundancies. This may be, for
instance, in the case of various distributed data stores where
a central database is missing. The data must then be repli-
cated, which can lead to further technical transfer errors and
inconsistencies creeping in [41]. If interfaces are available,
they are often haphazard, and data inconsistencies may occur
between applications [79, p. 3]. Today’s databases use a
variety of mechanisms to ensure data consistency, including
the use of constraints. With unconstrained storage in files
instead of databases, ensuring the integrity of business data is
much more difficult and is partly not achieved [51]. To sum-
marize, the data of legacy systems is often scattered across
different systems inconsistently defined with respect to each
other, and is often kept redundant by replication and is thus
inconsistent [40], [70].

h: LIMITED REMAINING VENDOR SUPPORT
As far as support is concerned, it is sometimes only available
to a limited extent or is no longer available at all. In such
a scenario, bug fixes are no longer provided, support (such
as hotlines) is no longer offered, no new product releases
are available, and no more licenses are granted. However,
this usually only affects parts of the system, such as a
specific module, library, or parts of the hardware. If cus-
tomized packages, standard software, or COTS have been
purchased, the remaining support for them may be limited
or has been discontinued by the vendor, possibly long ago
[9], [23], [43], [53].

i: WEAK PORTABILITY
Legacy systems are characterized, to some extent, by the
fact that they make direct calls to the OS. Such use of OS
functions, which also includes the use of OS-specific utilities,
leads to a strong coupling between an application and the
OS and, at the same time, to a decrease in portability. As a
result, legacy systems suffer from weak portability unless
appropriate technologies such as middleware systems or Java
technology are used [58].
However, the legacy patterns present in a legacy system do

not always have to have a negative impact. If, for example, the
application was hard-coded for a certain OS, it is difficult to

port it to another OS. However, if all users of this application
exclusively rely on this certain OS, then weak portability is
de facto present but does not come to bear, as long as no other
OS is used [61].

3) A HUMAN PERSPECTIVE
In the following sections, we will turn to the legacy systems
characteristics that can be viewed from a human stand-
point. For this purpose, we look at the domain experts who
use legacy systems to fulfill their operational tasks, the IT
operations personnel who are responsible for the smooth
functioning of the operated applications, and themanagement
staff.

a: MISSING LEGACY EXPERTS, MISSING KNOWLEDGE
Regarding legacy systems, a lack of knowledge is one of
the biggest problems:‘‘. . . the big problem is that you can’t
find people to understand them [legacy system] and under-
stand the technology’’ [9]. There are various reasons for
this lack of knowledge. First, engineers prefer dealing with
new, exciting technologies instead of old systems with their
obsolete technologies. As a result, it is difficult to find
experienced personnel who are familiar with, or willing to
learn, technologies that are sometimes 20 or 30 years old
or sometimes even older [1]. Software engineers, for exam-
ple, with knowledge in assembly language (abbreviated as
ASM) or third-generation languages, such as COBOL, are
difficult to attract for maintenance tasks of these old technolo-
gies [53]. The lack of knowledge also applies to the scarcity
of knowledge about the required toolchain (with required
editors, compiler, linker, debugger, and so on) and associated
development paradigms [72]. For others, maintaining legacy
systems is seen as an end to their careers, and also looks bad
on a resume. It can be a career risk to be involved in main-
taining legacy systems and their associated old technologies
that will eventually become obsolete [61]. Instead, devel-
opers would rather acquire new knowledge through the use
of cutting-edge technologies. However, this tendency (hence
the desire to use cutting-edge technologies prematurely) con-
tributes to technological obsolescence on the one hand and
staff turnover on the other. Moreover, after a short period of
time, proficiency in older technologies may diminish, thus
increasing the risk of becoming obsolete [78]. Unfortunately,
education contributes to the scarcity of qualified staff. Stu-
dents want to learn the latest technologies and avoid older
ones, perhaps because they do not see the industry’s need
for them, and universities train them accordingly to meet the
demand. Higher education focuses almost exclusively on new
knowledge and technologies [28], [55], [75]. However, this
training does not meet industry needs for older technologies,
leaving a skills gap in the labor market [26]. Moreover, there
is a danger that information technology as a science will
forget its own heritage if the old technologies no longer
appear in the curricula [26]. Finally, it is difficult to acquire
the necessary knowledge, thus, to find personnel who are
experienced in old technologies, as they are often not freely

84590 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

available on the labor market. Seasoned people are scarce and
due to regular supply and demand mechanics are usually also
very expensive [4], [28], [55], [78].
The obvious reason for the lack of knowledge is that

experienced legacy experts change their position within a
company, leave the company, or exit the labor market and
retire [53], [56]. In some cases, it is reported, that the original
development team has left the company, leaving no one with
original knowledge to replace the legacy system [63]. Such
a loss of the original development team may, for example,
occur in the context of company mergers or acquisitions,
if the development team was not retained or otherwise relo-
cated within the company [74]. Knowledge about IS may
also be lost through geographical changes of an organization.
If, for example, support is centralized, thus, moved from
the branch, a location, or a country to the headquarters, the
sometimes very specialized local knowledge, such as special
customer requirements, and location-specific business pro-
cesses, is usually lost as the knowledge cannot be completely
transferred to the employees at the headquarters [55]. Poor
knowledge management combined with neglected documen-
tation, etc. can lead to a situation where business or domain
experts no longer know their own business processes and
rules and the rationale behind them. They have to ask IT
experts about the business model implemented in the appli-
cation, who have to extract this knowledge from the code or
documentation [28].

The legacy knowledge is typically not documented very
well, as the documentation task is often neglected. In addi-
tion, tacit knowledge cannot be documented very well.
Of course, old documentation is also written using the termi-
nology, or taxonomy, in use at the time the documentationwas
created and the reader must be familiar with this taxonomy,
otherwise, he will not be able to understand the documenta-
tion properly.

However, even if the documentation is sophisticated and
can be understood by the reader, it is nearly impossible to
gain a holistic understanding of how a system works from the
documentation alone19 [28]. As mentioned before, the legacy
systems themselves (such as the code, the personnel involved,
test plans, and cases) are often the last reliable documentation
available [86]. Nevertheless, it must be assumed that not
all knowledge can be extracted and re-documented from the
system alone without a knowledge carrier. When these legacy
experts leave the company, parts of their knowledge are lost
to the organization forever [16].
To ensure effective and efficient legacy system mainte-

nance, it is not enough for staff to possess business (or
domain) or IT knowledge – legacy experts need knowledge
of both areas (domain and IT), either externally at suppli-
ers or internally at the company’s own IT department [62].

19It should also be noted that individuals tend to rely on their colleagues’
incomplete and inaccurate knowledge rather than reading available docu-
mentation. The documentation, if it exists at all, is rather to be seen as an
aide-mémoire in which the details, the minutiae of the business, the design
and implementation of the application are documented [28].

In other words, the maintenance staff responsible must not
only be familiar with the design and implementation of the IT
application, but also understand the businessmodel embodied
in the application, know the purpose the information system
serves, and be aware of the users’ expectations. Moreover,
the staff should use, understand, and commit to a com-
mon vocabulary [28]. This need for combined or broader
knowledge is also addressed by the concept of co-evolution.
Weak co-evolution leads to poor, ineffective communication
and misunderstandings, resulting in suboptimal IS and, thus,
legacy systems [61].

In a broader sense, the required knowledge may be present
but poorly available in the company. This is due to the fact that
expert knowledge is usually highly fragmented and widely
scattered throughout a company, held by many employees
from different areas and domains. Even after several years of
working on such systems, the knowledge that many employ-
ees acquire is usually incomplete, limited to their domain
and therefore fragmented. In addition, experienced staff is
often hardly available, as they usually work to capacity in
their projects and with their respective outdated systems [9],
[43], [65]. It was also found that in-depth knowledge is often
limited to just a few employees. These employees then spend
a large part of their time advising other employees [28].
Consequently, there is typically a lack of a profound, end-to-
end or holistic understanding of internal implementation or
system behavior [1], [9], [42], [45]. ‘‘Very few people (if any)
understand the system’s internal data structures and logical
functions’’ [51].

Finally, when legacy systems are used, it can be assumed
that the associated IS organization is also operating on an
outdated level. For example, if mainframe technology is used,
aspects such as personnel, processes, CASE tools, or support
structures are mainframe-oriented and thus at the same tech-
nological level as the legacy system itself. If the legacy system
is considered outdated, the associated IS organization must
also be considered outdated [49].

b: HARD TO UNDERSTAND, CHALLENGING TO MAINTAIN,
RESISTING EVOLUTION
Understanding a program requires up to 50% of the total
change effort and leads to a mental model of the appli-
cation [49]. However, the time-consuming familiarization
process to gain the required domain and IT knowledge can-
not be avoided because the artifact must first be understood
before profound and consistent changes can be made [9],
[53]. Consequently, a significant amount of effort must
be invested in building an in-depth understanding of the
application. The lack of this prior knowledge can seriously
jeopardize business operations [28]. In the case of legacy
systems, business processes and rules are often undocu-
mented. However, to change something, it must generally
be understood beforehand. An unknown or incompletely
understood business model is an obstacle to development
because it is difficult to reconcile business changes with
necessary IT changes [61]. Typically, a holistic or end-to-end

VOLUME 12, 2024 84591



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

understanding is lacking due to fragmented, scattered knowl-
edge. In such a scenario, business analysts cannot mentally
penetrate the existing processes and rules and the impact of
change requests on the business, resulting in suboptimal busi-
ness processes and IS [28]. It is worth noting that conducting
a time-consuming analysis and building a mental model does
not (directly) provide any added value to the product [49].

Legacy systems are typically characterized by a great
variety of partially outdated technologies, lack of experts,
imprecise or missing documentation, ‘code smells’ and
‘spaghetti code’, eroded or optimized structures, and thus,
increased entropy. As a result, these systems are often con-
sidered confusing and challenging to understand [1], [42],
[45], [48], [53]. For example, bizarre restrictions might occur
in old programs, like 64 kByte segments and 80-character-
wide datasets, the purpose of which becomes clear only with
corresponding knowledge of the hardware history. Without
legacy experts, no one can explain why these issues were
implemented in this way. In addition, legacy technology may
be less comprehensible in some cases; for example, if an
outdated technology only allows short identifiers (e.g., 8 or
16 bits wide) [43], and as a result, many cryptic abbrevia-
tions and barely self-explanatory identifiers are present [16].
Especially in older technologies, such as in Assembly or
BASIS, computed or parameter-driven ‘goto statements’ are
common but hardly understandable [42]. Optimized struc-
tures trimmed for memory and runtime together with missing
knowledge make it very demanding to understand and main-
tain such systems [48]. Moreover, systems that prioritize
runtime efficiency pose challenges not just for comprehen-
sion, but particularly for testing due to their convoluted and
disordered structures [1]. In this case, it is difficult to identify
all the parts of the system that are affected by a requirement
and to implement those changes [1]. In addition, due to the
high entropy that legacy systems suffer from, it is even more
challenging to find and consistently address all the parts of
the code that need to be changed [53].
Of course, a weak lexical meaning may also result from

doubtful or thoughtless naming of things, like variables or
classes [16]. However, it is also possible that completely
senseless and unsubstantiated rules are applied in connection
with legacy systems, such as ‘don’t use C++ templates’ or
‘usemax. 6-character long’ variable names, because these can
be processed more efficiently. Nevertheless, such ‘‘unsub-
stantiated folklore’’ can lead to unnecessarily convoluted
code that is unnecessarily hard to understand and maintain.
In any case, such structures typically do not promote main-
tainability [61]. Here one can also refer to so-called guard
code, which is also often used in problem-domain-oriented
code to catch invalid program calls. Ultimately, however,
these mechanisms also lead to code that is characterized
by poor maintainability, adaptability, comprehensibility, and
reusability [58].

IS continues to evolve over the years and increase in size
and complexity to becomemassive black boxes that are partly

almost impossible to understand20 [50], [51]. Less colloquial,
a legacy system must at least partly be considered a so-
called wicked problem [38], which means that ‘‘The process
of solving the problem is identical with the process of under-
standing its nature’’ [56]. This means that understanding
legacy systems is the main prerequisite to solving problems
and changing systems. Therefore, changes to an existing,
degraded system are estimated to take four times longer than
new development [49]. Accordingly, they significantly resist
modification and evolution [p. 3]79.

Developers need to understand the code they are modi-
fying. Insufficient knowledge (about the programming lan-
guage, data structures, underlying business culture, domain
knowledge, principles, assumptions, etc.) causes code decay.
This can lead to a tipping point, where the mental capac-
ity of the development team can no longer keep track of
the changes and their implications, and evolvability reaches
a dead end [5], [68]. Lack of knowledge in both areas
(business, IT) leads to expensive and delayed work with
inferior results [28]. Moreover, a lack of understanding of
the rationale behind the code – the implemented business
model and the former or underlying requirements – leads
to a considerable degree of uncertainty and consequently to
resistance to changes [58]. In addition, change cannot be fully
anticipated in the case of structures that have eroded and
are no longer comprehensible. In some cases, it is simply
beyond the intellectual capacity of the people involved. In this
case, it is understandable that changes are more likely to
be rejected because the consequences cannot be properly
assessed. Human resistance to change arises, which then con-
tributes to low maintainability and adaptability [61]. Finally,
it should be mentioned that the implementation of the legacy
system and the business model contained therein is often the
only reliable documentation. Therefore, the maintenance of
these systems is usually based on the only reliable source,
namely the code [1]. Missing knowledge is a burden for solid
engineering.

Legacy systems mostly suffer from eroded and monolithic
architectures. Such architectures do not allow new functions
to be added simply using plug-ins. Instead, new functions
must be implemented in the core at great expense [23].
Hardware often does not have sufficient computing, mem-
ory, or data-transfer capacity to support new functions.
To implement and operate new features, further accompany-
ing measures such as an upgrade of the hardware may have
to be implemented. If necessary, new features should be dis-
continued if the required resources cannot be upgraded [53].

If all places to be changed are not found or not modified
correctly, defects are inevitable. Under such circumstances,
even small changes can lead to serious failures, which in turn
encourage the emergence of subsequent failures. Accord-
ingly, legacies are sometimes described as inflexible and

20Some have compared understanding legacy code to archaeology and
understanding ancient artifacts from long-dead civilizations [80].

84592 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

brittle and their maintenance does not meet the required
agility, as it is time-consuming, expensive, and partially
risky [1], [5], [15], [42], [45], [51], [60], [p. 4]79. The code is
becoming increasingly vulnerable to new bugs [82]. ‘‘Even
in the early years of the industry, observers were able to
document situations in which each error corrected introduced
(on average) more than one error’’ [5].

c: CARELESS CHANGES
To change a program sustainably, the engineer in charge
must first understand the architectures, principles, and inner
dependencies and then integrate the required changes into
the system. People who do not understand an architecture
cannot consistently modify it. This results in unsustainable
changes. Legacy symptoms increase in accordance with the
number of unsustainably implemented changes [60]. Such
poor engineering is often accompanied by code cloning,
which unnecessarily increases the size and complexity of the
application [61]. The existing functions are copied, modi-
fied, and added to the program. ‘‘. . . the easiest way to add
a feature, is to add new code’’ [5]. As a result, the code
becomes increasingly redundant and ultimately the entire sys-
tem becomes unnecessarily bloated [11]. In addition, ad hoc
changes lead to the rapid deterioration of the conceptual
integrity described above [47], [49].
In the case of legacy systems, the time available to conduct

changes was often said to be too short. Shortage of time
leads to shortcuts, workarounds, and compromises, result-
ing in unsound solutions. Developers have to skip parts of
their engineering tasks or take shortcuts to achieve their
goals. Thus, only having little time contributes to decay [55].
Moreover, if the motivation is lacking to deal with other peo-
ples’ source code, andwhen competencies regarding software
quality and quality assurance are missing, careless changes
and ad hoc solutions can be observed [5], [55], [82]. In
particular, the creation of extensive documentation is expen-
sive and time-consuming and often needs to be reduced or
omitted to increase the short-term productivity of software
engineers [28]. In conclusion, legacy systems are often mod-
ified in unsustainable ways [61].
The documentation quality of legacy systems is typically

inadequate. The employees responsible do not document their
changes sufficiently or at all for a variety of reasons (e.g.,
lack of time, motivation, lack of quality assurance). The effort
and expense of creating sophisticated documentation is often
considered unnecessary as the existing generation of main-
tenance staff already has the required knowledge; this being
said, how documentation is handled varies from company to
company [28].
Technologies that enable continuous development over

a long period of time have been in use since the 1970s.
Paradigms such as ‘design for change’ based on ‘informa-
tion hiding,’ ‘abstraction,’ ‘separation of concerns,’ ‘object
orientation,’ and others were already known at the time.
However, these principles were often not consistently imple-
mented. In such cases, the code is often perfectly written

in terms of functionality, but not designed for good change-
ability [5]. Apart from that, some authors believe that the
longevity of outdated systems or the applied technologies
was often not anticipated [62] and therefore wrong assump-
tions, suboptimal design decisions, inappropriate technology
choices, relatively inflexible architectural decisions, etc. were
made [55], [64]. In addition, in 20, 30, or more years of oper-
ation, IS will face many and perhaps fundamental changes.
Despite the principles mentioned above, it is difficult, if not
impossible, to anticipate these possible changes, some of
which are decades into the future, and to design appropriate
architectures for them [6].

d: PERSONAL OR CULTURAL RESISTANCE
People are individuals with their own personal likes and
dislikes, which are also reflected in their behavior in orga-
nizations. Personal attitudes can lead to employees insisting
on familiar technologies instead of switching to new and
possibly better technologies for the company. This can
lead to employees completely rejecting new solutions and
training [55]. Conversely, younger workers are often very
interested in the latest technologies and tend to ignore existing
solutions using older ones, even if they are adequate for
the company. In addition, younger workers may pursue their
own agenda, which may be influenced by personal career
decisions. And here, the latest technologies and cutting edge
projects are mostly preferred, as they seem to be better for
one’s own career [55].

Another noteworthy human factor is that projects may also
fail due to employee resistance or a corporate culture that
is not very innovation-friendly, especially when old assump-
tions and management approaches have to be questioned [9],
[53]. Replacement systems may be rejected by employees as
they have to invest a lot of time and energy in learning the
new system and changing their ways of working [1]. In addi-
tion, it is possible that managers stick to a legacy system
they developed themselves due to their personal attachment
to it. This biased behavior can negatively impact decision-
making [42].
Other human issues such as the fear of losing a monopoly

on knowledge or one’s job may also hamper modernization
projects [12]. In conclusion, at a macro-level, the corporate
culture can be either supportive or averse to change [55].
From an overall business perspective, such cultural resistance
may lead to suboptimal decisions [55], and this in turn con-
tributes to the emergence of legacy systems.

e: ONE-SIDED FEATURE EXTENSION, NEGLECTED
REENGINEERING OR MODERNIZATION
To keep maintainability and to avoid the degradation of archi-
tectures, modifications must be performed sustainably [53].
In contrast, information systems age prematurely if they
are not handled with care, which means that workarounds
are implemented, documentation is poorly maintained and
regular reengineering measures are omitted [13], [47], [48],
[49], [75]. This finding coincides with Lehman’s second law,

VOLUME 12, 2024 84593



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

which postulates an increasing complexity over time when
adequate countermeasures are not implemented [39], [50].

Available resources can be invested in reengineering mea-
sures, functional enhancement, or a combination thereof.
Reengineering measures reduce the effort of future changes,
whereas functional enhancements immediately satisfy the
business unit’s most urgent requirements, but at the same
time increase entropy. Given the finite remaining lifetime
and restricted scope for action due to limited maintain-
ability, the challenge of managing these systems is to
find appropriate and cost-effective solutions to realize new
requirements. In this area of conflict, a careful balance must
be established between functional enhancement and reengi-
neering measures. Inadequate or omitted remedial action
leads to characteristically high entropy of legacy systems
[1], [47], [60].

The early replacement of a legacy system is characterized
by unpredictability. For instance, management typically does
not know whether a new technology will succeed in the
marketplace or quickly fade into obscurity. In addition, the
expertise required for new technologies is difficult to find
and therefore expensive. Consequently, early adoption of new
technologies is risky, which explains why managers tend to
rely on established technologies, which in turn means that
existing systems remain in operation until new technologies
become established and qualified personnel are trained and
available [64]. Finally, replacing a legacy system always
entails loss, as well as financial and intellectual investment.
Reasons like investment and protection of know-how drive an
excessively extended operating period, which promotes the
development of legacy systems [64].

Far-reaching changes, such as the replacement of a pre-
vious in-house development by COTS, or the switch to
new technologies, such as a new programming language,
can be accompanied by the release of mostly long-standing
and highly experienced personnel. These legacy experts who
are affected can attempt to defend themselves against such
changes and the associated loss of their relevance and not
disclose their knowledge. Thus, profound changes are poten-
tially associated with conflicts between the business or IT
departments and management [64]. In poorly performing
projects, the people involved must also have the courage
to communicate the poor state of affairs. However, project
conditions may be such that the participants fear for their
jobs or funding for their poorly performing projects, and they
therefore gloss over results or conceal negative facts. This in
turn can lead to serious consequential errors, as management
is unable to initiate appropriate corrective measures due to
embellished reports [8].
Monaghan [78] describes a clear conflict between manage-

ment and their business point of view and the IT development
departments with their more technical view of a legacy sys-
tem. The latter would often prefer to use the latest fancy
information technologies, while management sees little bene-
fit in this.When the budget is tight, it is likely that information
technology updates will be delayed in order to prioritize

business functions, thus leading to IT obsolescence. Manage-
ment is faced with the difficult task that such purely technical
changes must also pay off financially and remain within the
budget. Yet, it is often impossible to prove the return on
investment of IT updates. In some companies, this leads to
IT updates being repeatedly postponed and the IT applica-
tion becoming deprecated over time from an IT point of
view [55]. With this in mind, Bennett and Monaghan believe
that the primary cause of legacy systems is past misguided
decisions or inaction on the part of management, which failed
to demand necessary reengineering in a timely and sufficient
manner [1], [78], and not so much due to technical reasons.
To address such weakness, the goal must be for organiza-
tions to anticipate aging using risk assessments or scenario
analysis tools [56]. Young-Gul Kim argues in a similar vein,
attributing the causes of decay to developers and managers.
The former contributes to the decay through a lack of solid
engineering. However, the blame lies mainly with a manage-
ment who has failed to provide the necessary preconditions
(for instance CASE tools, training and education, sufficient
development time, and engineering guidelines) required for
solid engineering [48]. In this context, Bennett [1] claims
that most legacy systems have never been re-engineered.
He refers to this situation as a double punch that leads to
legacy systems. Firstly, changes cause entropy and secondly,
reengineering measures are omitted. Finally, the state of the
legacy depends on changes and treatments. Without proper
treatment, a system gets sick, thus increasing the legacy
status [47].

f: POOR USER EXPERIENCE
Legacy systems often have an outdated user interface that
makes working different and can be limiting. For instance,
some legacy IT applications (e.g., mainframe) are character-
ized by character-based input screens, where input is possible
only with the keyboard, but not with a computer mouse. From
today’s perspective, such an old-fashioned user interface can
result in a poor user experience. Moreover, legacy systems
often suffer from poor performance and slow response times,
which, in turn, lead to so-called waiting stress [61], [69].
These extended wait times can have a negative effect on the
users’ perception of the legacy system [46].

g: AGING WORKFORCE
When older employees retire, they take with them the
knowledge they have accumulated over a lifetime. It is the
accumulated knowledge of the business processes and rules
and the information technology used that forms the basis of
the IS used in the organization. Particularly, this knowledge
includes lore about the evolution of these elements. People
with many years of experience know (often only subcon-
sciously) why processes and IT evolved the way they did.
This knowledge is no longer available to the organization
when they leave unless it has been captured beforehand [7],
[66], [69].

84594 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

The acquisition of the knowledge required for evolution is
not trivial or quick, even with proper prior training. It usu-
ally takes at least six months for new employees to become
productive. However, it takes about two years before these
employees can effectively and efficiently perform their main-
tenance tasks [28].

h: OPERATIONAL COMPLEXITY
Legacy systems are not only large in terms of size and func-
tionality but often also in terms of the number of users. In this
context, large typically means thousands of users. It has also
been reported that the number of operational users working
with a system often increases over time [23], [41], [82].

The operational complexity of legacy systems increases
because the number of social interactions and interfaces is
greatly increased. This is roughly comparable to the large
number of technical interfaces due to a high level of coupling
between IT components [55].

Another antipattern of legacy systems can be seen in
the criterion that changes to the application can only ever
be put into production in conjunction with downtime. New
classes, for example, modified functions or changes to the
user interface always require the server to be shut down
to implement the changes. This always results in undesired
downtime, especially for 24/7 applications, which must be
handled accordingly [61].

i: COMMUNICATION PROBLEMS
Communication between agents (such as software developers
or business analysts) also plays into the formation of legacy
systems. Initially, both groups speak slightly different lan-
guages and have different perspectives. Business users think
that developers deal mainly with technology. The business
users deny developers a deeper understanding of business
issues. In contrast, the developers take the view that the busi-
ness users are not able to name and prioritize the requirements
clearly, understandably, and consistently; therefore, business
users are perceived as fickle. In addition, the IT domain com-
plains that the deliveries and the associated effort and time are
not perceived and appreciated by the business users. These
communication deficits ultimately lead to a tense working
atmosphere, but above all to deliveries that do not fully meet
the expectations of the business users. Co-evolution, a pre-
requisite for the successful evolution of IS, is disturbed and
promotes the formation of legacy systems [55].

j: MANAGERIAL DISCONTINUITY, MANAGEMENT
DIFFICULTIES
As discussed later, legacy systems can only be replaced
under challenging conditions and at high cost. Consequently,
managers responsible may delay essential measures to avoid
endangering their careers in the event of failure. Moreover,
if managers only deal with a legacy system for a short time,
it is conceivable that they do not want to invest effort and
energy in improvement. Without the courage or power to
get appropriate projects off the ground, the legacy system

will continue to operate [18]. A rapid turnover of execu-
tives can contribute to the problem of legacy issues. If they
are only in charge for a short time and can only report
short-term successes, there is little motivation to under-
take a long-term modernization project [55]. Short-term and
accountancy-minded managers are also more interested in
low-cost patches. Reengineering measures are often not ini-
tiated by the managers responsible, possibly because they do
not know that they have to order these measures themselves.
Reengineering measures are only considered when the conse-
quences are seen in their budgets [42]. It should also be said
that developers generally do not makemajor optimizations on
their own; especially not in legacy systems, where changes
are risky and costly. Improvements and optimizations to the
code must therefore explicitly be instructed by management
or at least communicated as a desired, independently percep-
tible option for action [42]. Managing legacy systems is also
challenging due to frequent changes in the business model
and in information technology [49]. Legacy systems, there-
fore, pose a particular challenge, not only for administrators
but especially for management.

4) A BUSINESS, ORGANIZATIONAL PERSPECTIVE
After examining legacy systems from both a technical and
human perspective, we will now address the business aspects
of these systems in this section.

a: UNCLEAR OWNERSHIP, POOR BUSINESS MODEL
In legacy systems, it could be that the responsibility for a
module or the business model bound to it does not exist. Such
unclear responsibility can then lead to missing or contradic-
tory decisions, missing budgeting, and thus paralysis of the
evolution. While the responsibility for a business function,
such as lending, can usually be reassigned relatively easily
in retrospect, this task is much more difficult for shared
components because they have to serve multiple customers.
Here, conflicts can, inter alia, arise with regard to pro-rata
payment or conflicting requirements [55].

b: A HUGE INVESTMENT
Having been developed for many years, legacy systems
have typically been funded by large budgets. This alone
makes legacy systems a significant investment [54]. It can be
assumed that these investments have already been depreciated
and are earning a correspondingly high profit (or otherwise
have a positive impact on the company’s income statement,
as the depreciation for these systems no longer needs to be
taken into account). Shutting down such systems is, therefore,
associated with the loss of future simple revenues, which
explains why efforts may be made to operate such systems as
long as possible. Conversely, premature shutdown involves
the loss of future profits and possibly a massive loss if the
system has not yet been depreciated. This can endanger the
existence of a company [64].

Employees have dealt with evolution over decades and
have incorporatedmany enhancements and problem solutions

VOLUME 12, 2024 84595



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

into such systems [48]. Accordingly, legacy systems incorpo-
rate years of in-depth business knowledge and have withstood
the test of time by constantly managing their evolution and
becoming robust in hardware, software, and functionality
over the years or decades of business modeling, bug fixing,
and operation [18], [42], [48], [82]. Through years of debug-
ging and sharpening functionality, hard-earned reliability, and
(tacit) knowledge have been built up that is documented in
this quality only in the existing system, making a greenfield
approach for a successor system almost impossible or at least
very difficult. This stable business model, together with the
tacit knowledge behind it, is the real value of a legacy system,
and any replacement threatens it [29], [58].

c: SOURCE OF BUSINESS KNOWLEDGE
Over many years of development and operation, legacy sys-
tems have accumulated a significant amount of business
knowledge such as business processes and rules, algorithms,
policies, expertise, and solved problems embedded in pro-
grams and databases with their tables, dependencies, and
constraints [1], [23], [41], [43], [45], [48], [51], [53]. Another
valuable part of a legacy system is the data itself [26]. This can
be, for example, product data in the form of material master
data, parts lists, customer data, or transaction data from a
bank. The loss of any of these types of data could result in
significant adverse effects. IS provide a database for business
intelligence and should therefore be regarded as a foundation
for consolidated information about an organization [54].
Consequently, outdated systems should be seen as a

valuable source of business knowledge essential for under-
standing the evolution of an organization. Legacy systems
can be considered as a corporate knowledge repository [48].
Moreover, legacy systems are usually the only reliable source
of business knowledge [86], as mostly insufficient effort is
invested in securing it in the documentation. However, even
if much business knowledge is encoded in an application,
it cannot easily be recovered. Only legacy experts can read,
understand, and extract the often wicked legacy code and
the business model contained therein [43]. Consequently,
replacing a legacy system entails the risk that a significant
part of the knowledge stored in the legacy system will be lost
forever [54].

d: LEGACY SYSTEMS PERFORM CRUCIAL TASKS AND ARE
BUSINESS-CRITICAL
Legacy systems are often referred to as the backbone or
core service of a company’s data flow, which is essential for
consolidated information supply [9], [17], [51], [54]. They
typically handle or support crucial tasks, such as payroll man-
agement or financial transactions, with highly customized
functions [9], [23], [40], [45], [82]. These systems fulfill
essential tasks for the area in which they are used and thus
offer high business value by generating considerable rev-
enue or indirectly contributing to profitable company results
through efficient process handling. LIS are frequently con-
sidered a substantial investment and valuable asset [9], [17],

[23], [45], [51], [53], [54], [60], [65], [82]. Legacy systems
can remain a necessary, valuable asset even after they are
no longer operational. For example, statutory requirements
sometimes dictate very long retention periods for data and
documents, especially for security and tax-relevant docu-
ments. In this context, it can be an important task of a legacy
system to enable access to this legacy data. Thus, it is valuable
because it fulfills a legal requirement [42].
Even when they become functionally inadequate, these

systems provide a solution for managing and governing the
daily operations of organizations through proven business
processes and rules that have been developed, operational-
ized, and improved over decades [1], [7], [15], [18], [42],
[65]. A failure mostly means the collapse of an organization’s
day-to-day business or some primary corporate functions
with severe consequences [54]. In particular, this applies if
the downstream systems are insufficiently decoupled, and
an interruption also leads to the collapse of the downstream
systems. If one of these systems goes down, a large num-
ber of others follow [51], [77]. These IT applications and
the accompanying personnel then constitute a crucial asset
because they can be used to govern the company’s day-to-day
business [49].
Finally, ‘‘By definition a legacy system is business critical.

A system that is old and obsolete and is not business critical
would never reach the status of legacy’’ [9]. Therefore, infor-
mation systems that are not critical to the business in which
they are used are not considered for further evolution [15].
Accordingly, typical legacy systems and their essential func-
tions are more likely to be found in the back office and less
in front-office applications [9], [23], [67].

e: PERFORMANCE PROBLEMS AND REDUCED RELIABILITY
A characteristic of old systems may be the occurrence of
performance and memory problems when they no longer
meet the increasing demand. This can be due to insufficient
processing power, memory or network limitations, or poor
software runtime efficiency [9], [43], [46], [48], [77], [p.
3f]79. In many cases, the reason for these problems is the
growth of the application. In this case, it simply takes longer
to load a vast program or accumulated business data into
the main memory than for small programs or data sets. Poor
design, which may manifest, for instance, in high latency,
exponential program complexity, memory leaks, or bottle-
necks, can also slow down performance and waste hardware
resources [5].

Moreover, these systems contain essential operational
information regarding a company’s daily business and the
abovementioned issues do not only apply to the operational
tasks but also to the generation of reports [23]. Accordingly,
the latter is hindered because these systems are often insuffi-
ciently integrated or contain inconsistent business data. The
compiled information can often not be sufficiently linked;
therefore, the content is fragmented and may contain con-
tradictory information. Under such circumstances, reports
can only be created with great effort, meaning manual

84596 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

reworking [53]. If the reports are time-consuming to produce
and potentially contain erroneous or contradictory informa-
tion, management cannot gain an efficient overview of a
company’s overall situation, which is detrimental to good
decision-making.

As a consequence of the over-used hardware, errors can
emerge. Accordingly, legacy systems are often, but by no
means always, characterized by an increased error rate [5],
[77]. Some outdated systems are characterized by many busi-
ness disruptions, where the day-to-day business is hampered
by constant disruptions [40], [77]. None of this is to say
that all legacy systems are slow. Many legacy systems are
reported in the literature to process transactions very reliably,
robustly, and efficiently, which would be difficult to sustain
in a successor [66], [82].

f: ORGANIZATIONS ARE HELD BACK, FURTHER BUSINESS
DEVELOPMENT IS IMPEDED
A company must be able to adapt itself and its corpo-
rate vision to changing environments to remain competitive,
which requires flexible IS [9], [23], [53]. However, legacy
systems tend to increasingly resist change. Over time, these
systems can no longer be adapted to the needs of the busi-
ness units they serve with the necessary flexibility and cost.
Business departments demand changes with growing fre-
quency and urgency [55, 1, p. 20]. This situation is often
accompanied by a lack of functionality in the legacy sys-
tem needed to exploit the business opportunity and long
backlogs reflecting the unmet demand [48], [57], [76]. More-
over, the IT department cannot deploy the latest technology
due to maintainability problems, which in turn hinders an
organization from benefiting from the latest technologies.
By lacking changeability, legacy systems lead to inefficient
and rigid organizations; they hinder or paralyze the evolution
of organizations in the long term [5], [42], [43], [46], [53],
[82]. ‘‘Legacy systems are particularly important since they
constrain rather than support the ability of the organization
to respond to changing environment conditions or to adopt
new strategies’’ [10].

As required functions are not deployed, new business areas
cannot be developed, process optimization has to be post-
poned and discontinued, or regulatory requirements cannot be
met. At a certain point, the costs for the continued evolution
and operation of these systems are no longer justifiable [5],
[15], [40], [51], [60], [82]. This increased entropy stands in
the way of the required flexibility. It must, therefore, be con-
sidered a bottleneck in the evolution of legacy systems [66].
Early versions of legacy systems tend to be developed with
a high degree of adaptability, which they lose over time
as structures erode and, accordingly, become increasingly
petrified [61]. These mature IS tend to grow disgracefully
by continued ‘‘waves of hacking’’ and eventually become
immutable, meaning they suffer from outdated patterns and
can no longer adapt to changing business needs [58]. Legacy
systems with their poor maintainability and their techni-
cal obsolescence, constitute an organizational burden. They

hinder the evolution of the entire enterprise [48]. Finally,
outdated IS hold back the organization they serve as they can-
not be changed or provide required functions at the required
speed and cost [55].
In this context, legacies should be regarded as a severe

burden, since they act as a barrier to achieving the company’s
vision. ‘‘. . . legacy is rigid, and it is not flexible’’ [9]. Thus,
competitors may benefit from these competitive disadvan-
tages: ‘‘Your legacy system keeps your business from staying
on the top’’[79, p. 3]. Accordingly, the main objective of
modernization projects is to decrease costs and regain the
required flexibility [9], [12].

The new IS being implemented today tie up existing
resources (e.g., staff, budgets) for their development. On the
other hand, typically, each year more resources are required
for maintenance. These resources are then no longer avail-
able for the implementation of additional IS. If no effort
is made to reduce annual operating and development costs,
at some point there will be no budget available for innova-
tion [49]. As much as 75% of the IT budget in insurance
companies and banks is spent on maintenance [76]. It should
be stated that legacies monopolize resources and experts [p.
3ff]79. In other words, legacy systems tie up an organization’s
scarce resources. The few legacy experts and budget available
are often occupied with maintaining existing systems. This
leaves insufficient capacity for the development of new IT
applications or the redevelopment and evolution of existing
ones. This monopolization slows down the evolution of the
organization. Managers must, therefore, free up experts and
resources so that they are available to develop new IT appli-
cations or modernize existing ones [49].

g: EVOLUTION AND OPERATION ARE EXPENSIVE
Over time, increasing efforts for development, monetary
expenditure, and other organizational resources flow into
the evolution of such systems [16]. As already men-
tioned, changes to legacy systems are becoming more
time-consuming and risky. At a certain point, even minor
changes and maintenance are considered expensive and cost-
intensive. Consequently, the budget is quickly exhausted and
not available for major redesigns or developments [49]. This
means that countermeasures to improve maintainability and
reduce costs are often too expensive [41]. In the case of
externally developed or customized software, upgrades may
have to be ordered and purchased from the original vendor
at a high cost, which is (in the case of legacies) also often
perceived as too expensive [53], [77]. At a certain point, the
management considers the overall effort for the evolution of
an information system to be too costly; at this point at the
latest, the system is considered legacy [5], [40]. These high
costs are one of the main drivers for initiating modernization
(replacement) projects [9], [69].
In the case of legacy systems, the evolution leads to the

situation of decreasing benefits per change. Each investment
then realizes less and less marginal utility, especially if the
investment is compared with a new development [49]. High

VOLUME 12, 2024 84597



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

costs for maintenance or evolution are therefore not nec-
essarily a negative criterion in themselves, as long as the
high costs are accompanied by adequate further development.
Only if the high costs are due to inefficiencies should special
attention be paid to this aspect [87].

Finally, it should be noted that the creation of reports is also
described as time-consuming. In some cases, this is due to a
lack of integration, computing power, quality problems in the
data, and the need to prepare the reports, among other things.
On the other hand, inconsistencies or incorrect reports can
lead to incorrect processes and decisions. Thus, inconsistent
and corrupt data also costs a lot of money indirectly [41].

h: CHALLENGING EVOLUTION AND ONLY REPLACEABLE AT
HIGH RISK
A legacy system should be regarded as the confluence of
two models, namely a business and an information tech-
nology model; both are intertwined and can, therefore, not
be changed in isolation [53]. In addition, it should not be
underestimated that the replacement of a legacy system is
usually accompanied by the replacement of the associated
evolution process. Thus, the software engineering method
used, including the associated CASE tools, must usually be
changed as well, since the old processes and tools are usu-
ally not compatible with the new technology [43]. Thus, for
example, an assembler with the editors, compilers, and the
structured programming associated with it is unsuitable for
the evolution of an object-oriented paradigm such as Java.
‘‘Even if the legacy system´s design is reused, it is unlikely
that the original methodology and tools will also be reused’’
[43]. All elements that make up an information system are
intertwined. Changing one often affects the others, making it
more complex to implement deeper changes [53]. This issue
also explains why replacement projects are usually consid-
ered very demanding, risky and expensive. Hasty decisions
regarding replacement later often prove to be an expensive
and serious mistake [48].
Considering all of the above symptoms, the need to mod-

ernize or replace a legacy system with a new and more
cost-effective alternative becomes obvious. However, this
step is not trivial. In fact, these projects are considered some
of the most challenging in industry and government [7],
[9], and are not uncommon to fail in practice for several
reasons [8], [51], [71]. For instance, some time ago the FAA21

was asked to replace one of its legacy systems. The project
had to be abandoned after 15 years without results and is con-
sidered a costly and protracted failure. Another example is the
U.S. Air Force, which tried unsuccessfully three times over
many years to introduce a modern logistics system to replace
its outdated predecessor system. Ultimately, it cannot be
overstated how complicated, expensive, risky, and dangerous
the replacement of legacy systems is and that the explosive
nature of such undertakings is very often underestimated [8].

21Federal Aviation Administration, United States Department of Trans-
portation; https://www.faa.gov/.

In particular, far-reaching changes, such as reengineer-
ing,22 modernization, migration, and replacement activities
remain some of the most challenging tasks and require busi-
ness and technical personnel [8], [12], [23], [77]. Migration,
or the transition from a legacy system to a more modern coun-
terpart, is highly uncertain and unpredictable, and influenced
by many different factors, especially financial, technical,
human, social, ethical, and cultural factors that make such a
task complicated [64]. Owing to the lack of business and tech-
nical knowledge, changes in data management are also tricky.
Data migration is described as a particularly difficult [12]
or even the most challenging subtask when migrating legacy
systems [51]. In turn, legacy business information can in
many cases not simply be discarded or replaced and thus
hinders the introduction of a new IS [41].

Furthermore, managements are more likely to deny a com-
plete replacement of the old system by its successor (flush-cut
approach) at one point in time (e.g. over a weekend) because
of missing risk control opportunities and lacking progressive
adjustment [79, p. 8ff], [16]. Consequently, a replacement
must be typically done module by module, function by func-
tion, and element by element until all system elements are
migrated. This step-by-step approach usually requires sev-
eral years, meaning periods of 5-8 years, of simultaneous
operation of the legacy and the successor system. Thus,
a replacement is a long-term burden [79, p. 7].

One obstacle to themodernization or replacement of legacy
systems is completing a project on time [9]. Moreover, a posi-
tive return on investment should be demonstrated beforehand,
which can be challenging in far-reaching modernization
projects. Projects that do not bring additional business value
and bring only new information technology are typically not
approved by managers [79, p. 8ff], [9].

If we look at the end of a system’s lifetime, a flash-cut is in
most cases not an option, as these systems are typically tightly
intertwined with other system elements and at the same time
suffer from high entropy23 [55], [79]. Therefore, replacing a
legacy system in one fell swoop, in a short time frame of a few
days, or over a weekend, is risky and practically unfeasible in
most cases [55], [75].

This is a kind of catch-22 situation for companies; often,
referred to as legacy dilemma. On the one hand, legacy
systems contribute significantly to the control of essential
parts of the organization by implementing proven business
models and (tacit) knowledge. On the other hand, they con-
stitute a major obstacle to the evolution of the business, while
any replacement is unpredictably expensive and risky. Many
legacy systems were not able to be replaced despite extensive
funding and time (sometimes decades of effort). Many of
these replacement initiatives are in deep trouble or must be
considered costly failures [7], [10], [44], [71].

22also referred to as renovation and reclamation [88].
23In a case study, Dhillon recounts an unsuccessful attempt to do such a

redevelopment in parallel with the old application and an overnight switch
that failed miserably [89].

84598 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

In addition, it can be assumed that further requirements
will arise during the several years the replacement is taking
place, and this has to be taken into account, at least in part,
in the old and new systems, which will significantly increase
the effort [79, p. 7], [9]. Even the simple re-implementation
of the legacy system is in practice often not feasible, as new
requirements have to be implemented by the business dur-
ing the usual 1-3 years re-implementation phase. In most
cases, a business department will not accept going with-
out new IT functions for years. Accordingly, ‘‘Big rewrites
fail’’ [75].
Early legacy systems in particular were set up in such a

way that they simply took over the manual work processes,
most of which were not yet computerized (direct conver-
sion). This means that business processes were not optimized
for the use of IT, and, therefore, do not benefit from the
use of IT to the extent that would be possible. To make
matters worse, in practice some of the successor systems
are business-replica, i.e. they merely implement the same
processes in more modern IT. Despite new technology, sub-
optimal processes that are still being operationalized do not
exploit their full potential [46]. Therefore, simply migrating
a legacy system to the latest keyword-compliant technology
does not solve the legacy system problem; it merely migrates
the legacy system to a technologically modern legacy sys-
tem [42], [49], [54], [61]. If only the technology is renewed,
the old business model remains. From a business perspective,
such a purely technical innovation adds little (if any) business
value. Accordingly, replacing a legacy system is not only a
technical challenge; it’s also a non-technical one [1]. This is
mainly due to the fact that the previous business processes
were often constrained by the old IT. A pure technical update
to the latest shiny IT leaves the business model unchanged.
If the business model is not reviewed in the course of
the IT update, the corresponding business potential remains
untapped [7].
Data migration, difficulties in testing, and complex eroded

structures that resist modification are further heavy-weight
technical reasons that hamper modernization or replacement
initiatives [9]. Legacy experts for older technologies and
experts for the latest technologies are needed together in the
project, increasing the effort required [18], [43]. To make
things worse, the new system may lack some of the required
functions the old system provided [16], [43]. Thus, employ-
ees may have to work in both systems. Further, thousands of
users must be retrained, which may result in high personnel
absence and education costs [16].
In conclusion, it can be stated that legacy systems are often

kept in operation, despite their shortcomings and uncertain-
ties, to avoid the above-mentioned organizational strain and
risks [18], [54]. In this case, companies face the typical legacy
dilemma: either continue to operate legacy systems at high
and increasing expenditures and (too) slow evolution time or
make a cost-intensive and very risky switch to a new solution
[1], [5], [15], [18].

D. REFLECTION
In the previous sections, we have used the knowledge base
to develop a detailed empirical picture of the term ‘legacy
system’ and the concepts behind it. In this conclusion, wewill
now summarize our findings and highlight and discuss the
notable aspects.

First, strictly speaking, the term ‘legacy’ has neither a
negative nor a positive connotation, butmerely refers to some-
thing being handed down by a predecessor. A legacy, then,
is something that is left behind after a certain event, typically
the death of a person. In this definition, the term ‘legacy’
commonly implies a certain age, typically many years, often
decades. The term ‘legacy system’24 first has to be considered
in this context, with the exception being that a legacy system
is typically taken over from another person who changes jobs
or companies, retires, etc. In contrast to ‘legacy’, a legacy
system is not related to the demise of the persons previously
involved. In this strict sense, it is a neutral term refering to
predecessor systems that have already been replaced or to
existing systems that are still to be replaced.

Nobody writes a legacy system. Rather, legacy systems
usually become obsolete unintentionally over time, and the
characteristic negative features associated with them often
emerge over decades25 of operation. Having said that, the
term ‘legacy system’ often has a negative connotation and is
used in disparaging ways when weaknesses – often static or
inflexible, and problematic IT that does an inappropriate job –
are perceived and changes to them are being considered [42],
[56], [62]. A legacy system is something old, at the end of its
useful life, in the declining stage of its life cycle, or at a tip-
ping point when it should be replaced, or when the successor
is already on the horizon [7], [77], [78], [87]. They are often
associated with high complexity, eroded structures, redun-
dancies, and many different technologies; they are described
as decayed, which means they are characterized by increased
structural, technological, and functional entropy. This phe-
nomenon was intensively researched by Lehman [39], [50]
and has become known as the second law of software evo-
lution. Sometimes, the aforementioned symptoms are also
described as ‘declining quality’ (according to current ISO
standards, for example [91], [92]).

The characteristics attributed to legacy systems vary sig-
nificantly from author to author. In reality, however, these
characteristics are by no means a consistent set of clear
indicators of legacy systems. For example, while some legacy
systems cause numerous disruptions in day-to-day busi-
ness, others emphasize that their legacy systems are reliable
due to years of troubleshooting, development, and proven

24To emphasize a positive connotation ‘heritage system’ was proposed
in the USA and ‘vintage system’ in Europe. However, these terms have not
caught on and have long since become legacies themselves [56].

25Some authors believe that legacy systems are emerging with each new
technology that is introduced, which is approximately every 5 years. Accord-
ing to this view, application systems become outdated in less than 5 years
[90].

VOLUME 12, 2024 84599



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

technology and that proven solutions are deliberately pre-
ferred and are a key reason for not replacing them with
modern systems. Some systems suffer from poor perfor-
mance and outdated hardware. In contrast, others report
excellent performance of their legacy information system [9],
[69]. Some authors report that their legacy systems are highly
integrated into the enterprise and serve as the backbone for
enterprise-wide data delivery, whereas others see legacy sys-
tems as monolithic and insufficiently integrated [51]. There
is not even consensus on whether an old programming lan-
guage or old technology is a characteristic of legacy systems
because they offer reliable and stable services that have been
tried and tested in practice over many years. Only a fraction of
employees confrontedwith legacy systems agree that a legacy
programming language is a determining factor of a legacy
[9]. Poor and outdated documentation is said to be a clear
sign of legacy systems. However, in some cases, excellent
documentation of legacy systems has been reported [17].
Moreover, legacy systems are often associated with outdated
hardware or architectures, and with mainframes in partic-
ular. For instance, the IBM mainframe has become almost
a synonym for ‘old technology’ [78]. There are few voices
that state that a legacy system is one whose architecture has
been compromised [10]. However, it should be noted that
(especially) some mainframes are deliberately run because
only they provide the required resources and stability [17].
Especially in old and large financial and insurance com-
panies, mainframes together with COBOL are still widely
used26 [64], [72]. Therefore, technology in general should not
be prematurely declared obsolete, especially the mainframe,
which has been proclaimed dead for decades. In summary,
on the surface, there is no common understanding of what
attributes constitute a legacy system.

Finally, because of the large number of different, partly
contradictory properties, we have concluded that typical
statements attributed to legacy systems (poor performance,
memory problems, degenerated architectures, lack of docu-
mentation, run on a mainframe [9], [43], [77]) should not
be generalized in any case. Just as there is an unmanageable
number of legacy systems, the properties attributed to these
systems are just as varied.

Moreover, it is important to recognize that a legacy system
is not inherently a uniformly negative entity implemented
in a singular technology. In fact, the opposite is often true.
Some system elements may be of good quality, others of
poor quality, some may be young and modern, others old
or outdated, and the rest somewhere in between [23], [82].
However, it would be inappropriate to view legacy systems as
predominantly negative. Indeed, despite their shortcomings,
legacy systems are frequently considered valuable. There-
fore, these systems are often both a business asset and a
business liability [58].

26There is also even evidence that IBM mainframes (as well as their
smaller counterparts) still have their place and will continue to do so in the
future [93].

Finally, the term ‘legacy system’ suffers from ambiguity
despite its widespread use. The scope or definition of the
term ‘legacy system’ varies widely from author to author [21],
[78]. For example, some authors exclude hardware from the
definition of legacy systems [17]. It often refers either to
the application software only or to the entire information
system in the sense of a socio-technical system [53]. A legacy
information system is a broader concept that includes obso-
lete software in addition to non-technical issues (such as
processes or business rules) [26], [56]. Others incorporate the
evolutionary process that drives the dynamics of legacy sys-
tems into their considerations [62]. In addition, practitioners
and academics regard and use the term differently. The former
tends to focus on business and capabilities, while the latter
focuses on technical issues [9].

Consequently, there is no common use. The interpreta-
tion of the term should therefore always be questioned.
This wide diversity of usage hampers communication and
action [10], [48]. Moreover, the concept of legacy systems
partially overlapswith the various concepts of debt (e.g., tech-
nical debt, social debt, architectural debt) [75], legacy health
[47], or legacy status [22, p. 8]. Depending on the underlying
usage of the term legacy systems, the concepts may even
overlap completely and describe the same phenomenon [74],
[78]. Such systems cannot be seen purely as a technical
problem, as they encompass and touch upon many other
areas including business, organizational, technical, human,
and strategic elements [9], [55], [56], [61]. Fortunately, for at
least the last 20 years, a consensus has emerged that a legacy
system should be viewed from both a business and technical
perspective [42], [47]. Further, some argue that the legacy
problem is more an organizational than a technical one [63].
Overall, the literature reviewed is lacking in stringently

applied research methods. Most articles present their state-
ments in an anecdotal narrative style. Accordingly, the
statements attributed to legacy systems are often vague,
undifferentiated, and vary from author to author. Legacy sys-
tems, for instance, are often described as large, but without
providing any further details. This is difficult because, firstly,
‘large’ is relative and, secondly, it is not clear what it refers to
(e.g., business data, source code, number of users, business
processes). Another example: The documentation is often
described as outdated and incomplete. However, it is usually
not clear what type of documentation is meant (e.g., source
code documentation, user documentation, IT operations doc-
umentation, or design decisions with a conceptual model).
Like ‘large’, the term ‘obsolete’ also refers to a spectrum
ranging from low to very high (obsolete). Therefore, the
term ‘obsolete’ should also be regarded as a relative word
and is consequently imprecise. Finally, unsubstantiated and
unspecific claims (such as that legacy systems are difficult
to understand, suffer from high entropy, and are poorly doc-
umented) are widespread. Such bold statements should be
taken with a grain of salt.

Remarkably, some properties attributed to legacy systems
are highly present in the reviewed literature, whereas others

84600 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

are underreported. For example, a lack of IT experts and
domain knowledge has been regularly mentioned and depre-
cated software is addressed muchmore than legacy hardware.
Software growth is also regularly cited in the literature, but
the increase in business data and number of users is rarely
discussed. Accordingly, this paper reflects these proportions.
Furthermore, it could be assumed that legacy systems with
discontinued technologies have many unresolved security
gaps and that cyberattacks should be a relevant topic [17].
Surprisingly, this security topic was hardly present in the
reviewed literature.

IV. EXPLAINING THE BUSINESS-TECHNOLOGICAL AGE
OF INFORMATION SYSTEMS
In this section, we revisit the statements made in the previous
section and abstract them to explain the underlying legacy
phenomenon. To this end, we first give our approach to
explain LIS. In the second part, we demonstrate the via-
bility by mapping the elaborated statements to the model.
The third part discusses and evaluates the model and draws
conclusions.

A. THE ARTIFACT TO EXPLAIN THE LEGACY STATUS OF
LEGACY SYSTEMS
We assume that legacy systems can be explained using a
combination of socio-technical theory and the viewpoints
approach. Having already explained the socio-technical the-
ory at the beginning, we now turn to the viewpoint approach.
In this approach, different people in their different roles
generally adopt different, very subjective perspectives on the
legacy system in which they are involved [64]. This concept
of explaining legacy systems assumes that a (legacy) informa-
tion system should be evaluated from different points of view.
These result from the roles (like managers, business analysts,
software developers, database specialists, direct system users,
customers, and operators) and profiles (knowledge, educa-
tion, opinion, etc.) of the persons involved and their respective
views of the legacy system. Even for one criterion (such
as documentation quality) for just one information system,
the assessment differs from expert to expert, in some cases
significantly [76]. The assessment of the individual attributes
of a legacy is accordingly highly subjective (at least without
a fixed parameter). The classification as a legacy system is an
individual view or assessment of an information system and
can change from person to person [26], [56]. A manager, for
example, is typically more interested in the capabilities and
cost of an information system than in its internals. In contrast,
a developer is typically much more interested in modern
information technology, quality code, modern CASE tools,
and development methods than in the external functions and
the benefits it brings to the organization. A business analyst,
on the other hand, is interested in lean and efficient processes
that come close to his ideal and may be modeled for him in
modern notations (such as BPMN).27 and tools. Therefore,

27Business Process Model and Notation.

which factors indicate a legacy system is strongly dependent
on the viewpoint (technical, social, organizational, strategic,
developmental) of the observer [10], [56].

The aforementioned viewpoints are interrelated. For
instance, a strategic decision to enter a new market results
in the organization’s employees having to change the organi-
zation; they have to create new business processes and rules
and evolve the existing ones. This, in turn, may influence the
development perspective and subsequently, the operational
perspective, which must correspond to the new business
model. Accordingly, these viewpoints form a cascade that
builds on each other; nevertheless, the subordinate viewpoints
can contribute to the higher-level strategic perspective [10].
However, we argue, that this is not an exclusive characteristic
of legacy systems, but for IS in general.

It should also be noted that there is also the ‘capitalist
view’ or the ‘populist view’. This meaning includes or refers
to the understanding of vendors of technologies or solutions.
These disparagingly refer to an earlier version of a product or
technology as legacy systems (even though they may still be
absolutely modern and do their job perfectly) to make them
look old-fashioned with the aim of marketing and selling
their own products [56]. This view of vendors only serves to
malign other products and is not very useful in understanding
or explaining legacy systems, yet it is very common in glossy
magazines [26].

The model to explain legacy systems is illustrated in Fig. 5
(illustration based on Migley [95]). The legacy system is dis-
played within the Information System Boundary (Fig. 5, left).
This outdated system is deployed for an intended operational
task such as accounting, product data management, or pro-
duction planning and scheduling. The system is operated
by Direct System Users, who are primarily domain experts,
clerks, line managers, and IT personnel, who perform their
functions in various roles and use the application system
expediently for their daily business. The Information System
Boundary also includes the evolutionary processes. Gener-
ally, the evolution process has run through several times over
many years. With each iteration, a new increment of the
information system is created, which is then the input for the
next evolution process run-through. The System Designers
involved are typically business analysts, software developers,
usability engineers, testers, and ultimately all staff involved
in the evolution (we also include their development tools
like compilers, linkers, development environments, software
engineering methods, notations such as UML,28 BPMN, pro-
gramming languages, and storage tools such as repositories
for developed artifacts).

In principle, an information system does not have an end
in itself [32, p. 79f]. Instead, the purpose of a system is set by
the business goals of the organizations it serves [15]. Obvi-
ously, this statement also applies to legacy systems. A legacy
information system (with its Application System, meaning
all technical equipment and the technology behind it, the

28Unified Modeling Language.

VOLUME 12, 2024 84601



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

TABLE 4. Mapping of legacy properties to systems elements.

Direct System Users, and the System Designers) has a rela-
tionship to the context (that is the organization), meaning the
respective purpose, the IS demand formulated by the business

activities (referred to as the internal drivers of change)
for which it is intended and used. These demands may
be, for example, the result of company mergers, horizontal

84602 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

TABLE 4. (Continued.) Mapping of legacy properties to systems elements.

and vertical integration of suppliers, and customers and
their IS.

The outer area beyond the Organizational Boundary in
Fig. 5 represents the context of an organization that operates
legacy information systems. External threats (such as new
regulations or changed customer needs) are brought to an
organization by its context. Advances in science and technol-
ogy should be regarded as the main driver of technological
aging. These are, in particular, the basic sciences constituting
IS, namely business administration and computer science,
as well as inter alia, sociology, law, and psychology. The
Current State of Science and Technology is placed in the
organizational context in Fig. 5. This is based on the assump-
tion that innovations in science and technology are largely
researched outside an organization (often at universities),
although some (but not the majority) of innovations can also
be researched within the organization.

The internal and external requirements of the company and
the current state of technology are interdependent. ‘‘Infor-
mation technology should not be limited to just supporting
a business strategy. Instead new technology should directly
influence the strategic direction of organizations’’ [53]. Thus,
technological conditions and external requirements can influ-
ence corporate strategy. For example, using digital signatures
to save expenditures and protect the environment could be an
example of a business or legal requirement that is only feasi-
ble if appropriate knowledge about asymmetric cryptography
is available in science. As long as cryptographic procedures
have not been invented, digital signatures cannot be set as a

business requirement or administrative regulation. In addition
to the aforementioned requirements, existing IS – in the sense
of E-Type-Systems mentioned before – drive their evolution
and their respective sciences.

When a company is unable to bring the legacy system in
line with the requirements, a gap between the system, the
technology, the business strategy, and the business model
emerges and widens. Furthermore, the larger the gap between
provided capabilities and the demand of the business depart-
ment, the more outdated the system. Moreover, a legacy sys-
tem should be regarded as an instantiation of a specific state
of technology. Similar to unimplemented requirements, if the
information system is not adapted to the current state of scien-
tific knowledge and technology, the system becomes outdated
from a technological perspective. When a system can no
longer keep pace with the constantly changing demands
(which are typically expressed by a long and increasing back-
log) and falls further and further behind what is required,
we label it a legacy system [26], [53], [56]. In Fig. 5, the
potential gap between the legacy system and the requirements
from a business and technical perspective can be recognized
by the distance between the Application System or Informa-
tion System and the (unsatisfied) demands resulting from the
involved roles (Direct SystemUsers, SystemDesigners,Man-
agers). Thus, it can be stated that the less the legacy system
can meet business requirements and the more it falls behind
the current state of science and technology, the more outdated
the system under consideration is.To illustrate this definition,
we propose the term ‘‘business-technological age’’.

VOLUME 12, 2024 84603



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

FIGURE 5. A legacy system can be explained by understanding it as a socio-technical system that has fallen behind the subjective expectations
of the various stakeholders (users, designers/developers, managers, etc).

B. DEMONSTRATION & EVALUATION
The chosen design science research approach stipulates a
demonstration and evaluation of the artifact. A deductive
research approach was used for the demonstration. The
subsequent evaluation was performed using argumentative-
deductive analysis [33]. In the following, we will first discuss
the demonstration and then the evaluation.

The model we propose claims to be able to explain all
legacy systems. Accordingly, this model should also be able
to represent at least the empirical legacy system properties
found in the literature. In order to provide this proof, we have
projected the properties of Table 4 onto the model, provided
that the model can also explain them (cf. upper section of
Fig. 6). It can be stated here that the model can explain all
legacy system properties from Table 4 with the exception of
the time-related statements (1-4).

In addition to business-technological age, we recall that
age exists as a chronological (time-related) quantity result-
ing from the passage of time, evolution, and emergence
of outdated systems over time. However, the underlying
socio-technological theory is not designed to represent the
temporal dimension. Accordingly, the model is incomplete,
as is the underlying established theory, and the proposed
artifact cannot explain time-related statements in principle.
Time progression can only be estimated in the model. For
example, outdated technologies in the legacy system usually

emerge only after several years or decades. We will return to
this point in the discussion andwill now evaluate the proposed
model via the argumentative-deductive analysis.

Firstly, the abovementioned strategic viewpoint is con-
cerned with changing the company’s strategy and with the
related costs and capabilities of IS. This view primarily
involves managerial roles. A legacy system from a strategic
viewpoint is one whose financial benefit is less than the
cost of operating and maintaining it. Similarly, a legacy is a
system that cannot support a desired business function, thus
preventing an organization from taking advantage of desired
business opportunities.

Secondly, the organizational viewpoint (the view of the
systems designers) is concerned with defining, changing, and
improving an organization, thus, in particular its business
processes. A typical legacy system in this viewpoint is a
system that is ‘‘old, inflexible, expensive, non-portable and
undocumented but indispensable because they support core
business functions’’ [10].

Thirdly, the operational viewpoint (represented by Direct
System Users) focuses on the efficient delivery of services
with an appropriate response time. A legacy in this category
is a system that does, for instance, not meet the demands
mentioned before, thus it is too costly to operate, is hampered
by interruptions, or only provides a poor user interface. If the
security has been compromised or it utilizes hardware or

84604 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

FIGURE 6. Mapping of the legacy system properties found to the model to explain these systems.

software that is not (anymore) in line with the strategy, it also
must be considered legacy.

Lastly, the development perspective deals with the devel-
opment and evolution of legacy systems and includes roles
such as software developers or usability designers. Typical
definitions in this category address the high entropy of the
application, the lack of knowledge and documentation about
the system internals, and the lack of legacy experts [10].

High entropy is a sign of an outdated information system.
However, this property cannot be read directly in the model,
because the degree of abstraction is too high for this. Nev-
ertheless, the model explains the entropy problem indirectly,
because low entropy (typically formulated as clarity, intel-
ligibility, abstraction, or high cohesion and loose coupling)
is postulated in business informatics (which is part of the
Current State of Science and Technology in Fig. 5) as a prop-
erty of well-designed artifacts [96, p. 255f], [97, p. 270ff],
[20, p. 28]. Therefore, the current state of technology implies
low entropy. Furthermore, the more an information system
deviates from these objectives through increased structural,
functional, and technological entropy, the more deprecated it
becomes. This aspect of aging is only implicitly explained
by the model, as the level of abstraction is too high for this;

(low) entropy is not explicitly present as a model element.
Thus, it can be that a single technology is considered outdated
in one scenario and state-of-the-art in another [26]. Accord-
ingly, it is impossible to determine the condition by only
looking at the obsolete system in isolation. A legacy system
assessment must consider the specific context or organization
[12], [23], [67].

In the context of this study, the purpose of the model is to
explain legacy systems and make better decisions regarding
them. Based on the proposed model, we answer and discuss
the research questions below and at the same time demon-
strate the scientific validity of the artifact.
RQ-1: How can the (business-technological) age of infor-

mation systems be explained in general?
Firstly, business-technological age is explained as a signifi-

cant gap between the legacy system and what is needed by the
roles or participants involved; secondly, by the deviation from
the current state of science and technology; and thirdly, the
aforementioned gap (typically documented in the backlog)
must be widening for the legacy system to fall further behind
the needs over time.

Following the model approach, an information system can
satisfy different needs (requirements and technologies) to

VOLUME 12, 2024 84605



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

different degrees. For example, a deprecated system that
perfectly fulfills all business requirements but at the same
time implements deprecated information technology would
therefore only be outdated from an IT perspective but at the
same time be modern from a business perspective.
RQ-2: What are the factors that lead to the aging of IS?
Over time, an information system becomes deprecated to

the extent that it is not adapted to the given requirements.
The dynamics of the business strategy and the business model
derived from it and implemented in the information sys-
tem have a significant influence on aging. In a relatively
stable environment where few requirements arise, evolution
is relatively simple. In an unstable, very dynamic environ-
ment on the other hand, evolution is much more difficult
in order to keep the information system in line with the
business strategy [53]. The risk of emerging legacy systems is
greater in technologically evolving environments. IS may age
more quickly under these circumstances [49]. Finally, we see
change as the primary (if not the only) cause of aging.
Another essential criterion, as mentioned above, for being

able to speak of a legacy system is that it falls further behind
the needs. One reason for this is that business and technical
change requests pile up because the evolution process can-
not keep the associated information system up to date. The
throughput (for instance, due to a lack of personnel, lack of
knowledge) of the evolution process of requirements is too
low.

Accordingly, an insufficient evolution process is to be
understood as a factor for the aging of IS. Conversely,
if there is an excellent evolutionary process, it is difficult for
a legacy system to emerge because the information system
is promptly aligned with new requirements and technologies
without increasing entropy. The previouslymentioned criteria
for legacy systems with a long backlog cannot emerge in this
case. Following Sneed [98, p. 24], it must therefore be true
that an information system becomes outdated to the extent
that it no longer keeps pace with the required changes by the
organization. This describes a situation where the backlog is
growing and requirements are changing or emerging faster
than the rate of development to catch up [61]. A large num-
ber of requirements, meaning a large backlog alone, is not
sufficient to constitute a legacy system since many newly
developed systems often still have a large backlog in their
first early versions. In this context, an increase in the backlog
(which is unlikely to improve) is an essential criterion for
defining and valuating legacy.

As shown above, legacy systems and evolutionary pro-
cesses influence each other. A legacy system is an essential
input (and output) of the evolutionary process and its
properties significantly influence evolution. A system char-
acterized by high entropy, which is difficult to understand,
obviously resists modification even in a well-set evolution-
ary process. We understand the high entropy of a legacy
system as a self-reinforcing factor that contributes to fur-
ther decay. We conclude that the condition of the legacy

system should be considered as another factor contributing to
aging.

In summary, the following statements can be made:
(1) Change is necessary but not sufficient for IS to become

outdated.
(2)The higher the change dynamics of a system’s context or

constituent technology, the higher the risk that it will become
outdated.

(3) The (business-technological) age of an information
system can never be assessed independently of its context.

(4)A poor evolutionary process accelerates the emergence
of a legacy system.

(5) A poor condition of the legacy system contributes to
further deterioration.
RQ-3: Is the lifetime of the product related to obsoles-

cence?
We found that time is necessary for change, as changes

occur over time, rarely overnight. For example, new laws
and regulations, technical innovations, scientific discoveries,
and advanced production processes have been developed or
improved over many years. Revolutions or disruptive events
also occur over time, even if they occur over a shorter time
frame. The dependency between time and change is appar-
ent. Time is a necessary precondition for change. Moreover,
as mentioned before, change is an essential prerequisite for
aging. These statements lead to the following causal chain:
time elapses → changes may occur → changes are not
implemented or implemented unsustainably → the system
ages → high entropy impedes evolution. This system of
relationships should be regarded as a vicious circle, as shown
in Fig. 7. In summary, it can be said that poor engineering
initially impairs maintainability. As a consequence, require-
ments cannot be implemented on time and not at a reasonable
cost, which in turn, causes an increase in poor engineer-
ing. Parnas [5] named these two factors a ‘‘double punch’’
that puts IS out of business over time. This means that IS
increasingly develop resistance to further adaptations to the
ever-changing business requirements (first punch), which in
turn prevents such systems from being adequately adapted to
the requirements placed on them (second punch) [58].

In conclusion, time must be considered as a risk factor for
aging. The more time passes, the greater the probability that
changes will occur to which the legacy system and its evolu-
tionary process are not sufficiently adapted. Consequently ,
it is impossible to infer directly from the chronological to the
business-technological age of those systems. However, it is
also possible that an information system operates in a very
stable context, in which no or only very few changes occur or
the system has been handled with perfect care so that it is not
affected by the aging drivers. This leads to another insight –
time is a necessary variable for aging, but not sufficient on
its own.

This statement is in line with Demeyer’s empirical obser-
vation that legacy systems do not necessarily have to be up in
years if they are not carefully maintained [19, p. 3].

84606 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

FIGURE 7. The vicious circle of legacy systems.

The aging of IS perhaps analogous to that of human
beings – with an unhealthy lifestyle, we age faster biolog-
ically and our medical condition deteriorates quickly. Yet,
in contrast to humans, business-technological age can be
substantially reduced through reengineering measures and
reduction of the backlog requirements. At least theoretically,
there is an opportunity to rejuvenate legacy systems by catch-
ing up and reengineering. However, other factors such as high
costs or lack of management initiatives seem to hamper the
rejuvenation of systems in reality and thus lead to the large
stock of legacy systems mentioned at the beginning of this
paper.
RQ-4: What are the symptoms of legacy systems?
The empirical characteristics attributed to legacy systems

differ significantly, sometimes diametrically, from author to
author. This is presented in Table 4. In our view, legacy
systems are further behind the curve. They are character-
ized by high entropy, stubborn resistance to change, and are
therefore unable to keep pace with change dynamics and
fall increasingly behind the demands of the various roles
involved. Despite this, such systems can be used to govern
daily business and cannot simply be replaced as they are
highly intertwined with the organization they serve.

The symptoms of a legacy system are typically not equally
manifest in all modules but vary depending on the mod-
ule. Their condition typically range from poor to excellent.
Thus, the model explains age as a multi-faceted character-
istic, which is consistent with the thoughts of Bennet and
O’Byrne [1], [21]. Consequently, the presence of an old
system cannot be broken down into an objective and generally
globally valid binary statement [21], [56]. Depending on the
symptoms and their severity, it makes sense to ask to what
extent a legacy system has already emerged [22, p. 32f, p.
179], [21], [60]. If the status of a legacy system is reduced to
a few metrics, the use of balanced scorecards seems to be a
suitable tool [23].

C. DISCUSSION
We have presented a model that can initially explain legacy
systems and their drivers in principle. Although the artifact

presented answers the research questions and fulfills the
objectives of the solution, it cannot provide a holistic model to
explain the time and spatial-related characteristics of legacy
systems. Based on the underlying theory, we pretend in any
case that our IS are timeless. However, this was not the case
here. Time is undoubtedly a factor in the evolution of IS.
Thus, the emergence of a legacy system can only be fully
explained if time is included as an influential variable in
explaining the phenomenon. The 2000 problem, for exam-
ple, can only be explained when time comes into play [53].
To fully describe any phenomenon (and thus also legacy
systems) of reality, the time and space in which the phe-
nomenon occurs must be included [32, p. 95]. Whether time
and even space, the location of an information system, should
be integrated as an additional dimension into formulating the
underlying theory should be discussed in the future. Without
improving the basis for the theory, the dynamics of change
per unit of time, time-to-market, or simply the chronologi-
cal age of a system can only be represented outside themodel,
as shown in Fig. 7, for example.

The attributes ‘old’ on the one hand and ‘deprecated’ on the
other are often used synonymously. Sometimes old is used
to describe deficiencies in terms of quality [16]. However,
we argue that the meanings of these signifiers should be
strictly separated. ‘Old’ is, in our view, an attribute that refers
exclusively to the life span; that is, it is based on a chrono-
logical, time-based reference. In contrast, ‘deprecated’ refers
exclusively to the state or condition of an artifact. The term
‘deprecated’ is correlated with high entropy, a lack of capa-
bilities, and the use of technologies that no longer reflect
the current state of science. This way of looking at things,
in which the time and technical condition are considered
separately from each other, makes it possible to distinguish
between chronological age and the condition of an artifact.
We recommend considering these different terms and mean-
ings to improve scientific rigor.

A coarser level of abstraction based on the main ele-
ments (task, human, and technology) was selected for the
model. Deeper elements, such as data, applications, hardware
and networks are abstracted from the artifact. Consequently,
the mapping performed during the demonstration could not
directly assign some features to their respective sub-elements
but only to the abstraction level above. For example, the
statement, ‘the business data is redundant and inconsistent’
could not be assigned to a business data element directly but
only to the Application System as a whole. Other elements
of interest, such as entropy, redundancy, and architecture are
only implicitly covered by the model. It would be helpful if
the model could be further refined without reducing compre-
hensibility through too much detail.

As described at the outset, business informatics focuses
on the intertwining of business administration and commu-
nications technology. Thus, the scope of the model was
intentionally narrowed. This limitation is also reflected in
the primary factors of aging, namely business manage-
ment and technical requirements. Nevertheless, other factors

VOLUME 12, 2024 84607



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

(e.g., social, or cultural) also influence the aging of IS. Such
influencing factors are, in principle, included in the model
via the human component but are not empirically validated,
as such issues are rarely discussed in the found literature.

Furthermore, the expressions ‘condition,’ ‘business-
technological condition,’ or ‘business-technological status’
are conceivable. Moreover, the terms ‘obsolescence’ and
‘deterioration’ are occasionally used [60], which likewise
refer to this issue. Additionally, other terms may be pos-
sible. Because humans think about concepts, associations,
and images, well-chosen expressions support understanding
and communication [99]. Therefore, to develop a model and
thus an understanding, we recommend further research to
determine which term most accurately describes the proposal
we have developed.

V. CONCLUDING REMARKS AND FUTURE RESEARCH
Today’s new and modern information services usually
become tomorrow’s legacy systems, as adaptations to the
ever-changing world cannot be fully implemented, changes
are often not sustainable, and remedial action is often omit-
ted [1]. Accordingly, we agree with the statement that ‘‘all
technology products become a legacy’’ [64]. Even though the
phenomenon of legacy systems has been known since the
1970s and has been intensively researched since then, there is
still no holistic concept to explain the aspects and dynamics
of such systems. Accordingly, legacy systems are typically
described one-sidedly by their characteristic symptoms, such
as poor documentation, code smells, and high complexity.
The term is often subjectively connoted according to the
intention of the respective author. Finally, each author regards
these systems differently, which in turn complicates compre-
hension, communication and decision-making in relation to
these systems. For instance, knowledge of the characteristics
and dynamics of legacy systems is valuable because it pro-
vides clues and starting points as to where and what measures
need to be taken [61].

To understand legacy systems, we first conducted an exten-
sive literature review and identified empirically observable
phenomena in legacy systems. The key finding is that legacy
systems have fallen behind what is required, which is, for
example, a lack of business capabilities, the use of outdated
programming languages, user interfaces, or storage tech-
nologies often accompanied by long backlogs, high entropy,
as well as documentation deficiencies. Even if reality remains
far too vague here – in our opinion, the following statement
still best summarizes the nature of a legacy system (if it has
to be summarized in one sentence): ‘‘An information system
becomes obsolete to the extent that it no longer keeps pace
with reality’’ [98, p. 24]. Furthermore, we have shown that
changes in business and technology are the root of aging
and that information systems in highly dynamic environments
(which information technology as a constituent technology
for IS typically is) are strongly affected by aging risk. Ulti-
mately, it is the vicious circle of legacy systems that we have

outlined which, as a combination of many factors, leads to the
emergence of such systems.

Moreover, out of the confluence of the known socio-
technical theory and the viewpoint approach, we have
developed a model to explain such systems. On this basis,
we understand legacy systems as aged information sys-
tems that are viewed from different viewpoints. Furthermore,
we found that a legacy system cannot be considered in iso-
lation to explain the underlying legacy phenomenon. Instead,
the associated evolutionary process and the system context
with which the legacy system is strongly wired has to be
considered. This approach provides a viable theoretical basis
for explaining legacy systems. Despite the relevance of time
and space as drivers for the aging of legacy systems, the
model cannot explain these factors because the underlying
theory does not take time and space into account. This issue
should be investigated in further research.

Poor alignment and unsustainable changes cause IS to
age. The question arises as to whether the emergence of a
legacy system can be avoided by (a) constantly implement-
ing all change requirements promptly, (b) through a proper
and quality-assured evolution process, and flanking this (c)
with regular reengineering measures. It should be investi-
gated whether this systematic ‘keeping up-to-date’ approach
(which thus prevents the emergence of a legacy system in the
first place) is cost-efficient and feasible to avoid the legacy
dilemma and the associated negative consequences. In this
case, the total return on capital must be significantly higher.

The literature research has shown that legacy systems are
in many cases viewed as business-critical IS whose fail-
ure results in serious disruptions to the company. It can be
assumed that these business-critical systems are very large
business applications [84] and are disproportionately affected
by the legacy phenomenon. This assumption should be sub-
stantiated by further research in this area in order to better
explain and understand this type of system.

The four viewpoints used (development, operational, orga-
nizational, and strategic) should be used with caution: The
viewpoint approach used clearly shows that an LIS must be
viewed and evaluated from different perspectives. However,
it is unclear which perspectives (in the sense of valid stereo-
types) are particularly suitable for this topic. It is conceivable
that other or further viewpoints (than those mentioned ear-
lier) are required for LIS evaluation. Moreover, we have
assumed the viewpoints to be static. However, the relevant
viewpoints may change over time or vary from organization
to organization. For example, the viewpoints of the software
engineers may shift from inside information system boundary
to outside the organization if a previously self-developed IT
application is replaced by a COTS application. Ultimately,
further research should focus on this issue and work out
which viewpoints (including their changes over time) are
appropriate for LIS evaluation.

In further research, we will combine the concept pro-
posed above to explain legacy systems with methods for their
evaluation (i.e. measuring the age of information systems).

84608 VOLUME 12, 2024



S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

We hope to gain insights into how the legacy stock of orga-
nizations can be determined (through a taxonomy we are
planning for this purpose) and how this can be used to drive
further digitalization.

Finally, we have shown that changes, and consequently the
risk of aging, are inevitable. ‘‘Only by acknowledging change
as a constant in our industry can we successfully negotiate
the challenges we face and ensure our continued survival
in this computer age’’ [6]. In this context, we have shown
with our model that this change and the understanding about
the business-technological age can be understood differently
from various points of view. Ultimately, with the proposed
model, we have shown a way to integrate the previously
disparate and sometimes contradictory statements about LIS
into a consistent model. In this way, this model helps to better
understand the nature of LIS and, consequently, to support
the communication, design and evolution of such systems by
outlining the main reasons for the emergence and decay of
such systems.

REFERENCES
[1] K. Bennett, ‘‘Legacy systems: Coping with success,’’ IEEE Softw., vol. 12,

no. 1, pp. 19–23, Jan. 1995, doi: 10.1109/52.363157.
[2] J. Gauger, M. M. Art, and E. Sondergeld. (2024). Legacy

Systems and Modernization: Core Systems Strategy for Policy
Administration Systems. Accessed: Apr. 9, 2024. [Online]. Available:
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-
services/us-fsi-legacy-systems-and-modernization.pdf

[3] (2024). Texas Department of Information Resources, Legacy Systems
Study Public Report: Assessment and Recommendations. Accessed:
Apr. 9, 2024. [Online]. Available: https://dir.texas.gov/resource-library-
item/legacy-systems-study-public-report

[4] Deloitte GmbH. (2018). Studie Legacy-Modernisierung. Accessed:
Apr. 9, 2024. [Online]. Available: https://www2.deloitte.com/content/dam/
Deloitte/de/Documents/technology/Deloitte_Legacy-Modernisierung_
Studie_2018.pdf

[5] D. L. Parnas, ‘‘Software aging,’’ in Proc. 16th Int. Conf. Softw. Eng.,
Sorrento, Italy, pp. 279–287.

[6] M. M. Lehman, ‘‘Software’s future: Managing evolution,’’ IEEE Softw.,
vol. 15, no. 1, pp. 40–44, Jan. 1998, doi: 10.1109/MS.1998.646878.

[7] A. Alexandrova, L. Rapanotti, and I. Horrocks, ‘‘The legacy problem in
government agencies,’’ in Proc. 16th Annu. Int. Conf. Digit. Government
Res., New York, NY, USA, May 2015, pp. 150–159. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/2757401.2757406

[8] R. N. Charette, ‘‘Dragging government legacy systems out of the
shadows,’’ Computer, vol. 49, no. 9, pp. 114–119, Sep. 2016, doi:
10.1109/MC.2016.289.

[9] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage, ‘‘How
do professionals perceive legacy systems and software modernization?’’
in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 36–47.

[10] A. Alderson and H. Shah, ‘‘Technical opinion: Viewpoints on legacy
systems,’’ Commun. ACM, vol. 42, no. 3, pp. 115–116, Mar. 1999, doi:
10.1145/295685.295722.

[11] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J. Robert, A
Survey of Legacy System Modernization Approaches. Fort Belvoir,
VA, USA: Carnegie Mellon Univ., Software Engineering Institute,
2000. [Online]. Available: https://insights.sei.cmu.edu/documents/
1958/2000_004_001_13673.pdf

[12] A. M’baya, J. Laval, and N. Moalla, ‘‘An assessment conceptual frame-
work for the modernization of legacy systems,’’ in Proc. 11th Int. Conf.
Softw., Knowl., Inf. Manage. Appl. (SKIMA), Aug. 2017, pp. 1–11.

[13] S. M. Hussain, S. N. Bhatti, and M. F. Ur Rasool, ‘‘Legacy system and
ways of its evolution,’’ in Proc. Int. Conf. Commun. Technol. (ComTech),
Apr. 2017, pp. 56–59.

[14] I. Sommerville, Software Engineering, 6th ed. München, Germany: Pear-
son Studium, 2003.

[15] J. Ransom, I. Somerville, and I. Warren, ‘‘A method for assessing legacy
systems for evolution,’’ in Proc. 2nd Euromicro Conf. Softw. Maintenance
Reeng., Florence, Italy, 1998, pp. 128–134.

[16] G. Visaggio, ‘‘Ageing of a data-intensive legacy system: Symptoms and
remedies,’’ J. Softw. Maintenance Evol., Res. Pract., vol. 13, no. 5,
pp. 281–308, Sep. 2001, doi: 10.1002/smr.234.

[17] Catherine, J. D. Trisaktyo, T. Ranas, M. Rasyiid, and M. R. Shihab,
‘‘Embracing agile development principles in an organization using the
legacy system: The case of bank XYZ in Indonesia,’’ in Proc. 6th Int. Conf.
Comput. Eng. Design (ICCED), 2020, pp. 1–5.

[18] K. Liu and B. Sharp, ‘‘A strategic attempt to management of legacy
information systems,’’ in Proc. IEE Colloq. Legacy Inf. Syst.-Barriers Bus.
Process Reeng., 1994, pp. 4/1–4/6.

[19] S. Demeyer, S. Ducasse, and O. Nierstrasz. (2024). Object-oriented
Reengineering Patterns. Accessed: Apr. 21, 2024. [Online]. Available:
http://scg.unibe.ch/download/oorp/

[20] H. M. Sneed and R. Seidl, Softwareevolution: Erhaltung Und Fortschrei-
bung Bestehender Softwaresysteme, 1st ed. Heidelberg, Germany:
Dpunkt.Verlag, 2013.

[21] P. O’Byrne and B. Wu, ‘‘LACE frameworks and technique-identifying
the legacy status of a business information system from the perspectives
of its causes and effects,’’ in Proc. Int. Symp. Princ. Softw. Evol., 2000,
pp. 170–174.

[22] P. O’Byrne, ‘‘An investigation into the causes and effects of legacy status in
a system with a view to assessing both systems currently in use and those
being considered for introduction,’’ Ph.D. dissertation, School Comput.
Sci., Faculty Comput., Digit. Data, Technol. Univ. Dublin, Staffordshire
Univ., Dublin, Ireland, 1999. Accessed: Apr. 9, 2024. [Online]. Available:
https://arrow.tudublin.ie/scschcomoth/7/

[23] B. Y. Alkazemi, M. K. Nour, and A. Q. Meelud, ‘‘Towards a framework
to assess legacy systems,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Oct. 2013, pp. 924–928.

[24] A. R. Hevner, S. T. March, J. Park, and S. Ram, ‘‘Design science in
information systems research,’’ MIS Quart., vol. 28, no. 1, p. 75, 2004,
doi: 10.2307/25148625.

[25] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, ‘‘A design
science research methodology for information systems research,’’ J. Man-
age. Inf. Syst., vol. 24, no. 3, pp. 45–77, Dec. 2007, doi: 10.2753/mis0742-
1222240302.

[26] M. Ramage, ‘‘Global perspectives on legacy systems,’’ in Systems
Engineering for Business Process Change: New Directions:
Collected Papers From the EPSRC Research Programme.
London, U.K.: Springer, 2002, pp. 309–316. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-1-4471-0135-2_19

[27] L. J. Heinrich, A. Heinzl, and R. Riedl,Wirtschaftsinformatik: Einführung
und Grundlegung, 4th ed. Berlin, Germany: Springer, 2011.

[28] M. Taylor, E. Moynihan, and T. Wood-Harper, ‘‘Knowledge for software
maintenance,’’ J. Inf. Technol., vol. 12, no. 2, pp. 155–166, Jun. 1997, doi:
10.1177/026839629701200207.

[29] M. Lind and A. Lauder. (1999). Legacy Systems: Assets or
Liabilities: A Language Action Perspective on Respecting and
Reflecting Negotiated Business Relationships in Information Systems.
School Bus. IT. Accessed: Apr. 9, 2024. [Online]. Available:
https://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-4215

[30] R. A. Teubner, Organisations-und Informationssystemgestaltung: Theo-
retische Grundlagen und Integrierte Methoden. Wiesbaden, Germany:
Deutscher Universitätsverlag, 1999, doi: 10.1007/978-3-322-99957-3.

[31] N.Wiener and E. H. Serr, ‘‘Kybernetik: Regelung und Nachrichtenübertra-
gung in Lebewesen und Maschine,’’ in Proc. 34th Reinbek bei Hamburg.
Hamburg, Germany: Rowohlt-Taschenbuch-Verlag, 1971, p. 166.

[32] G. Ropohl. (5445). Allgemeine Technologie: Eine Systemtheorie
Der Technik. Accessed: Apr. 9, 2024. [Online]. Available:
https://www.ksp.kit.edu/site/books/m/10.5445/KSP/1000011529/

[33] T. Wilde and T. Hess, ‘‘Forschungsmethoden der wirtschaftsinformatik,’’
Wirtschaftsinformatik, vol. 49, no. 4, pp. 280–287, Aug. 2007, doi:
10.1007/s11576-007-0064-z.

[34] J. vom Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plattfaut, and
A. Cleven. (2009). Reconstructing the Giant: On the Importance of
Rigour in Documenting the Literature Search Process. [Online]. Available:
http://www.alexandria.unisg.ch/Publikationen/67910

[35] Y. Levy and T. J. Ellis, ‘‘A systems approach to conduct an effective
literature review in support of information systems research,’’ Informing
Sci., Int. J. Emerg. Transdiscipline, vol. 9, pp. 181–212, Jan. 2006, doi:
10.28945/479.

[36] J. Webster and R. T. Watson, ‘‘Analyzing the past to prepare for the future:
Writing a literature review,’’MIS Quart., vol. 26, no. 2, pp. 13–23, 2002.

[37] H. M. Cooper, ‘‘Organizing knowledge syntheses: A taxonomy of liter-
ature reviews,’’ Knowl. Soc., vol. 1, no. 1, pp. 104–126, Mar. 1988, doi:
10.1007/bf03177550.

VOLUME 12, 2024 84609

http://dx.doi.org/10.1109/52.363157
http://dx.doi.org/10.1109/MS.1998.646878
http://dx.doi.org/10.1109/MC.2016.289
http://dx.doi.org/10.1145/295685.295722
http://dx.doi.org/10.1002/smr.234
http://dx.doi.org/10.2307/25148625
http://dx.doi.org/10.2753/mis0742-1222240302
http://dx.doi.org/10.2753/mis0742-1222240302
http://dx.doi.org/10.1177/026839629701200207
http://dx.doi.org/10.1007/978-3-322-99957-3
http://dx.doi.org/10.1007/s11576-007-0064-z
http://dx.doi.org/10.28945/479
http://dx.doi.org/10.1007/bf03177550


S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

[38] H. W. J. Rittel and M. M. Webber, ‘‘Dilemmas in a general theory
of planning,’’ Policy Sci., vol. 4, no. 2, pp. 155–169, Jun. 1973, doi:
10.1007/bf01405730.

[39] M. M. Lehman, ‘‘Programs, life cycles, and laws of software evo-
lution,’’ Proc. IEEE, vol. 68, no. 9, pp. 1060–1076, Jan. 1980, doi:
10.1109/PROC.1980.11805.

[40] P. Aiken, A. Muntz, and R. Richards, ‘‘A framework for reverse engineer-
ing DoD legacy information systems,’’ in Proc. Work. Conf. Reverse Eng.,
Baltimore, MD, USA, Sep. 1993, pp. 180–191.

[41] R. Nassif and D. Mitchusson, ‘‘Issues and approaches for migra-
tion/cohabitation between legacy and new systems,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, Jun. 1993, pp. 471–474.

[42] E. A. L. Phillips, ‘‘Legacy or liability-the will to change,’’ in IEE Coil-
loquium on Legacy Information System-Barriers to Business Process
Re-Eng. (Digest, No. 1994/246). IET, 1994, p. 112.

[43] W. S. Adolph, ‘‘Cash cow in the tar pit: Reengineering a legacy system,’’
IEEE Softw., vol. 13, no. 3, pp. 41–47, May 1996, doi: 10.1109/52.493019.

[44] J. Bisbal. A Survey of Research Into Legacy System Migration.
Accessed: Apr. 9, 2024. [Online]. Available: https://www.scss.
tcd.ie/publications/tech-reports/reports.97/TCD-CS-1997-01.pdf

[45] J. Bisbal, ‘‘An overview of legacy information system migration,’’ in Proc.
Joint 4th Int. Comput. Sci. Conf. 4th Asia Pacific Softw. Eng. Conf., Hong
Kong, 1997, pp. 529–530.

[46] J. J. Kaasbøll, ‘‘How evolution of information systems may fail: Many
improvements adding up to negative effects,’’ Eur. J. Inf. Syst., vol. 6, no. 3,
pp. 172–180, Sep. 1997, doi: 10.1057/palgrave.ejis.3000264.

[47] N. H. Weiderman, L. M. Northrop, D. B. Smith, S. R. Tilley, and
K. C. Wallnau. (2024). Implications of Distributed Object Technol-
ogy for Reengineering. Accessed: Apr. 9, 2024. [Online]. Available:
https://apps.dtic.mil/sti/tr/pdf/ADA326945.pdf

[48] Y.-G. Kim, ‘‘Improving legacy systems maintainability,’’ Inf.
Syst. Manage., vol. 14, no. 1, pp. 7–11, Jan. 1997, doi: 10.1080/
10580539708907023.

[49] C. Slee and M. Slovin, ‘‘Legacy asset management,’’ Inf. Syst. Manage.,
vol. 14, no. 1, pp. 12–21, Jan. 1997, doi: 10.1080/10580539708907024.

[50] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski,
‘‘Metrics and laws of software evolution-the nineties view,’’ in Proc.
4th Int. Softw. Metrics Symp., Albuquerque, NM, USA, Nov. 1997,
pp. 20–32.

[51] S. Bollig and D. Xiao, ‘‘Throwing off the shackles of a legacy system,’’
Computer, vol. 31, no. 6, pp. 104–106, Jun. 1998, doi: 10.1109/2.683012.

[52] K. H. Bennett, M. Ramage, and M. Munro, ‘‘Decision model for legacy
systems,’’ IEE Proc. Softw., vol. 146, no. 3, p. 153, Jan. 1999, doi:
10.1049/IP-SEN:19990617.

[53] S. Kelly, N. Gibson, C. P. Holland, and B. Light, ‘‘Focus issue on
legacy information systems and business process change: A business
perspective of legacy information systems,’’ in Proc. CAIS, vol. 2, 1999,
pp. 1–27. [Online]. Available: https://aisel.aisnet.org/cais/vol2/iss1/7/, doi:
10.17705/1CAIS.00207.

[54] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, ‘‘Legacy information
systems: Issues and directions,’’ IEEE Softw., vol. 16, no. 5, pp. 103–111,
Sep. 1999, doi: 10.1109/52.795108.

[55] E. Mitleton-Kelly and M.-C. Papaefthimiou, ‘‘Co-evolution and an
enabling infrastructure: A solution to legacy?’’ in Systems Engineer-
ing for Business Process Change: Collected Papers from the EPSRC
Research Programme, P. Henderson, Ed. London, U.K.: Springer, 2000,
pp. 164–181.

[56] M. Ramage and M. Munro, ‘‘It’s not just about old software: A wider view
of legacy systems,’’ in Systems Engineering for Business Process Change:
Collected Papers from the EPSRCResearch Programme, P. Henderson, Ed.
London, U.K.: Springer, 2000, pp. 279–290.

[57] L. Erlikh, ‘‘Leveraging legacy system dollars for e-business,’’ IT Prof.,
vol. 2, no. 3, pp. 17–23, 2000, doi: 10.1109/6294.846201.

[58] A. Lauder and S. Kent, ‘‘Legacy system anti-patterns and a pattern-
oriented migration response,’’ in Systems Engineering for Business
Process Change: Collected Papers from the EPSRC Research
Programme, P. Henderson, Ed. London, U.K.: Springer, 2000,
pp. 239–250.

[59] (2000). Software Maintenance and Evolution: A Roadmap. [Online].
Available: https://dl.acm.org/doi/pdf/10.1145/336512.336534

[60] A. De Lucia, A. R. Fasolino, and E. Pompelle, ‘‘A decisional framework for
legacy system management,’’ in Proc. IEEE Int. Conf. Softw. Maintenance
(ICSM), Florence, Italy, Sep. 2001, pp. 642–651.

[61] A. Lauder and S. Kent, ‘‘More legacy system patterns,’’ in Systems
Engineering for Business Process Change: New Directions, Systems Engi-
neering for Business Process Change: New Directions: Collected Papers
From the EPSRC Research Programme, P. Henderson, Ed. London, U.K.:
Springer, 2002, pp. 225–240.

[62] B. Light, ‘‘An alternative theory of legacy information systems,’’ in Proc.
ECIS, 2003, pp. 1093–1111. Accessed: Apr. 9, 2024. [Online]. Available:
https://aisel.aisnet.org/ecis2003/93/

[63] M. P. Gupta and D. Bhatia, ‘‘Reworking with a legacy financial accounting
system: Lessons from a pharma company,’’ Vikalpa: J. Decis. Makers,
vol. 30, no. 3, pp. 79–92, Jul. 2005, doi: 10.1177/0256090920050307.

[64] A. Dedeke, ‘‘Improving legacy-system sustainability: A systematic
approach,’’ IT Prof., vol. 14, no. 1, pp. 38–43, Jan. 2012, doi:
10.1109/MITP.2012.10.

[65] H. K. A. Bakar and R. Razali, ‘‘A preliminary review of legacy information
systems evaluation models,’’ in Proc. Int. Conf. Res. Innov. Inf. Syst.
(ICRIIS), Kuala Lumpur, Malaysia, Nov. 2013, pp. 314–318.

[66] R. Khadka, A. Saeidi, S. Jansen, J. Hage, andG. P. Haas, ‘‘Migrating a large
scale legacy application to SOA: Challenges and lessons learned,’’ in Proc.
20th Work. Conf. Reverse Eng. (WCRE), Koblenz, Germany, Oct. 2013,
pp. 425–432.

[67] B. Y. Alkazemi, ‘‘A framework to assess legacy software systems,’’
J. Softw., vol. 9, no. 1, pp. 111–115, 2014, doi: 10.4304/jsw.9.1.111-115.

[68] V. Rajlich, ‘‘Software evolution and maintenance,’’ in Future
of Software Engineering Proceedings. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://dl.acm.org/doi/10.1145/2593882.2593893

[69] R. Khadka, P. Shrestha, B. Klein, A. Saeidi, J. Hage, S. Jansen, E. van
Dis, andM. Bruntink, ‘‘Does software modernization deliver what it aimed
for? A post modernization analysis of five software modernization case
studies,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),
Bremen, Germany, Sep. 2015, pp. 477–486.

[70] R. Pérez-Castillo, B. Mas, and M. Pizka, ‘‘Understanding legacy archi-
tecture patterns,’’ in Proc. Int. Conf. Eval. Novel Approaches Softw. Eng.
(ENASE), Apr. 2015, pp. 282–288.

[71] S. Matthiesen and P. Bjørn, ‘‘Why replacing legacy systems is so hard
in global software development,’’ in Proc. 18th ACM Conf. Comput.
Supported Cooperat. Work Social Comput., Vancouver, BC, Canada,
Feb. 2015, pp. 876–890.

[72] T. C. Fanelli, S. C. Simons, and S. Banerjee, ‘‘A systematic framework
for modernizing legacy application systems,’’ in Proc. IEEE 23rd Int.
Conf. Softw. Anal., Evol., Reengineering (SANER), vol. 1, Osaka, Japan,
Mar. 2016, pp. 678–682.

[73] M. Srinivas, G. Ramakrishna, K. R. Rao, and E. S. Babu, ‘‘Analysis of
legacy system in software application development: A comparative sur-
vey,’’ Int. J. Electr. Comput. Eng. (IJECE), vol. 6, no. 1, p. 292, Feb. 2016,
doi: 10.11591/ijece.v6i1.8367.

[74] (2016). Co-Existence of the’Technical Debt’and’Software
Legacy’Concepts. [Online]. Available: https://www.utupub.
fi/bitstream/handle/10024/169404/apsec_tda_2016_paper_6_camera_
ready.pdf?sequence=1

[75] S. Johann, ‘‘Dave Thomas on innovating legacy systems,’’ IEEE Softw.,
vol. 33, no. 2, pp. 105–108, Mar. 2016, doi: 10.1109/MS.2016.38.

[76] J. Crotty and I. Horrocks, ‘‘Managing legacy system costs: A case study of
a meta-assessment model to identify solutions in a large financial services
company,’’ Appl. Comput. Informat., vol. 13, no. 2, pp. 175–183, Jul. 2017,
doi: 10.1016/j.aci.2016.12.001.

[77] H. Huijgens, A. van Deursen, and R. van Solingen, ‘‘Success factors
in managing legacy system evolution,’’ in Proc. Int. Conf. Softw. Syst.
Process, May 2016, pp. 96–105.

[78] B. D. Monaghan and J. M. Bass. (2020). Redefining Legacy: A Tech-
nical Debt Perspective. Accessed: Apr. 9, 2024. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-64148-1_16

[79] M. L. Brodie and M. Stonebraker, Migrating Legacy Systems: Gateways,
Interfaces & the Incremental Approach. San Francisco, CA, USA: Kauf-
mann Publ, 1995.

[80] A. Hunt and D. Thomas, ‘‘Software archaeology,’’ IEEE Softw., vol. 19,
no. 2, pp. 20–22, Jan. 2002, doi: 10.1109/52.991327.

[81] D. Staegemann, M. Volk, C. Daase, and K. Turowski, ‘‘Discussing rela-
tions between dynamic business environments and big data analytics,’’
Complex Syst. Inform. Model. Quart., vol. 23, pp. 58–82, Jul. 2020, doi:
10.7250/csimq.2020-23.05.

[82] P. Vemuri, ‘‘IEEE TENCON–2008 modernizing a legacy system to SOA–
Feature analysis approach,’’ in Proc. TENCON IEEE Region 10 Conf.,
Hyderabad, India, Nov. 2008, pp. 1–6.

84610 VOLUME 12, 2024

http://dx.doi.org/10.1007/bf01405730
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1109/52.493019
http://dx.doi.org/10.1057/palgrave.ejis.3000264
http://dx.doi.org/10.1080/10580539708907023
http://dx.doi.org/10.1080/10580539708907023
http://dx.doi.org/10.1080/10580539708907024
http://dx.doi.org/10.1109/2.683012
http://dx.doi.org/10.1049/IP-SEN:19990617
http://dx.doi.org/10.17705/1CAIS.00207
http://dx.doi.org/10.1109/52.795108
http://dx.doi.org/10.1109/6294.846201
http://dx.doi.org/10.1177/0256090920050307
http://dx.doi.org/10.1109/MITP.2012.10
http://dx.doi.org/10.4304/jsw.9.1.111-115
http://dx.doi.org/10.11591/ijece.v6i1.8367
http://dx.doi.org/10.1109/MS.2016.38
http://dx.doi.org/10.1016/j.aci.2016.12.001
http://dx.doi.org/10.1109/52.991327
http://dx.doi.org/10.7250/csimq.2020-23.05


S. Rosenkranz et al.: Explaining the Business-Technological Age of Legacy Information Systems

[83] Z. Masood, R. Hoda, K. Blincoe, and D. Damian, ‘‘Like, dis-
like, or just do it? How developers approach software development
tasks,’’ Inf. Softw. Technol., vol. 150, Oct. 2022, Art. no. 106963, doi:
10.1016/j.infsof.2022.106963.

[84] D. Dreschel, ‘‘Towards a classification framework for very large business
applications,’’ in GI-Edition Lecture Notes in Informatics Proceedings,
vol. 208. Bonn, Germany: TU Braunschweig, 2012, pp. 273–283.

[85] B. Grabski, S. Günther, S. Herden, L. Krüger, C. Rautenstrauch, and
A. Zwanziger, ‘‘Very large business Applications,’’ Informatik-Spektrum,
vol. 30, no. 4, pp. 259–263, Jun. 2007, doi: 10.1007/s00287-007-0171-7.

[86] B. Paradauskas and A. Laurikaitis, ‘‘Business knowledge extraction
from legacy information systems,’’ Inf. Technol. Control, vol. 35, no. 3,
pp. 214–221, Sep. 2006, doi: 10.5755/j01.itc.35.3.11772.

[87] H.-J. Kung, ‘‘Quantitative method to determine software maintenance life
cycle,’’ in Proc. 20th IEEE Int. Conf. Softw. Maintenance, Sep. 2004,
pp. 232–241.

[88] E. J. Chikofsky and J. H. Cross, ‘‘Reverse engineering and design recovery:
A taxonomy,’’ IEEE Softw., vol. 7, no. 1, pp. 13–17, Jan. 1990, doi:
10.1109/52.43044.

[89] G. Dhillon and M. Caldeira, ‘‘A bumpy road to success (or not): The case
of project genesis at Nevada DMV,’’ Int. J. Inf. Manage., vol. 28, no. 3,
pp. 222–228, Jun. 2008, doi: 10.1016/j.ijinfomgt.2008.02.001.

[90] H. M. Sneed, E. Wolf, and H. Heilmann, Softwaremigration in der
Praxis: Übertragung Alter Softwaresysteme in Eine Moderne Umgebung,
1st ed. Heidelberg, Germany: Dpunkt.verlag, 2010. [Online]. Available:
https://ebookcentral.proquest.com/lib/subhh/detail.action?docID=4347080

[91] Software Engineering Software Product Quality Requirements and Eval-
uation (SQuaRE) Data Quality Model, document ISO/IEC 25012:2008,
Dec. 2008. [Online]. Available: https://www.iso.org/standard/35736.html

[92] Systems and Software Engineering Systems and Software Quality Require-
ments and Evaluation (SQuaRE) System and Software Quality Models,
document 25010:2011, ISO/IEC 25010:2011, Mar. 2011. [Online]. Avail-
able: https://www.iso.org/standard/35733.html

[93] G. Sagers, K. Ball, B. Hosack, D. Twitchell, and D. Wallace, ‘‘The
mainframe is dead. Long live the mainframe!’’ AIS Trans. Enterprise
Syst., vol. 2, no. 1, pp. 4–10, 2013. [Online]. Available: https://www.aes-
journal.com/index.php/ais-tes/article/view/6

[94] S. Vesić and D. Laković, ‘‘A framework for evaluating legacy systems—
A case study,’’ Kultura Polisa, vol. 20, no. 1, pp. 32–50, Apr. 2023, doi:
10.51738/kpolisa2023.20.1r.32vl.

[95] G. Midgley, ‘‘The sacred and profane in critical systems thinking,’’ Syst.
Pract., vol. 5, no. 1, pp. 5–16, Feb. 1992, doi: 10.1007/bf01060044.

[96] C. Rautenstrauch and T. Schulze, Informatik Für Wirtschaftswis-
senschaftler und Wirtschaftsinformatiker. Berlin, Germany: Springer,
2003.

[97] H. R. Hansen and G. Neumann,Wirtschaftsinformatik 1: Grundlagen und
Anwendungen, 10th ed. Stuttgart, Germany: Lucius & Lucius, 2009.

[98] H. M. Sneed, Softwarewartung Und-Wiederverwendung. Köln, Germany:
Müller, 1991.

[99] J. Schelp, Ed., Integration, Informationslogistik und Architektur:
DW 2006; 21. 22.09.2006 in Friedrichshafen. Bonn, Germany:
Gesellschaft Für Informatik, 2006. [Online]. Available: http://subs.
emis.de/LNI/Proceedings/Proceedings90.html

SEBASTIAN ROSENKRANZ was born in Hal-
berstadt, Saxony-Anhalt, Germany, in 1979.
He received the Diploma degree in business
informatics from Otto von Guericke Universität
Magdeburg (OVGU), Saxony-Anhalt, in 2007,
where he is currently pursuing the Ph.D. degree.

In 2007, he experienced his first practical and
scientific contact with legacy systems as a Student
in the context of his Diploma thesis at Volkswagen
AG. Since then, he has worked on legacy systems

in various roles in this company as a Business Analyst, a Tester, and a
Requirements Engineer. In 2012, he was a Product Owner, responsible for
the information system that provides software updates to the global fleet,
and working on the replacement of a legacy product data management
system. In addition to his practical work as a Product Owner, he has also
been working scientifically on legacy systems, focusing on the legacy
phenomenon in companies.

DANIEL STAEGEMANN was born in Berlin,
in 1989. He received the master’s degree in com-
puter science from the Technical University Berlin
(TUB), in 2017. He is currently pursuing the Ph.D.
degree with Otto von Guericke University Magde-
burg (OVGU).

Since 2018, he has been a Scientific Researcher.
During this time, he has published over 70 papers
in prestigious outlets, such as the Americas Con-
ference on Information Systems (AMCIS), the

Pacific Asia Conference on Information Systems (PACIS), the International
Conference on Design Science Research in Information Systems and Tech-
nology (DESRIST), the International Conference on Business Information
Systems (BIS), the Hawaii International Conference on System Sciences
(HICSS), the Journal of Big Data, and IEEEACCESS. Besides being an author
and a speaker at conferences, as well as a mini-track and workshop chair,
he also regularly acts as a reviewer. His research interests include big data
and the corresponding quality assurance, but it also encompasses all other
related topics.

MATTHIAS VOLK was born in 1991. He received
the master’s degree in business informatics
from Otto von Guericke University Magdeburg
(OVGU), in 2016, and the Ph.D. degree in engi-
neering, in 2022, with a focus on decision support
for the technology selection in big data projects.

After receiving the master’s degree, he contin-
ued his work as a Scientific Researcher at OVGU,
where he became a Research Coordinator and
the Operational Head of the Very Large Business

Application Laboratory (VLBA Lab), in 2020. After the Ph.D. degree,
he entered the industry while continuing his scientific work as an Associate
Researcher. During his time at the OVGU, he published over 60 papers in
prestigious outlets, such as the Americas Conference on Information Sys-
tems (AMCIS), Pacific Asia Conference on Information Systems (PACIS),
International Conference on Design Science Research in Information Sys-
tems, and Technology (DESRIST), International Conference on Business
Information Systems (BIS), Hawaii International Conference on System
Sciences (HICSS), and IEEE ACCESS. Besides being an author and a speaker
at conferences and a mini-track and workshop chair, he regularly acts as a
reviewer. His research interests include big data, data-intensive systems, and
decision support systems, but it also encompasses all other related topics.

KLAUS TUROWSKIwas born in 1966. He received
the degree in business and engineering from the
University of Karlsruhe, the Ph.D. degree from
the Institute for Business Informatics, University
of Münster, and the Habilitated degree in business
informatics from the Faculty of Computer Science,
Otto von Guericke University Magdeburg.

In 2000, he deputized the Chair of Business
Informatics, University of the Federal Armed
Forces München. In 2001, he headed the Chair

of Business Informatics and Systems Engineering, University of Augsburg.
Since 2011, he has been heading the Chair of Business Informatics (AG
WI), Very Large Business Applications Laboratory (VLBA Lab), Otto von
Guericke University Magdeburg, and the world’s largest SAP University
Competence Center (SAP UCC Magdeburg). In addition, he was a Guest
Lecturer at several universities around the world and a Lecturer with the
Universities of Darmstadt and Konstanz. He was a (co-) organizer of a
multiplicity of national and international scientific congresses and more than
30 workshops and acted as a member of more than 130 program committees
and expert groups. In the context of his university activities and as an
independent consultant, he gained practical experience in the industry.

VOLUME 12, 2024 84611

http://dx.doi.org/10.1016/j.infsof.2022.106963
http://dx.doi.org/10.1007/s00287-007-0171-7
http://dx.doi.org/10.5755/j01.itc.35.3.11772
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1016/j.ijinfomgt.2008.02.001
http://dx.doi.org/10.51738/kpolisa2023.20.1r.32vl
http://dx.doi.org/10.1007/bf01060044

