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ABSTRACT Object recognition along with classification are necessary for many applications, such
as surveillance systems, car plate recognition, traffic monitoring, and face detection. Unlike existing
approaches, ours incorporates a wide range of important factors to improve recognition precision. The
primary phase in the image accumulating process is preprocessing, when semantic segmentation proves
its usefulness by accurately defining the physical borders of specific objects inside an image in addition
to recognizing them. This paper presents a novel approach to accurate object recognition. Segmentation
incorporates previously identified homologous and related groups after employing the K-means clustering
technique to group analogous colors and spatial patterns. Convolutional Neural Network (CNN) technology
is ultimately used to identify objects in different environmental circumstances. Performance metrics like as
F1 Score=0.948, Precision = 0.968, and Recall=0.932 for MSRC and F1 Score=0.921, Precision = 0.951,
and Recall=0.891 for Caltech 101 and F1 Score=0.847, Precision = 0.879, and Recall=0.827 over Pascal
Voc 2012 demonstrate the efficiency of our strategy. The efficacy of the suggested method is evaluated
using multiple benchmark datasets, MSRC-v2, Caltech 101 and Pascal Voc 2012, yielding recognition
accuracies of 92.25%, 91.91% and 93.50% respectively, when tested against the Microsoft Research
Cambridge (MSRC), California Institute of Technology 101 Object Categories (Caltech 101) and Pascal
Voc 2012 datasets.

INDEX TERMS Clustering, machine learning, segmentation, feature fusion, object recognition, convolu-
tional neural network.

I. INTRODUCTION
Object detection and recognition is an emerging and quickly
rising topic within the range of image processing and com-
puter vision. An image can be analyzed easily and rapidly by
a human. Humans are able to understand images and gather
all pertinent information from them with only one glance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo .

A human being is capable of controlling a considerable
amount of visual input at once since their brains are incredibly
complex processing units. In order to help machines, learn
to recognize and comprehend visual information, it centers
around the identification and localization of objects inside
images or video streams. Object recognition has piqued the
interest of scholars over the last decade, who are now delv-
ing into and discovering various facets of object detection
and recognition problems in an extensive range of fields,

84984

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-0817-5775
https://orcid.org/0009-0000-8421-8477
https://orcid.org/0000-0001-7282-2503


A. Naseer et al.: CNN-Based Object Detection via Segmentation Capabilities

including but not limited to robotics [1], surveillance [2],
agriculture [3], medicine [4], food industry [5], vehicle detec-
tion [6] and facial feature detection [7], [8].
Despite significant contributions to the discipline, there are

still disagreements concerning aptly identifying the object of
interest. The look, form, and size of the objects are influ-
enced by a variety of circumstances, such as bright occlusion,
viewing distances, and backdrop components, making the
object identification and recognition task more difficult [9].
The goal of detection is to separate the object from its
surroundings. Recognition is concerned with categorizing
the object into one of the predetermined categories. It is a
method of pinpointing a certain object in a digital image or
video [10]. The ultimate objective of segmentation is to make
the image’s description more understandable by transform-
ing it into something more appropriate and intelligible [11].
Image segmentation is commonly used to recognize bound-
aries as well as objects in images (such as lines, curves,
and so on). The syntheses of object detection [12], recog-
nition [13], and segmentation [14] have been implemented
to attain accuracy [15]. In this research study, we discuss
a five-step procedure. Firstly, images from the considered
dataset undergo image scaling and noise removal during the
pre-processing stage. Following that, the K-mean clustering
technique [16] is used to group identical colors and regions.
Second, Segmentation is carried out through the integration
of formerly produced clusters that appear to be similar and
related. As we know that a feature that is made up of multiple
feature vectors [17] depicts an object, and feature extraction
is performed. This feature vector is used to identify and
categorize objects. Finally, this study covers the strategy and
parameters used for training convolutional neural networks
(CNNs) on a variety of real-world objects for accurate and
effective object recognition. The implementation is shown on
the openly available datasetMSRC-v2. The dataset has a total
of 591 images of 213 × 320 and 15 classes of distinct real-
world objects, including cow, sheep, duck, car, plane, horse,
book, flower and tree, Sign boards, Road, Person, Chair, etc.

In this research, we present combinatorial segmentation
technology is embodied in the combination of region-based
segmentation with K-means clustering. By merging these
two strategies, we take use of their respective advantages:
K-means clustering effectively divides the image into groups
of comparable pixels, and region-based segmentation offers
a structure for integrating previous understanding of the
organization and connections within the image. We leverage
the power of neural networks by collaboratively bringing
together diverse features, allowing the seamless identification
of images through an encompassed feature selection. The
algorithm at the core of our innovation is thoroughly designed
to capture dynamic attributes by identifying essential key
points of the objects, facilitating subsequent feature extrac-
tion.We rely on the ability of Convolutional Neural Networks
(CNN), utilizing its impressive capabilities to accomplish
our recognition goals, for the differentiation of objects of
particular interest.

The major contributions of our proposed object detection
and recognition system are as follows:.

• We used k-mean clustering to form the different clusters
based on the different colors.

• To enable clusters more clear, we apply region-based
segmentation on the extracted colors.

• We used a combination of different feature extractors to
find out the important features to detect the objects.

• To validate our model’s capability to recognize objects
of variable images, we experimented our proposed
methodology on three different datasets.

The article’s remaining portion is organized as follows.:
Section II describes prior research conducted by numerous
researchers using a variety of methodologies; Section III
delves into the detailed coverage of the strategy and
model architecture of the recommended method; Section IV
describes the outcomes of the experiments, information
about the used dataset, and analyses of existing approaches;
Section V explores the research questions raised by the find-
ings; and Section VI concludes.

II. LITERATURE REVIEW
Conventional approaches have been used by numerous schol-
ars to examine object detection and categorization. These
traditional systems compute a variety of characteristics to cat-
egorize images and identify objects. A wide range of object
detection and recognition techniques have been put to use by
numerous researchers.

A. OBJECT SEGMENTATION
Object segmentation, which is the act of applying labels
or masks to divide an image into discrete pixel areas that
correspond to particular objects, is a crucial aspect of image
processing. That being said, despite these developments,
object segmentation still faces some inherent difficulties and
constraints, especially in situations with complex and detailed
backdrops.

Liu et al. [23] provided a framework that incorporates
novel features and methodologies to improve the accuracy
and robustness of the segmentation process, especially in the
setting of complex backdrops, in order to solve the difficulties
and constraints in object segmentation. Their framework’s
use of multiscale contrast, which enables the identification
of notable contrast shifts across many spatial scales, is one
of its main contributions. This feature allows the framework
to recognize important elements in an image even when
there are complicated backdrops present. Their framework’s
use of multiscale contrast, which enables the detection of
notable contrast shifts across many spatial scales, is one of
its main contributions. This feature allows the framework
to recognize important elements in an image even when
there are complicated backdrops present. The authors also
presented a histogram that shows an object’s perimeter aswell
as its center. The spatial distribution of color information is
taken into consideration by this histogram, which helps the
framework to recognize and utilize the contextual interactions
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between pixels. This color-based spatial distribution is used
into the segmentation process, which improves its depend-
ability and ability to distinguish objects. Abrar et al. [58]
employed Random Forest approach along with the region
based segmentation on outdoor datasets to detect the objects
and got 86.1% accuracy. Bisma and Ahmad [47] used the
Region based segmentation along with the Random forest
classifier to recognize the object on distinct dataset UIUC
and got 89.45% accuracy. An approach for unsupervised
image segmentation that incorporates low-level region merg-
ing and local pixel clustering was put out by Kachouri et al.
in [27]. The suggested method organizes pixels into clus-
ters based on local similarity. Then uses low-level feature
similarity between neighboring clusters to arrange clusters
into coherent segments. Evaluations and research on several
benchmark datasets determine that the process provides com-
petitive performance with other unsupervised segmentation
methods while being computationally efficient. The research
gives a thorough analysis of unsupervised image segmenta-
tion methods, showing the advantages and disadvantages of
various strategies. Lin e al. [29] represented an approach to
image segmentation by improving the spanning trees with
fractional differential and canny edge detectors.

B. OBJECT DETECTION
Object detection is a computer vision task that involves iden-
tifying and localizing objects of interest within an image or a
video. The objective is to accurately identify and categorize
objects into predetermined categories in addition to detecting
their presence.

Object localization and classification of objects are the two
steps that most object detection systems use. The method
locates the areas of the image that could contain objects dur-
ing the localization stage. Creating a collection of bounding
boxes, also known as regions of interest (ROI), that encircle
the objects is a common way to do this. Deep learning tech-
niques [18] may produce incredibly precise and dependable
results, they are frequently used in image classification. Tasks
that took a lot of time for people to do may now be automated
because to these techniques.

Deep learning was used in this work [19] to identify and
recognize objects. In recent times, deep convolutional neural
networks have proven to outperform humans in tests involv-
ing object identification and recognition. A multimodal deep
learning feature-based method for RGB-D object recognition
was presented by Xu et al. [20]. There are two stages to this
method: detect the object at the regional level and evaluating
the objects. The datasets SUN RGB-D and NYU Depth v2
were utilized.

Three components make up the technique that
Girshick et al. [21] suggested for object recognition and
semantic segmentation. Regardless of the object type, region
suggestions are produced by the first module. A sizable
convolutional neural network is used in the second module
to extract feature vectors from every area. A collection of
linear SVMs with class definitions are used in the third

module. The research yielded noteworthy enhancements in
mean Average Precision (mAP), exhibiting a roughly 30%
rise in comparison to the preceding cutting-edge results on
the PASCALVOC dataset. Amethod that integrates real-time
object identification with contextual comprehension was pre-
sented by Jeonge et al. [22]. Their method efficiently detects
and recognizes items by using Deep Neural Networks (DNN)
with different parameters.

In order to detect objects more quickly, Girshick et al. [24]
added multitasking training and multidimensional training
alongside their earlier research [25] on region-relevant pool-
ing. Due to the thorough nature of its operation in each image
region, region of interest pooling is computationally expen-
sive. Although the approach processes each image region in
detail, there is a significant computational cost associated
with it, mainly because of the usage of region of interest
pooling. This raises scalability issues and highlights the need
for more research to figure out how well the strategy works
with large data sets and images of high resolution. a region-
proposal network-based approach is proposed in [26], which
employs a completely convoluted network for concurrent
identification and categorization. Ouadiay et al. [28] present a
complete procedure for object detection and posture approx-
imation by drawing bounding boxes that contain the object
being pursued and its position. The research’s main accom-
plishment is the generation of bounding boxes on training
images and during the testing phase, locating each object in
the image. Additionally, each object in the scene has its own
set of posture coordinates.

Ahmed et al.’s work [33] used a hybrid strategy that
included the DBSCAN and k-means algorithms to segment
the object. They also applied the Hough transform to pre-
cisely determine the location and angle of every item in
the surroundings. A genetic algorithm was used to iden-
tify the items that were discovered. It is important to note
that although this segmentation technique has proven to be
resilient in a variety of datasets and scenarios with differ-
ing degrees of complexity, there are certain factors to take
into account. In particular, the Hough transform may be
prone to noise or changes in object morphologies despite
being incredibly efficient in object localization and orien-
tation. In [34], Guan et al. developed a rapid RCNN and
contextual feature-based region average pooling system for
object recognition. An innovative deep learning and tradi-
tional features-based object recognition system that is used
for machine inspection were introduced by Hussain et al.
in [35]. ADNN is utilized in the suggested approach to extract
high-level features, and a collection of traditional features,
such as texture, color, and form, are used to capture low-level
data.

III. THE PROPOSED OBJECT DETECTION AND
RECOGNITION SYSTEM
In this article, we proposed an effective object detection
and recognition model We elaborate on our object detec-
tion system in the following sections of the intended system
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FIGURE 1. Block diagram of the proposed object detection and recognition system.

methodology: (1) pre-processing; First of all, all the images
are pre-processed. (2) clustering and segmentation; These
pre-processed images are segmented where each pixel was
assigned a unique label to extract uniform regions from the
images. (3) feature extraction; spatial features are extracted
using different descriptors (4) feature fusion; Extracted
features are than combined to get more important infor-
mation and (5) object detection; at last, on the basis of
extracted features objects are detected and recognized. All of
which are demonstrated in the accompanying visualization.
Fig. 1 displays an overview at a glance of the proposed
model.

A. PRE-PROCESSING
Image preprocessing is the most basic level of abstraction
possible [36]. The process of preprocessing increases the
intensity of the image by removing or increasing undesir-
able elements for further processing [37]. We have applied
sharpening filters and contrast enhancement as additional
image processing techniques to enhance Figure 2’s visual
quality. An image must be convolved [38] with a Gaus-
sian kernel in order to be preprocessed using a Gaussian
filter. The amount of smoothing applied to the image
depends on the filter size, with larger kernel sizes producing
more smoothing. Colored images [39] composed of three
primary colors (Red, Green, and Blue) pass through the
Gaussian filter to remove noise and enhance the image’s
quality [40]. In this article, a Gaussian filter is used to even
the image and eliminate other undesirable features of the
image.

Gu (u, v) =
1

2πσuσv
e

−[(u−µu)
2
+(v−µv)

2]
2σuσv (1)

where u and v are the horizontal and vertical axis distances
from the center, respectively while µ = mean and σ = stan-
dard deviation. Figure 2 depicts the scaled resulting images
after applying the filter.

FIGURE 2. Contrast level enhancement images (a) Original (b) filtered by
Gaussian (c) Scaled images.

B. SEGMENTATION
To reduce the computational complexity of the model,
we applied semantic segmentation to the images before pass-
ing it to the CNN algorithm. For this purpose, we applied the
combination segmentation techniques.

1) K-MEAN CLUSTERING
After refining the images in a preprocessing step, objects
that are similar based on region [41], color [42], and inten-
sity [43] are considered. The K-means technique is employed
to group elements of a dataset based on their similarity [44].
The k-mean algorithm is used to cluster homogeneous color
regions, and it only requires the number of clusters k at the
start, with no other prior knowledge required [44]. If all three
values are 255, the color is white; if all three values are muted
or zero, the color is black. As a result, the combination of
these three will provide us with a certain pixel color shade.
Because each integer is an 8-bit number, the values range
from 0-255.K-means clustering finds the similarities between
objects by using Euclidean distance (See Eq.2).

Dis =

√
[(a2 − a1)2 + (b2 − b1)2 (2)
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FIGURE 3. Representation of clusters in different images.

where Dis represents the distance between two data points a
and b respectively. In K-mean, each cluster has a centroid.
Initially, random centroids from each cluster are chosen, and
each object’s Euclidean distance from the cluster centroid
is determined. As a result, the object will join the closest
cluster [45]. When an object joins a cluster, a new centroid
is computed for this cluster by taking the mean and the
process will be repeated until all of the objects in the same
cluster remain. K-means clustering has been applied to the
mentioned dataset and Figure. 3 presents some examples of
the resultant images.

2) REGION-BASED SEGMENTATION
Image segmentation has an extensive spectrum of applica-
tions and has been used with many different kinds of images
as well as in practically every related area of image pro-
cessing. Detecting objects and classifying multi-class images
are two meticulously performed tasks that can be consider-
ably enhanced by working on them concurrently and feeding
knowledge from one to the other. If a region is linked to an
object, the class label assigned to that object is limited to
the foreground (for example, a ‘‘car’’ object cannot include
a ‘‘sky’’ region). The similarities between neighboring pix-
els [46] are observed using region-based segmentation. Pixels
with similar characteristics [47] will form a distinct region.
In the paper [48] adjacent pixels in an image are compared
to reference intensity values for the region at each pixel. For
regions with homogeneous grey levels [49], we use similarity
measures such as grey level differences. We employ connec-
tivity to avoid connecting distinct areas of the image. If the
difference is less than or equal to the difference threshold
(see Eq. 3), the adjacent pixel is selected. Figure. 4 displays
segmentation on earlier identified clusters.∣∣I [x (i)] −

[
x (j)

]∣∣ < Thresh (3)

C. FEATURE EXTRACTION
In this section, we extract the distinctive properties from a
variety of segmented objects. Different methods for extract-
ing features from deep and machine learning are addressed
and expanded. Then, all of these characteristics are combined
to successfully identify the objects in the illustrations. Its
primary goal is to reduce the complexity by concentrating

FIGURE 4. Resultant images (a) Original images (b) Ground Truth
(c) Clustered images (d) Segmented images.

on the most important details and omitting those that are
superfluous or irrelevant to understanding. It uses a feature
vector to represent the concentrated part of an image [50].
Consequently, this methodology makes object recognition
simpler. In this study, we used diverse feature extractors i.e.
SIFT, KAZE, and BRISK to extract the features of the object
of interest.

1) SCALE INVARIANCE FEATURE TRANSFORM(SIFT)
SIFT to extract the important features of an object of interest.
SIFT (Scale Invariance Feature Transform) is an algorithm
that detects and describes [51] the local feature of an object.
These features consist of curves and lines, corners, bor-
ders, points, blobs [52], patterns [53], designs [54], and
surfaces [55]. This algorithm is resistant to changes in scale
and rotation and more resistant to changes in brightness [56],
lighting [57], and viewpoint [58]. Feature vectors indicate the
physical dimensions of centroids [59] and the cluster for each
object is assigned using Euclidian distance. SIFT generated
the set of image features using the following points. The
original image is convolved with Gaussian blur to get images
over multiple scales and locations using Eq. (4) and Eq. (5).

D (k, l, σ ) = [(Gn (m, n, pσ) − Gn (m, n, σ )) ∗ H (k, l)]

(4)

G (m, n, σ ) =
1

2πσ 2 e
−(x2 + y2)

2σ 2 (5)

where H (k, l) is an input image, m, and n are the distances
from points k and l, respectively, and is the scale of the Gaus-
sian. Following the fitting of a model to determine scale and
location, key points are chosen based on stability. SIFT [60]
regulates a direction for each key point with the intention
of defining a feature vector [61] for that key point; a key
point has an orientation to hold robustness against rotation
variations. Eq. (6) and Eq. (7) showed gradient magnitude
mag (k, l) and gradient rotation (k, l) are calculated [62]
around collected key points.

mag (k, l) =

√
(Hk,l − Hk+1,l)2 + (Hl,k − Hk,l+1)2 (6)

Rt (k, l) = atan2[
(
Hk,l − Hk+1,l

)
,
(
Hk,l+1 − Hm,n

)
(7)
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FIGURE 5. Local features extracted through SIFT.

FIGURE 6. Feature points done by utilization of BRISK.

2) BINARY ROBUST INVARIANT SALEABLE KEY
POINT(BRISK)
BRISK is a binary robust invariant scalable key point
approach designed especially for real-time applications [63].
The BRISK descriptor is a feature extraction approach that,
unlike BRIEF or ORB, has a preset sample pattern. Instead
of selecting pixels at random, BRISK trials these pixels
in a specified way utilizing concentric rings [64]. Each
sampling point corresponds to a pixel, and a small patch
surrounding that pixel is considered. Prior to running the
procedure, the patch is smoothed with Gaussian to reduce
noise and improve the robustness of the descriptor [65]. The
BRISK algorithm employs the AGAST algorithm to detect
corners by constructing a scale-space pyramid of octaves
and intra-octaves [66]. In order to reduce redundancy, the
FAST score is then calculated for each scale space [67].
By specifying the local gradient for each corner, the BRISK
descriptor stores variation [68] and direction invariance [69].
For luminance invariance [70], it evaluates the degree of
brightness to obtain results, compares pixel-to-pixel inten-
sity, and generates a string of binary characters [71] of the
descriptor. Figure. 6 displays the extracted features using
BRISK.

3) KANADE-LUCAS-TOMASI FEATURES(KAZE)
KAZE (Kanade-Lucas-Tomasi Features) is a standard feature
extraction approach that is used for image analysis applica-
tions like image matching [72], object recognition, and image
retrieval [73]. It is a refined version of the well-known Scale-
Invariant Feature Transform (SIFT) technique and improves
on its predecessor in several ways [74]. KAZE detects and
describes key points or points of interest in images. These
key points correlate to certain regions of the image that can
be identified and matched across images [75]. The method is
suitable for a variety of computer vision applications since
it is robust to changes in magnitude, rotation, and lumi-
nance [32]. The classic nonlinear diffusion formula is shown

FIGURE 7. Detected and extracted features by KAZE.

in Equation (8).

∂U
∂t

= dv(c (a, b, t) , ∇U (8)

where dv is divergence,∇ is the gradient operator, c is known
as the conductivity function [76] and U is the intensity of
the image [77]. The parameter ‘‘c’’ is determined by the
local image differential structure and can be either a scalar
or a tensor. The scale parameter [78] is time t, and bigger
values result in simpler visual representations. Fig. 7 shows
the results of KAZE features.

D. FEATURE FUSION
In this section, independently computed features i.e. SIFT
features (Fsift), KAZE features (Fkaze), and BRISK
features(Fbrisk) independently are fused in this section.
The feature vectors are normalized prior to fusion to ensure
the uniformity of the merged feature vector. After normaliza-
tion [79], a fully fused feature vector is created by fusing
together the SIFT, KAZE, and BRISK features as follows
Eq. (9).

Ffused = Fsift + Fkaze + Fbrisk (9)

For optimal use of these feature extraction [80] methods’
contrasting capabilities, SIFT [81], KAZE [82], and BRISK
features [83] are directly encompassed. The aim of this
fusion strategy [84] is to combine the distinct data that each
algorithm captures to provide a more robust and complete
image. By adding complementing data, the fusion approach
is supposed to increase the feature set’s discriminative ability.
The fused features may capture a greater variety of visual
patterns and variations by integrating the capabilities of many
algorithms, which improves their discriminative power to
discriminate between various objects or classes.

IV. OBJECT DETECTION AND CLASSIFICATION
A specific type of artificial neural network created especially
for the analysis of visual data [85] is the convolutional neural
network (CNN). It is frequently employed.in tasks including
object identification and image categorization. By dividing
the datasets into 70% for training and 30% for testing, a thor-
ough assessment of the CNNmodels was made possible. The
design of CNNs and the significance of the convolution func-
tion [86], which enables the extraction of useful features from
the image and creates a distinctive representation of each pat-
tern in the image, are the two most crucial factors in how well

VOLUME 12, 2024 84989



A. Naseer et al.: CNN-Based Object Detection via Segmentation Capabilities

FIGURE 8. The architecture of 1-D CNN to object recognition.

CNNs perform [87]. Additionally, the last layers will make
it possible to extract global properties and combine them
with extracted local features to produce actual predictions.
In part to its ability to gather and understand information from
images, CNN offers better classification accuracy [88] than
other deep-learning techniques. A limited degree of bias and
weights are also used by CNN to attain excellent classifica-
tion accuracy. In order to effectively categorize the objects,
the key features retrieved using the techniques mentioned
above are fed into a convolution neural network (CNN) [89].
TheMSRC-V2 dataset’s acquired attribute set is organized as
591∗536 and used as a CNN input in our suggested 1-D CNN
model. The number of images in this particular scenario is
591, whereas the feature vectors are represented by 536. The
proposed work’s representation of a 1-D CNN structure [90]
is shown in Fig. 8. Three convoluted layers, three pooling
layers, and one fully connected layer make up the proposed
CNN model [91]. A fully connected layer used by CNN to
predict an accurate class of an object from several classes
is the end result. In the first convolution layer, Conv1, the
32 1 × 7-sized kernels convolution with the input matrix.
A matrix of 591∗536∗32 is created as a result. Calculated as
(48), the convolution of the matrix on the convolution layer
is as follows:

Conv(x+1)
y (a, b) = ReLU (c) (10)

ReLU (c) =

∑u

i=1
�(a, (b−1+

u+ 1
2

))wxy (i) + αxy

(11)

where Conv(x+1)
y (a, b) generates the coordinates’ convolu-

tion results (a, b) of the x + 1 layer with the yth convolution
map.� is the former level and u is the filter size [92]. The yth
convolution filter for the xth layer is designated as wxy .

The bias value for the yth layer is represented by αxy .
The function of activation ReLU is employed, which is the

weights from the previous layer added together and sent to the

subsequent layer [93]. The pooling layer Pool 1 is the second
layer. By using 1×2 max-pooling, the output generated at the
first convolution layer Conv1 is sampled at each layer down to
amatrix size of 591∗ 265 ∗ 32. By choosing the greatest value,
a 1×2 slidingwindow is applied to the output of the preceding
convolution layer in the pooling layer. As a result, [94] can be
used to represent the pooling results of the (x + 1) th layer,
y kernel, g row, and h column.

Pool(x+1)
y (g, h) = max(Conv(x)y

(
g, ( (h− 1)∗ (u+ v

)
))

(12)

where z is the size of the poolingwindow and 1≤ u≤ v equals
v. Using the same procedure for Conv2, a second convolution
layer size of 1 × 6, 64 convolution kernels are used. The
second and third pooling layers’ employ 1×2max-pooling in
a similarmanner. The outputmatrix size produced by the third
pooling layer is 591 by 63 by 128 [95]. Ultimately, a layer that
is completely connected is produced as:

FC(n+1)
m = ReLU (

∑
x
gxnw

n
mx + αnm) (13)

where FC is fully connected , wnmx is the matrix with weight
values starting at node an of layer n and going all theway up to
node m of layer (n + 1) in the graph. gxn denotes the contents
of the xth node at layer n [96]. Two convolutional layers with
max pooling, a flattening layer, and two fully linked (dense)
layers compose the CNN architecture. Softmax activation
is implemented in the output layer to perform multiclass
classification [97].
our research aimed to determine if the suggested 1-D CNN

model architecture is useful for object recognition as well
as to assess the performance of CNN models on particular
datasets. Although we are aware of the existence of other
sophisticated object detection algorithms, the examination
and assessment of CNN models is the main focus of our
research. The simplicity of the architectural depiction should
not be interpreted as a sign that the experiments are not
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TABLE 1. Training/ testing details of used datasets.

FIGURE 9. Resultant images after object detection and classification.

legitimate or real. Thorough testing and experimentation,
including dataset training and testing, performance metrics
analysis, and comparison with other methods, are used to
assess the efficacy of the suggested design. Better interpreta-
tion and comprehension of the model’s components and their
contributions to overall performance are made possible by the
architecture’s simplicity.

Despite its visual simplification, we think the suggested
1-D CNN model offers insightful information and produces
encouraging outcomes in object identification tests. Our work
aims to investigate CNNs’ potential in object identification,
and our trials show that the suggested model performs well
within the parameters of our investigation.

Algorithm 1 gives complete pseudo code for the proposed
model and training/ testing details are tabulated below:

Fig. 9 shows the detected and recognized objects. Bound-
ing boxes show the detected and recognized objects in the
images.

V. EXPERIMENTAL SETUP AND ANALYSIS
For system evaluation and training, Python (version 3.7) was
utilized on a machine with an Intel Core i7 CPU running
64-bit Windows 10. The machine is equipped with 16 GB
of RAM and a CPU clock speed of 5 GHz. This section
highlights the significance of the suggested paradigm by
providing a thorough summary of all the experiments carried
out in this study and the accompanying results

A. MSRC DATASET
The MSRC-v2 dataset [42], [47], [98] included 591 different
kinds of objects in dynamic contexts such as city structures,
hilly terrain, traffic signs, and beaches. The dataset consists of

Algorithm 1 Pseudo-Code for the Proposed Model
Input: RGB Images

Implement /k-means clustering on preprocessing images
# Apply K-means clustering
segmented_image = apply_k_means (image, k)

# Apply region-based segmentation using SLIC
slic_image = apply_slic (image, num_segments)

# Extract features using SIFT, KAZE, and BRISK
sift_features = extract_sift_features(image)
kaze_features = extract_kaze_features(image)
brisk_features = extract_brisk_features(image)

# Fuse the extracted features
def fuse_features (sift_features, kaze_features, brisk_features):

fused_features = np. concatenate ((sift_features, kaze_features,
brisk_features), axis=1)

return fused_features
# Define the CNN model
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation=’relu’, input_shape=
(32, 32, 1)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64,(3,3),activation=’relu’),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation=’relu’),
tf.keras.layers.Dense(15, activation=’softmax’)
])

# Split dataset into training and testing sets
def build_cnn_model (input_shape, num_classes):

model = Sequential ()
# Add layers according to your architecture
model.add(. . . )
# Compile the model
model. Compile (optimizer=’adam’, loss=’categorical_

crossentropy’, metrics=[’accuracy’])
return model

12 distinct classes, such as bike, car, cow, chair, bird, flower,
house, plane, signboard, tree, sheep, book, and building. The
images in the collection have a 213×320 resolution and each
image has a complex background.

B. CALTECH 101 DATASET
The Caltech 101 [104], is well-known. It has 101 different
object categories, from animals and cars to common objects.
The categories ‘‘butterfly,’’ ‘‘chair,’’ ‘‘elephant,’’ ‘‘car,’’ and
‘‘aero plane,’’ among many others, are noteworthy in this
dataset. This dataset stands out for the variety of images with
300× 255 resolution including various levels of illumination,
viewpoints, and backdrops.

C. PASCAL Voc 2012 DATASET
There are twenty different object categories in the PASCAL
Visual Object Classes (VOC) 2012 dataset [98], including
cars, furniture, pets, and more. Airplanes, bicycles, boats,
buses, cars, motorcycles, trains, bottles, chairs, dining tables,
potted plants, sofas, TV/monitor, birds, cats, cows, dogs,
horses, sheep, and people are some of these categories.
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FIGURE 10. Confusion matrix plot for individual class accuracies over MSRC-v2 dataset using 1D-CNN.

Because each image in the PASCAL VOC 2012 dataset vary
in size, there is no predetermined resolution for the col-
lection’s images. Every image in the collection may have
a different aspect ratio and resolution. This dataset, which
is frequently used as a benchmark, is essential for assess-
ing performance on a range of computer vision tasks,
including object identification, semantic segmentation, and
classification.

D. EXPERIMENT 1: EXPERIMENTAL RESULTS USING
PROPOSED APPROACH
We have presented a thorough analysis of our experiments
using publically accessible benchmark datasets, such as
MSRC-v2 and Caltech 101, in the Experimental Setup and
Analysis portion of Chapter 5. We evaluated object recogni-
tion accuracy [90], and the tables that follow give a concise
summary of our results.

More specifically, the object recognition confusion matrix
for the MSRC-v2 [98] [91], Caltech 101 [98], and Pascal
VOC 2012 [98] datasets is shown in Tables 2, 3, and 4.
We have found via our comparative study that our proposed
technique routinely achieves considerable improvements
over existing state-of-the-art object recognition algorithms.

In particular, our approach outperforms the state-of-the-
art algorithms on the same datasets by 92.25%, 91.91%,
and 93.50%. These outcomes demonstrate our proposed
approach’s efficacy and resilience in object identification

tasks, underscoring its potential for practical applica-
tions demanding high-performance object detection and
classification.

E. EXPERIMENT 2: EXPERIMENTAL RESULTS FOR
PRECISON, RECALL AND F1 SCORE
In this section, we provide the precision, recall, and F1 score
values for twelve classes from the datasets that were ran-
domly chosen. These outcomes demonstrate the great level of
accuracy with which our recognition algorithm can recognize
complicated objects. Equations (14), (15), and (16) were used
to calculate precision, recall, and F1 scores for each object
class in accordance [94]. The F1 score, commonly known
as the F measure, is derived from an average weighted of
precision and recall. The values range between 0 and 1, with
1 being the most precise.

Pr =
True Positives

True Positives+ False Positives
(14)

Rcl =
True Positives

True Positives+ False Negatives
(15)

F1 score =
2(Pr ∗ Rcl)
Pr + Rcl

(16)

where Pr= Precision processes the accuracy of positive pre-
dictions [93], while Rcl=recall deals with their completeness.
Tables 2,3 and 4 present evaluation metrics of Precision [94],
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FIGURE 11. Confusion matrix plot for individual class accuracies over Caltech 101 dataset using 1D-CNN.

FIGURE 12. Confusion matrix plot for individual class accuracies over Pascal Voc 2012 dataset using 1D-CNN.

Recall [95], and F1 score [96] along the computational
time [97] of used datasets.

1) EXPERIMENT 3: COMPUTATIONAL COMPLEXITY OF TIME
AND SPACE
The total number of parameters and operations has an
immense influence on computational complexity. Although
smaller models often use less memory and train more quickly,

they may not be able to capture complicated patterns [98].
All three datasets used in this article are middle sized so their
Computational complexity of time and Spaces is given below
in Table 5.

2) EXPERIMENT 4: INTERSECTION OVER UNION (IoU)
One popular metric for assessing how similar or comparable
two sets or areas are to one another is the Intersection over
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TABLE 2. Precision, recall, f1 score and computation time over msrc-v2
dataset.

TABLE 3. Precision, recall, f1 score and computation time over Caltech
101 dataset.

Union (IoU), sometimes referred to as the Jaccard Index.
It is frequently used to assess the precision of bounding
box or pixel-level segmentation predictions in the context of
image segmentation or object recognition. By dividing the
area of union between two regions by the area of intersection
between them, the IoU is computed. The following formula
can be used to determine IoU.

IoU = (Area of Union / Area of Intersection).

F. DISCERNING OUR APPROACH TO CONTEMPORARY
SYSTEMS
We compare the performance of our suggested method
to current systems in Section E, showing that it performs
better on a variety of datasets. A thorough compari-
son of the recognition accuracy of our suggested model
with various cutting-edge techniques using the MSRC-V2,
Caltech 101, and Pascal VOC 2012 datasets is given in
Tables 9, 10, and 11.

On each data set, our suggested model performs better
than the current ones. For example, our model outperforms

TABLE 4. Precision, recall, f1 score and computation time over Pascal Voc
2012 dataset.

TABLE 5. Computational complexities of time and space.

TABLE 6. Intersection over Union over MSRC-v2 dataset.

TABLE 7. Intersection over Union over Caltech 101 dataset.

the best-performing approach by a significant margin, with a
mean recognition accuracy of 92.25% and mAP= 0.932 over
the MSRC-V2 dataset. Comparatively speaking, our model
outperforms all other techniques with mean identification
accuracies of 91.91% and mAP= 0.759, 93.50% and mAP=

0.859 respectively, over the Caltech 101 and Pascal VOC
2012 datasets, showing similar trends.
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TABLE 8. Intersection over Union over pascal Voc 2012 dataset.

TABLE 9. Accuracy recognition comparison between proposed methods
and other state of arts methods [99], [100] [102], [103], [104] over
MSRC-v2 dataset.

TABLE 10. Accuracy recognition comparison between proposed methods
and other state of arts methods [100], [101], [102], [103], [104] over
CALTECH 101 dataset.

G. ANALYSIS OF RESULTS AND LOSS CURVES
To give a better understanding of the training convergence
dynamics and classification accuracy of our suggestedmodel,
we examine the results and loss curves in Section F. The
results shown in the tables are supported by the accuracy com-
parison graphs in Figure 13, which demonstrate the improved
performance of our model across all datasets.

Furthermore, Figure 14 presents the data loss curves for
both training and testing, providing a thorough understanding
of the convergence behavior and performance stability of the
model.

TABLE 11. Accuracy recognition comparison between proposed methods
and other state of arts methods [105], [106], [107], [108], [109] over
PASCAL VOC 2012 dataset.

These illustrations provide crucial points of reference for
assessing the effectiveness of our suggested methodology
and demonstrate its superiority over current techniques with
respect to convergence dynamics and accuracy. Through the
integration of these comparison studies and visualizations,
we improve our paper’s analytical depth and offer insightful
information about the performance features of our suggested
model.

H. ABLATION EXPERIMENTS
Using three datasets—MSRC-v2, Caltech 101, and PASCAL
VOC 2012—we used a variety of feature extraction methods,
such as BRISK, KAZE, and SIFT, to assess their individual
and combined contributions to object classification tasks.
Initially, we assessed each feature extractionmethod’s perfor-
mance independently. BRISK scored 69.75% accuracy on the
MSRC-v2 dataset, KAZE scored 72.31%, and SIFT scored
71.11%. The individual accuracy values in the CALTECH
101 dataset were 67.56% for BRISK, 71.63% for KAZE, and
69.79% for SIFT.

However, BRISK, KAZE, and SIFT performed 70.12%,
72.23%, and 71.11%, respectively, on the PASCAL Voc
2012 dataset. The feature fusion techniques were proposed as
a way to leverage on the complementing qualities of various
feature descriptors.

The accuracy rates using a combination of BRISK
and KAZE features were 77.67% (MSRC-v2), 75.12%
(CALTECH 101), and 78.12% (PASCAL Voc 2012).
The accuracy was raised to 85.67% (MSRC-v2), 83.21%
(CALTECH 101), and 87.54% (PASCAL Voc 2012) with the
integration of BRISK and SIFT features. Comparably, the
accuracy of 82.12% (MSRC-v2), 80.36% (CALTECH 101),
and 84.14% (PASCAL VOC 2012) was obtained by merging
KAZE and BRISK characteristics.

Motivated by the impressive outcomes of feature fusion,
we combined three feature descriptors (BRISK, KAZE, and
SIFT) into a single feature set. Significant gains were made
101), and 92.71% (VOC 2012) using this comprehensive
feature fusion approach.
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FIGURE 13. Accuracy comparison of proposed model with SOTA.

The outcomes show how feature fusion is required to accu-
rately describe an object’s many complimentary qualities.
While individual feature descriptors offer useful information,
fusion procedures combine them in a way that best utilizes
their strengths to improve performance in object classifica-
tion tasks across various datasets.

VI. RESEARCH LIMITATIONS AND FUTURE WORK
In our research, we used extensive perspective and imagery
issues which resulted in minor variations in our conclusions.
When using these datasets, we encountered issues with occlu-
sion and object merging in particular places. Our upcoming
studies will concentrate on solving these difficulties using
the latest deep-learning techniques and a fresh approach for
better results.

VII. CONCLUSION
An approach for object detection across diverse complicated
images is presented in this paper. Segmentation is carried

FIGURE 14. Data loss curves during training / testing.

out using the suggested system, and numerous features from
machine learning approaches, are extracted. After feature
fusion, CNN is used to conduct object recognition. The
technique of fusing features is essential for raising object
recognition rates above those of the benchmark dataset.
Numerous real-time applications of the suggested recognition
system include robotics, autonomous driving, sports activity
recognition, and surveillance systems. When compared to
other recognition systems, themethod of our proposed system
performed superior in terms of recognition accuracy. We’re
dedicated to expanding our research into more CNN-based
semantic segmentation methods, multiple feature extraction,
and feature fusion for both general-purpose scene identifica-
tion and aerial.
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