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ABSTRACT Precision Agriculture (PA) is gaining new momentum due to its ability to accurately adjust
the resources to a crop’s needs while maintaining/enhancing quality levels. However, crop-damaging pests
compromise yields, jeopardizing the benefits of PA. Computer vision-based pest detection techniques
offer promising avenues to overcome potential losses for farmers. The recent object detection framework,
YOLOVS (You Only Look Once) applied to real-time insect monitoring is an open-source, cutting-edge PA
approach based on Convolutional Neural Network (CNN) models that enables precise and quick decision
making in agricultural crops. Under this umbrella, traditional pest studies using YOLO or other deep-learning
solutions focused on only one or a few insects for specific crops provide an excessively narrow solution.
In this paper, we propose a new form of using YOLO for pest detection with a generalist perspective by
intensively testing a YOLOv8-based tool implementing a single insect category. The goal is to detect the
presence of any type of insect in any type of crop in real time. A comprehensive performance evaluation is
carried out using a well-known dataset. The results of the training, validation, and testing phases are then
discussed, obtaining an mAPsq value of 0.967 for the m model and an mAP50_9s value of 0.632 for the [
model. Finally, we also identify the premises to elaborate a complete and useful dataset able to unleash the
full potential of YOLOVS.

INDEX TERMS Insect detection, object detection, pest control, you only look once (YOLO).

I. INTRODUCTION

Agriculture is one of the world’s main economic activities,
with 1.23 billion workers, including on-farm and off-farm
operations [1]. Furthermore, the growing demand to produce
more and higher quality products has resulted in an increased
use of resources, which can be detrimental to the environ-
ment. Precision agriculture (PA) has emerged as a solution
to reduce resource consumption, improving both crop yield
and quality levels by deploying communication-enabled
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and monitoring sensor devices. The data acquired by these
sensors are then analyzed to determine the specific needs of
the crop. However, the benefits of PA are being questioned
due to the presence of crop pests. Annually, the FAO [2]
estimates that pests are responsible for 20-40% of losses from
damaged crops. These losses do not only affect crop yields
but also have significant economic implications for farmers
and increase the cost of end products to consumers. Pests
are often treated or prevented with potent chemicals that can
be harmful to humans and the environment. In an effort to
solve this problem, some researchers are designing alternative
applications, such as on-demand spot spraying [3], but these
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solutions may be insufficient in advanced pest infestations.
Therefore, early detection is essential to mitigate the resulting
economic, environmental, and health damage.

Pest monitoring employs a multiple strategy, combining
various control mechanisms including the use of chemical
agents. An effective approach to minimizing the undesirable
effects of crop pests is to deploy traps [4]. They are conceived
to attract insects and are divided into several types, such as
sex pheromone traps, yellow sticky traps, and glow traps.
Selecting a trap depends on the specific crop or type of pest
being targeted [S]. Traps are routinely monitored by trained
personnel to assess the insect population captured. However,
this supervision process often requires periodic field visits,
increasing costs [6]. Integrating advanced technology in pest
detection solutions has made it possible to remotely monitor
insects through sensing, enhancing agricultural practices
and enabling real-time surveillance [7]. Video cameras
are strategically positioned in fields to monitor insects in
the existing traps, or they directly focus on the crops to
assess the presence of pests on leaves or stems. However,
these crop images require further processing for insect
detection and classification in order to further automate the
procedure.

Computer vision is a field in Artificial Intelligence (AI)
that deploys devices equipped with cameras to process
and analyze images as if they were human eyes [8]. This
allows objects in an image to be detected and classified.
Introducing computer vision techniques in the agriculture
field, also called agro-vision [9], has provided more tools
for PA deployment. Examples of this are automated farming
tasks when paired with robots and adapted farming machinery
used for weeding [10] and harvesting ripe crops [11].
Computer vision is also an excellent pest detection tool for
crops in the field and in greenhouses. Different techniques
based on machine-learning or deep-learning algorithms have
been studied and tested, with those based on deep learning
obtaining the best outcomes [12]. As a result, current
works focus on employing deep-learning algorithms such
as Convolutional Neural Networks (CNN) [13], [14]. CNN-
based techniques have achieved notable success in many
computer vision challenges since they do not require manual
feature extraction. Their architecture is designed as visual
perception, carrying out automatic image classification to
later perform object detection tasks.

YOLO [15] is a real-time, open-source object detection
system based on CNN models and algorithms. From the first
version, which outperformed other CNN-based algorithms
such as Fast Region-CNN [16], YOLO has been updated
with new frameworks, improving its predecessors [17]. Pest
detection studies using YOLO have also been enhanced [18],
[19] [20]. However, current YOLO pest works have an
important drawback: they involve detecting just one or a small
set of insects, resulting in solutions only valid for one specific
crop or insect species. This restricts the applicability of pest
detection systems, making it difficult to generalize them as a
de facto feature of broader PA systems.
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Recent literature about YOLO is based on classifying the
insect into established categories of a reduced subset of insect
types, which limits its applicability. Not all insects can be
found in every part of the world. Some are distinctive of
certain regions and specific crops. This is not useful for
farmers located in other regions or cultivating different crops.
In this paper, one of the main contributions is approaching
the problem in a generic manner, allowing the farmer to
detect insects regardless of the particular type of insect or
crop. This way, our approach can be used as all-purpose
by farmers, minimizing the limitations of other solutions
that only address a reduced number of insects and can miss
other damaging pests, which leads to important problems
not being detected. Through the introduction of a generalist
use of YOLO for pest detection, we provide a solution that
considers all insect species as a single category to detect
the presence of any insect in any type of crop in real time.
To this end, we exhaustively study and evaluate the different
models of the latest version of YOLO, YOLOv8 [21],
to comprehensively apply it to insect detection. Our major
contribution to the scientific community and end-users in
general is the development of a generic and powerful pest
detection deep-learning tool to be included in PA solutions
that leverage YOLOVS.

For this purpose, we use experimentation to analyze the
outcomes of the training, validation, and testing phases,
evaluating the model’s performance in different scenarios.
The results reveal not only the strengths but also the potential
weaknesses of YOLOVS in the context of insect detection.
This has allowed us to design a complete and robust dataset
and establish the starting point for future accurate and reliable
insect detection solutions.

The rest of the paper is organized as follows. Section II
describes the related work. The YOLOVS architecture is
detailed in section III. The datasets and the metrics used to
evaluate the performance of our proposal are introduced in
section I'V. Section V discusses the results obtained. Lastly,
section VI concludes and offers some remarks on future work.

II. RELATED WORK

The evolution of information processing in PA brought
about by recent advances in Al, such as machine-learning
and deep-learning, has led authors to evaluate its perfor-
mance for pest detection and classification. Artificial Neural
Networks (ANN), naive bayes (NB), k-Nearest neighbors
(KNN), Support Vector Machine (SVM), and CNN models
were compared for insect detection and classification tasks
by [22]. In particular, insect detection was performed
using foreground extraction and contour identification. The
validation results showed that the highest accuracy values
were obtained for CNN with 91.5% classification accuracy
for 9 different insect classes and 90% for 24 different
insect classes. Similarly, [12] compared machine-learning
and deep-learning techniques for computer vision-based
pest identification in tomato plants. This pest identification
solution was intended for agricultural autonomous robots.
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The authors generated their own dataset with affected tomato
plants. Their results from the validation tests determined that
deep-learning techniques perform better in terms of accuracy,
speed, and pest-type discrimination.

Analyzing the recent scientific literature, there seems to be
a consensus about the superior performance of deep-learning
for pest detection. Reference [13] presented a deep-learning
solution for tiny pest detection employing the images
obtained from cameras on sticky traps. The focus of the study
was on thrips and whiteflies in greenhouses. A model called
TPest-RCNN based on Faster Regional-CNN was developed,
with a mean average precision (mAP) of 0.952 and a mean
F1 score, which is the harmonic mean of precision and recall,
of 0.944. Their results demonstrated better performance using
the solution proposed by the authors than the Faster R-CNN
model it was based on. A deep learning-based system for
pest detection in oilseed rape crops to be employed in mobile
devices was introduced by [23]. Firstly, the authors created
a database by gathering images from the 12 most common
pests in oilseed rape. Five different models were evaluated
to determine their performance considering the model loss.
These models were Faster R-CNN, R-FCN, and SSD (Single-
Shot Detector), with a combination of different feature
extractors such as RestNet101, Inception, or MobileNet. Data
augmentation techniques as well as a dropout layer, which
prevented overfitting, were added to improve the resulting
mAP. The authors determined that the best solution was SSD
with Inception as it provided a balance between execution
time, accuracy, and memory usage. Their results showed an
improvement in mAP, which achieved a value of 77.14%.
The trained model was implemented in an Android platform
for use in mobile phones. Furthermore, [14] developed a
mobile application for pest identification based on Faster
R-CNN deep-learning techniques. The application was also
connected to a database with pesticide recommendations,
providing users with specific information on how to eliminate
the detected pests. The pests considered were red spider, flax
budworm, aphids, flea beetles, and Cicadellidae, all receiving
recognition results of 99.0%.

Within the options of deep-learning techniques available,
YOLO has been gaining popularity due the performance
demonstrated in several studies. Reference [24] reviewed
insect detection techniques using deep learning techniques.
The authors highlighted the importance of the quality of the
dataset to obtain suitable detection and classification results.
Specifically, object detection was affected by dataset size and
number of classes, whereas classification was most affected
by the dataset size. Furthermore, the conclusions indicated
that modified Faster R-CNN and YOLOVS5 exhibited the best
performance. Reference [25] suggested a deep learning-based
solution to detect brown rice planthoppers. Due to the small
size of this insect, the authors considered an algorithm
comprised of two layers, using Faster RCNN in both of
them. The performance of their proposal, which relies on
two-step object detection, was tested and compared with
YOLOV3, which follows a single-stage detection approach.
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The outcomes showed that their approach obtained a recall
rate of 81.92%, compared to 57.12% obtained by YOLOv3.
However, it is important to note that YOLOv3 received
higher average accuracy than the proposed solution, 97.36%
and 94.64%, respectively. A method for pest identification
based on the deep-learning YOLO object detection algorithm
was presented by [15]. The system included a smartphone
[P-camera handled by farmers that collected videos and
images of the insects. Different versions of the YOLO algo-
rithm were compared for precision. Specifically, YOLO-Lite,
YOLOR, YOLOv3, and YOLOVS5 were compared at scales of
“n,” “s,” “m, and “x.” These scales indicate the model
size, where “n” stands for nano, ‘‘s” for small, “m” for
medium, “1” for large, and “‘x” for extra large. The outcomes
from tests where 23 different pest species were identified
showed the best precision using YOLOvS5x with 98.3%.
Another solution intended for smartphones was provided
by [26]. Their application for scale insect detection compared
YOLOv4, SSD, and Faster R-CNN models in terms of
classification accuracy. Their results revealed that YOLOv4
attained the best performance with a precision of 89%,
97%, and 100% for Coccidae, Diaspididae, and mealybugs,
respectively. Lastly, [27] combined IoT and deep-learning
to implement a pest detection system for smart agriculture.
The deployed IoT devices were also equipped with sensors
for environmental monitoring. YOLOvV3 was used to analyze
the combination of pest images and environmental data. The
results demonstrated a pest identification precision of 90%.
Additionally, the system provided the user with information
on the location and virulence of the pest.

In contrast to these studies, we used the latest release from
the YOLO family in the field of precision agriculture and,
specifically, intelligent pest detection systems, YOLOVS.
Furthermore, we present an innovative form of using YOLO
for pest detection with a generalist perspective by treating all
instances of insects as a single class instead of using separate
classes for different types of insects, which is the main use
case in the related literature. This way, we acquire more
knowledge about deep-learning for pest-detection and how
to train the available models to obtain results applicable to a
wider set of crops and insect types.

2 “l 9
il

Ill. YOLOv8 ARCHITECTURE

The YOLO (You Only Look Once) series has gained
widespread recognition in the field of computer vision due to
its remarkable accuracy and compact model size. Originating
in 2015 with its first version [28], in its early iterations
(versions 1-4), YOLO was programmed in C language and
embedded in a custom deep learning framework called
Darknet. The transition to YOLOvS5 marked a significant
difference. YOLOVS enabled more versatile and Pythonic
structural adaptations and fostered a collaborative environ-
ment for the scientific community to innovate and swiftly
share modeling improvements through repositories. This
structure facilitated the exploration of novel models, and
each iteration in the YOLO series has introduced more
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advanced techniques, enhancing the model’s precision and
efficiency. The latest iteration, YOLOVS, is distinguished by
its cutting-edge performance in terms of accuracy and speed.
A brief summary of YOLOvVS’s architecture as described
by [29] can be seen in Figure 1. YOLOvV8 uses blocks
to construct its architecture. These blocks are comprised
of layers, and each layer applies distinct operations and
transformations to the input, generating varied outputs with
unique parameters. Furthermore, YOLOvS, as with most
object detection models, is divided into two parts, the
backbone and the head, which are described below.

A. BACKBONE

The backbone is the main component of an object detection
model. It is responsible for capturing hierarchical features
from the input image. The backbone processes the input
image through multiple convolutional layers, extracting
features on different spatial scales. These features are then
used to represent the image hierarchically, that is with
dependent relationships among features, enabling the model
to understand both low-level and high-level patterns.

YOLOVS ‘”““
Backbone
- " Detect |

Detect |-
—{ Detect |

Convolution
i3, s2,p=1
15

cf
shorcut = Trve, =

FIGURE 1. YOLOv8 architecture.

The first two blocks of the YOLOv8 backbone are
Convolutional blocks. They are the most basic blocks
of the YOLOvVS8 architecture. In Figure 1, they are the
light blue blocks. These blocks perform a 2D convolution
to extract features, apply batch normalization to enhance
training stability, and use the SiLU equation as an activation
function to introduce non-linearities in the network. The
Convolutional block is composed of a Convolutional layer,
a Batch Normalization layer, and a Sigmoid Linear Unit
(SiLu) [30] as an activation function.

The Convolutional layer applies a convolution operation to
the input, using filters as parameters. The goal is to systemat-
ically analyze the input, region by region, identifying patterns
and extracting features, which are aggregated into activation
maps to obtain the depth of the input (filter outputs). After
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the Convolutional layer, a non-linear activation function
is mandatory. Activation functions compute the output,
element-by-element, based on the input, preserving both
spatial resolution and depth. These functions are non-linear,
giving the model the capability to capture and represent
non-linear patterns in the data.

Moreover, Batch Normalization layers are employed to
normalize the mean and standard deviation of the activation
batch according to the following equation:

X =
Volte
where x represents the current batch, p the mean of the
activations, o the standard deviation of the batch, and € a
small value close to zero. These layers contribute to training
deeper models, enhancing their robustness and stability.

The Convolutional blocks are followed by a C2f block,
which is the light yellow block in Figure 1. The C2f block
initiates with a 2D convolutional layer, followed by splitting
the resulting output into n Bottleneck blocks to obtain an
unaltered output that is then concatenated, leading to the final
2D convolutional layer.

Bottleneck blocks are used in the C2f blocks, occasionally
incorporating a shortcut. The concept behind these blocks
is to reduce the volume of information, thereby enhancing
computational efficiency and alleviating the computational
load. This is achieved by employing 1 x 1 Convolutional
layers to compress and subsequently expand the volume of
the input. They are the light orange blocks in Figure 1.

Concatenation layers are employed to merge inputs from
different depths within the network. However, as the input
traverses the neural network, dimensions often change due to
depth expansion or spatial resolution reduction. To facilitate
the addition of inputs from varying depths, Upsample layers
come into play. These layers interpolate values to align with
a desired target resolution.

The C2f block leverages Bottleneck blocks to enhance
computational efficiency, thus enabling the learning of
complex and hierarchical representations.

After the C2f block, the process leads to a final Spatial
Pyramid Pooling block, shown as the medium blue block
in Figure 1. The objective of Spatial Pyramid Pooling is to
gather information from different regions of an image, regard-
less of their size or position. This is achieved by dividing the
input image into several levels and subsequently pooling each
of them, assuring contextual information is captured across
multiple scales. This block employs a 2D convolutional layer
to compress the input, then the output is split into three
pathways. These outputs are then addressed by the Max
Pooling layer and concatenated with a non-pooled output.

Pooling layers are frequently used to decrease the dimen-
sions of the input, resulting in a loss of information but
expediting computations. The pooling function, normally
either maximum or average, is independently applied to
each channel of the input, exclusively reducing the spatial
dimensions.

2:

ey
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After this, the combined result is fed into a 2D con-
volutional layer to expand the dimensions once again.
This process allows the model to extract features from
different spatial dimensions and refine them to obtain relevant
information.

B. HEAD

The head is responsible for generating predictions based on
the features extracted by the backbone. It consists of several
C2f blocks, along with Upsample and Concatenation blocks
and Detection blocks. All these blocks typically consist
of additional layers, including fully connected layers and
bounding box regression or classification layers.

The Detection block divides the output from the head
into two pathways: one for classification loss and another
for detection loss. Both pathways follow a similar structure,
consisting of two Convolutional blocks followed by a 2D
Convolutional layer. The outer dimension of this final
Convolutional layer corresponds to either the number of
classes (for classification) or the number of outputs per box
(for detection). This can also be observed in Figure 1 as the
light green block.

The head refines the feature representations obtained
from the backbone and carries out the final predictions
for the object bounding boxes and their associated class
probabilities. It is also important to note that one of the main
differences between YOLOvS5 and YOLOVS is that the latter
is anchor free. This means that YOLOv8 does not predict the
offset from a known anchor box, but it predicts the center
of the object directly. Anchor-free detection decreases the
number of box predictions, expediting the inference process,
particularly Non-Maximum Suppression (NMS). NMS is a
post-processing step that reviews candidate detections and
eliminates overlapping boxes.

The YOLOVS architecture offers several models that
are distinguished by the number of layers and parameters
employed. The models used in this study and their respective
characteristics are summarized in Table 1.

Each model is characterized by the number of layers,
parameters, and GFLOPs (Giga Floating Point Operations
Per Second). Models n and s both consist of 225 layers, but
s has a significantly higher parameter count at 11,166,560,
compared to n, which computes up to 3,157,200 parameters.
The computational complexity, measured in GFLOPs, is also
notably higher for s, at 28.3 GFLOPs. Models m and [ further
escalate in complexity with 295 and 365 layers, 25,857,478
and 43,631,382 parameters, and 79.3 and 165.7 GFLOPs,
respectively. These metrics provide insights into the scale

TABLE 1. Number of layers, parameters, and GFLOPS for the different
YOLOv8 models.

Model Layers Parameters GFLOPs
n 225 3157200 8.9
K 225 11166560  28.3
m 295 25857478  79.3
l 365 43631382 165.7
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and computational demands associated with each YOLOv8
variant, offering a comprehensive view of their architecture.

IV. DATASET ANALYSIS AND METRICS

In this section, we evaluate the selected dataset and detail
the metrics employed to obtain the performance of the
object detection model. The images and labels are studied
in Section IV-A. The data augmentation techniques applied
to these images are described in Section I'V-B. Lastly, the
adopted metrics are specified in Section I'V-C.

A. DATASET ANALYSIS

To efficiently train an object detection model to any specific
task, it is necessary to properly feed images to this model.
Insects are highly biodiverse [31], making their detection a
challenge as it is complex to generalize physical character-
istics, species similarities, and morphological differences in
such a heterogeneous group. The scarce availability of public
datasets referring to insects, along with the low number of
images in these datasets, have intensified the effort to develop
this work. Furthermore, laboratory imagery, with good light
conditions and white backgrounds, does not suitably adapt
to real life conditions. Some approaches to insect detection
rely on traps, and the images available in these datasets are
only appropriate for studying this specific situation. Even
with images obtained with cameras or drones in the field,
the datasets tend to focus on specific insects or pests of
interest in particular crops. These circumstances only add
more difficulty to an already complex issue.

In this work, the employed dataset is IP102 [32]: a large
scale dataset of insects. This dataset contains 102 classes,
which is appropriate for classification and detection tasks.
Our main goal, however, is not detecting specific instances
of insects but the presence of pests. Samples of the dataset
images can be found in Figure 2.

FIGURE 2. Example images of the IP102 dataset. Each image belongs to a
different species of insect.

VOLUME 12, 2024



M. Vilar-Andreu et al.: Enhancing Precision Agriculture Pest Control

IEEE Access

All the classes in the original dataset have been merged
into a superclass called “insect.” This approach solves the
problem of class imbalance caused by a different number of
samples per insect type, but introduces significant variance,
that is, the resulting class becomes too heterogeneous. This
is caused by the substantial difference in the number of
images belonging to each class, and the model tends to
predict one image as belonging to the class with the most
images. To accomplish this merging process, all the images
are assigned the same class id in their labels. The labels
take the YOLO format, encompassing essential information
for object classification and detection. This format includes
the following key parameters: class id, a unique number
assigned to each class; x center and y center, the coordinates
of the bounding box center; and the width and height of the
bounding box. These parameters play a crucial role in object
classification and detection within an image. The detection
process implies creating a bounding box, a rectangular
enclosure that precisely delineates the object of interest. This
bounding box serves as a spatial reference, encapsulating the
detected object and facilitating subsequent analyses or actions
based on its identified location.

Information relative to bounding box distribution can be
found in Figure 3, where it is possible to observe how the
bounding boxes behave in the dataset, with most boxes having
their x center and y center right in the middle of the image,
while the height and width of the labels vary widely from
one to another. The values of the axes range from 0 to 1, and
these values are obtained from the following assumptions:
i) the YOLO bounding box format; ii) the number of instances
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FIGURE 3. Bounding box analysis. Top left graph is the number of
instances of each class, top right is every bounding box, bottom left is the
y center against the x center of each label and bottom right is the height
of each label against its width.
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of each class, which in our case is only one; and iii) each
bounding box in the dataset.

The image size distribution, shown in Figure 4, presents
a similar pattern. This is due to the fact that most labels
have their centers in the middle of the image and tend to
occupy most of the frame. In addition to the similar placing
of the bounding boxes, most images have comparable lighting
conditions, times of day, and angles.

4000 -

3500 4

3000 4

2500 4

Width

2000 4

1500 4

1000

T T T T T T T
0 1000 2000 3000 4000 5000 6000
Height

FIGURE 4. Image distribution analysis, height against width of the
dataset images.

B. DATA AUGMENTATION
This subsection describes the different transformations
applied to the dataset and the effects of these operations.

An appropriate dataset is crucial to successful training.
However, publicly available datasets often have limitations in
terms of number of images and diversity. Many of them were
obtained from laboratory environments where the insects
are in the forefront of the picture and the background is
white and uniform, which is not representative of the real
environment where the model is expected to be deployed.
Furthermore, the complexity of the agricultural environment
leads to difficulties in obtaining good quality images, for
instance due to obstructions from leaves and branches, as well
as the continuous changes in lighting conditions caused
by the varying weather. To mitigate these challenges, data
augmentation techniques have been applied to the images
of the dataset. Data augmentation involves transforming the
images in a dataset to increase their quantity or quality.
Data augmentation techniques are dynamically applied in
the image training phases for each epoch. This exposes
the model to slightly different variations from the original
images, contributing to improving the model’s generalization
and robustness. As a result, the diversity and scope of the
training data set is effectively broadened, allowing the model
to learn more versatile and generalized features.

The operations applied to the images are as follows:
hue, saturation, and value random adjustments; image
translation; image scaling; horizontal flipping; and mosaic
augmentation [33]. The HSV (Hue, Saturation, Value) color
model [34] represents colors based on three intuitive visual
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attributes: hue, saturation, and value. Hue denotes the color
tone, usually represented as an angle on the color wheel
ranging from 09 to 3609. Saturation measures the intensity of
a color, ranging from 0% (shades of gray) to 100% (pure color
with no mixture of white). Value represents the brightness of
the color, also expressed as a percentage. A value of 0% refers
to black (absence of light), while 100% indicates the color
at its highest intensity. By applying random transformations
to these channels, the resulting images can exhibit a broader
range of color variations, intensities, and brightness levels.
This helps obtain the diversity of the dataset, improving the
model’s ability to recognize objects under different color and
lighting conditions.

Image translation [35] involves displacing the image
content along the x and y axes, introducing a shift in
the position of the image without altering its structure
or appearance. This manipulation can include horizontal,
vertical, or diagonal movements within the image plane,
simulating changes in object positions or different camera
viewpoints. By systematically shifting the image contents
within the frame, this augmentation technique aims to
enhance the robustness and generalization of the model.
Additionally, these artificially created variations enable the
model to learn patterns from multiple perspectives and spatial
contexts, thereby increasing its capacity to recognize objects
despite positional changes.

Horizontal flipping [36] generates a mirrored representa-
tion of an image by swapping the pixel values from the left
side to the right side across a vertical axis. This augmentation
technique helps simulate changes in perspective as, for
instance, when objects are viewed from the opposite side.
By applying this transformation, the model is exposed
to additional instances of the same objects but from a
different viewpoint, contributing to better recognition and
understanding of the objects regardless of their orientation.

Image scaling entails resizing images to increase or
decrease their dimensions while preserving the original
aspect ratio. Scaling is performed through transformations
that adjust the size of images, allowing models to learn from
variations in object sizes and providing robustness against
different scales in real-world scenarios. When scaling images,
pixel values are reorganized to fit a new set of dimensions.
Enlarging an image involves interpolation methods to esti-
mate new pixel values, resulting in an expanded view, while
decreasing the image size uses down-sampling techniques.
Scaling allows several representations of the same objects to
be modeled at various sizes, contributing to the recognition
of objects regardless of their scale.

The mosaic image augmentation technique [33] is a
method used to enrich dataset training in machine learning by
constructing composite images from multiple source images.
It creates a new image by combining four images into one,
where a central region of the main image is replaced by a
section of each of the other images. This process is intended to
expose the model to various scenarios and contexts, providing
diverse scenes and object configurations in a single image.
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Introducing mosaic images to the training set effectively
enlarges the range of situations and scenarios the model
encounters, improving its ability to recognize and generalize
across many contexts. This augmentation technique encour-
ages the model to adapt and learn from a wide variety of
compositions and object arrangements, fostering robustness
and better performance in real-world applications.

Figure 5 shows several examples of data augmentation
techniques applied to the images in the dataset.

b) Random HSV

a) Original Image

c) Image Translation

FIGURE 5. Samples of data augmentation. a) original image, b) random
HSV adjustments, c) image translation, d) horizontal flip, e) image scaling,
and f) a sample of mosaic augmentation.

C. ADOPTED METRICS

In this subsection, we explain the loss functions, along
with pertinent metrics such as precision, recall, and mean
average precision mAP. YOLOvVS uses three loss metrics to
characterize the total loss function of the model. They are Box
loss, Distribution Focal Loss (DFL) [37], and Classification
Loss. Box loss is the loss associated with bounding box
regression and will be referred to as Bounding Box Loss [21].
Classification Loss is the loss function used for the classifi-
cation task, also denoted as Cross Entropy Loss [38].

Cross Entropy is a measure of the difference between two
probability distributions for a given random variable or set
of events. As such, Cross Entropy Loss determines how well
the model predictions fit the real class of the object. Cross
Entropy Loss is defined as:

1 &< A
Cross Entropy Loss(cls_loss) = — N Zl: gyij log(yi)
i=1 j=

@

where N is the number of predictions, C is the number
of classes, y;; is 1 if prediction i belongs to class j and
0 otherwise, and J;; is the model’s predicted probability of
object i belonging to class j.

Bounding Box Loss is a metric for object detection. It is
used to measure how much the bounding box prediction
diverges from the ground-truth box label. It is calculated
using the following equation:

S (1= IoU) x w;
n

Bounding Box Loss(bbox_loss) =
3)
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where n is the number of bounding boxes in an image, w;
is a weight applied to each bounding box and IoU is the
Intersection Over Union, a metric denoting how much a
predicted bounding box overlaps with the real, ground-truth
label. IoU can be determined as:

Area of Intersection
IoU = , “
Area of Union

where the Area of Intersection is the area of overlapping
between two bounding boxes, and the Area of Union is the
combined area encompassed by both bounding boxes.

Distribution Focal Loss (DFL) is another common metric
in the object detection field. It is used to address the
issue of class imbalance when detecting objects of different
classes. This imbalance occurs when certain classes are
more represented than others in a dataset. The definition of
Distribution Focal Loss (dfl_loss) is:

DFL(P;, Pi11) = —((yiy1 — Y log(Py) + (v — yi) log(Piy1))
)

where y; stands for the IoU score of the i-th predicted
bounding box, y;11 stands for the IoU score of the next i+/
predicted bounding box, y is the target loU score, and P; is
the underlying General Distribution of said bounding boxes.
Additionally, we consider the precision, recall, and mean
average precision metrics to further evaluate the performance
of the model. Precision and recall are computed as follows:

Tp Tp

- - ©6)
T, + F, T, + F,

where T, is a true positive, meaning the model correctly
identifies a class object; F), is a false positive, the model
predicts an object where there is not one; and F, is a false
negative, the model does not predict an object where there is
one. Precision is intuitively the proportion of true positives
over total detections, while recall is the proportion of true
positives over total objects.

Mean average precision, which is computed considering a
confidence threshold, is defined as mg 5 [39] and mg g5 [40],
using as confidence threshold r = 0.5 and t = 0.95,
respectively. This metric quantifies the area under the
precision-recall curve, taking a single confidence value, such
as mops, or using a range, such as myqgs, that goes from
T = 05tot = 0.95 in increments of 0.05. This is
a common metric to evaluate the performance of object
detection models, and it generally defines how well a model
performs in the detection task.

V. RESULTS

In this section, we evaluate the different YOLOv8 models
employed in the detection tasks to later discuss their
outcomes. In Section V-A, we analyze the training phase,
then we analyze the validation results in Section V-B. Finally,
the model is tested using images taken from the internet in
Section V-C.
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A. TRAINING

Every model of YOLOvV8 has been trained with the same
dataset and same hyper-parameters. The specifications of the
computing server are provided in Table 2. Stochastic gradient
descent (SGD) is the selected optimizer, and it is influenced
by several hyperparameters. An initial learning rate of 0.01 is
employed to regulate the step size during optimization,
ensuring a balanced convergence. Then momentum, set at
0.937, determines the contribution of the previous gradient to
the current step. A weight decay of 0.0005 is applied to act as
a regularization term to control overfitting. The models train
for 200 epochs, although a patience parameter defining the
number of epochs without improvement before terminating
the process is set to 50. Only model / sets patience to 5.

TABLE 2. Specifications of the computing server.

Element Description
[ Linux
RAM 128 GB
Hard Disk 2 TB
Processor  Intel Xeon Gold 5220 2.2G 18C/36T, 10.4GT/s, 24.75M
Cache (2 units)

For all the cases, the loss functions are computed during
training, then the same loss functions are computed together
in the validation phase with the metrics described in
Section IV-C.

For the n model, the values for bounding box loss,
classification loss, and distribution focal loss for each epoch
are shown in Figure 6. The bounding box loss and the
distribution focal loss reach a peak around epoch 3 and
decrease from this point. Classification loss (Cross Entropy)
declines steadily through the whole training. The final values
obtained are bbox_loss = 1.01, cls_loss = 0.567, and
dfl_loss = 1.32. Classification loss is the smallest of the three
due to the fact that this task is simplified by only having one
class.

The s model is the earliest to stop training, as no
improvement occurred for 50 epochs. The model trained for
141 epochs, obtaining the best results at epoch 91. The values
of loss functions are plotted in Figure 7. There is not much
difference between this model’s training results and model
n’s: the loss functions have similar behavior. At the beginning
of the training, they reach a peak and then slowly decrease.
The final values are bbox_loss = 0.99, cls_loss = 0.549,

train/box_loss train/cls_loss train/dfl_loss

0 5 100 150 200 0 5 100 150 200 0 % 100 150 200
epoch epoch epoch

FIGURE 6. Training bounding box loss, training classification loss, and
training distribution focal loss for model n.
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train/box_loss traincls_loss train/dfl_loss

0 50 100 0 50 100 0 50 100
epoch epoch epoch

FIGURE 7. Training bounding box loss, training classification loss, and
training distribution focal loss for model s.

and dfl_loss = 1.3, representing a small improvement over
model n.

Previously, models n and s triggered Early Stopping,
indicating that, as per the patience parameter, training
concluded before reaching completion as they did not
improve in performance. However, model m did not, due
to repeated failures during training. These failures involved
manually resuming training, interfering with the Early
Stopping procedure and, as a result, concluding with the
completion of the 200 epochs, as can be seen in Figure 8.

Analyzing the results for model m, if we compare them
with the validation phase, it is clear that after epoch 80,
there is no improvement and performance worsens to the
point of overfitting. The values for the training loss functions
are as follows: bbox_loss = 0.675, cls_loss = 0.263, and
dfl_loss = 1.16.

train/box_loss train/cls_loss train/dfl_loss

o 100 200 0 100 200 o 100 200
epoch epoch epoch

FIGURE 8. Training bounding box loss, training classification loss, and
training distribution focal loss for model m.

For model /, the values for bounding box loss, classification
loss, and distribution focal loss for each epoch are shown
in Figure 9. The last values registered are the following:
bbox_loss = 1.14, cls_loss = 0.66, and dfl_loss = 1.45.
Early Stopping was triggered in epoch 71, with the best values
obtained in epoch 66. Model [/ has similar performance to
the previous models. The training shows that as complexity
and depth increase, the results improve. However, this
enhancement is accompanied by longer training times.

B. VALIDATION

In this subsection, the validation results are presented

and discussed. Specifically, we present the loss functions,

precision, recall, and mean average precision (mAP) metrics.
Concerning model #n, the values for bounding box loss,

classification loss, and distribution focal loss for each epoch
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train/box_loss train/cls_loss train/dfl_loss

o 20 4 60 0 0 40 60 o 20 4 60
epoch epoch epoch

FIGURE 9. Training bounding box loss, training classification loss, and
training distribution focal loss for model /.

are shown in Figure 10, while precision, recall and mAP are
shown in Figure 11.

The behavior of the loss functions is similar to the
training results. However, while the training values continued
to decline, the validation values reached an inflection
point around epoch 90, where the bounding box loss and
distribution focal loss increase. Classification loss decreases,
indicating that the model is improving in the classification
task, while it is less accurate in the detection task. This
reflects a small overfitting in the bounding box prediction.

This apparent overfitting in the detection task does not
remain in the mAP values or in accuracy and recall,
which generally increase across epochs or stabilize without
experiencing a significant decline.

The performance of the model on the validation dataset
can be observed in Figure 12. The model accurately predicts
95.5% of the insect instances out of the 5,365 insects available
in the validation dataset. Specifically, the model made
5,127 correct predictions (true positives), while 238 insect
instances were missed, representing only 4.5% of the total
instances. Calculating the percentage of false positives is
challenging, as the dataset lacks instances of other classes,
and the false positives were cases where the model mistook
the background for an object. This circumstance occurred
412 times out of 5,777 predictions made by the model,
constituting 7.1% of the total predictions.

valfbox_loss valicls_loss val/dfl_loss

0 50 100 15 200 0 50 100 150 200 0 S0 100 150 200
epach epoch epoch

FIGURE 10. Validation bounding box loss, validation classification loss,
and validation distribution focal loss for model n.

Regarding model s, the values for bounding box loss,
classification loss, and distribution focal loss for each epoch
can be found in Figure 13, while precision, recall, and mAP
are represented in Figure 14. Similar values and behavior can
be observed in models n and s, with a slight insignificant
improvement in performance seen for the latter, resulting in
higher mAPy 5 and mAPg 95 values.
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metrics/precision metrics/recall

0.950 <
0925 .90 4
0.900 -
0.875 4 08
0.850 o
0.825
0.800 - 0.75
0.775
0.70

0.750

0 50 100 150 200 0 50 100 150 200

epoch epoch

metrics/mAPS0 metrics/mAPS0-95

o 0.60

0.90 0.55

0.50 4
0.85

0.80
0.40

o
5
[l

1] 50 W0 150 200 o 50 W00 150 200
epoch epoch

FIGURE 11. Precision, recall, mAP, 5, and mAP g5 for model n.
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FIGURE 12. Confusion matrix for model n.
valibox_loss. val/cls_loss val/dfi_loss
22
12
17
11 21
16 10
20
09
15 08 18
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[ 100 [3 50 100 0 50 100
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FIGURE 13. Validation bounding box loss, validation classification loss,
and validation distribution focal loss for model s.

Figure 15 illustrates the confusion matrix for the s model,
which yields valuable insights. The model obtains 5,166
true positives, 199 false negatives, and 432 false positives.
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FIGURE 14. Precision, recall, mAP 5, and mAP, g5 for model s.
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FIGURE 15. Confusion matrix for model s.

In comparison to model n, this model achieves a higher
number of detections. However, given the constant number of
objects “insect” included in the dataset, it is more susceptible
to identifying backgrounds as insects, with 7.4% of the
predictions resulting in false positives. This represents an
increase of 0.3% compared to model n. The true positives and
false negatives exhibit similar results to model n, with 96.29%
and 3.71%, respectively.

With regard to model m, the values for bounding box loss,
classification loss, and distribution focal loss for each epoch
can be found in Figure 16, while precision, recall, and mAP
are depicted in Figure 17. Model m continues with the trend
of slight improvement in the mAP 5 and mAP 95 values. The
overfitting is much more evident, while the classification loss
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valibox_loss vallcls_loss validfl_loss

o 100 200 o 100 200 0 100 260
epoch epoch epoch

FIGURE 16. Validation bounding box loss, validation classification loss,
and validation distribution focal loss for model m.
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FIGURE 17. Precision, recall, mAP, 5, and mAP, g5 for model m.
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FIGURE 18. Confusion matrix for model m.

stagnates, showing that further training does not bring about
any improvement.
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Now, we delve into the confusion matrix for model m.
Figure 18 gives a detailed breakdown of the model’s per-
formance. Model m achieves 5,181 true positives, 184 false
negatives, and 435 false positives. So, model m records
3 more false positives than model s, verifying that both
models are equally prone to confusing backgrounds with
insects. However, model m performs better in predicting
insects, achieving a success rate of 96.57% with only 3.48%
of the cases undetected. This performance aligns with the
observed trend of slight improvements in the models as they
scale in size.

Finally, model / obtained the best mAP( 95 and, thanks to
the Early Stopping procedure, minimal overfitting. Values for
bounding box loss, classification loss, and distribution focal
loss for each epoch are represented in Figure 19 and precision,
recall, and mAP values are shown in Figure 20. Furthermore,
in Figure 21, we plot the confusion matrix, where, due to the
shorter training duration for this model, its behavior differs
from that of models m and s. While the above two models:
i) tend to increase the number of false positives and ii) also
increase the cases in which the model accurately predicted
insects, model [/ erroneously predicts the background as an
insect in only 377 cases, the lowest value among the models
tested. With 5,157 true positives and 208 false negatives, the
model correctly predicted 96% of the cases and failed 4%.
This represents the second-worst performance among all the
models, which contrasts with the fact that model / obtained
the highest mAPg 95 value.

val/box_loss valfcls_loss

17 11
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FIGURE 19. Validation bounding box loss, validation classification loss,
and validation distribution focal loss for model /.

A summary of each model’s performance is given in

Table 3, where the best results for each metric are highlighted.
A visual representation is also shown in Figure 22.

TABLE 3. YOLOv8 performance metrics.

Model  Precision  Recall mAP50 mAP50-95 FI Score
n 0.944 0.93 0.963 0.626 0.934
s 0.945 0.936 0.965 0.628 0.94
m 0.942 0.938 0.967 0.63 0.939
1 0.943 0.939 0.966 0.632 0.94
C. TEST

In this section, we aim to assess the robustness and
generalization capabilities of the CNN presented here by
providing images not available in the training dataset as input.
The objective is to validate the model’s performance by using
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FIGURE 20. Precision, recall, mAPg 5, and mAP, g5 for model /.
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FIGURE 21. Confusion matrix for model /.

new, different images, thereby testing its functionality in real-
world scenarios. Our analysis of the results will suggest the
generalization capacity of the models, identify potential for
improvement, and contribute valuable insights to enhance the
model’s applicability in practical scenarios not covered by the
dataset.

The model executes inference on images of different types
of insects with varying conditions. The predictions obtained
by the Neural Network can be observed in Figure 23.

The model performs as predicted, detecting insects in
images that were not included in the original dataset, although
the confidence of the predictions is not high. To further
evaluate the performance of the model, it is tested against
even more non-dataset images, as shown in Figure 24.
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FIGURE 22. Precision, recall, mAPs,, and mAP5,_g5 per model.

FIGURE 23. Sample 1 of test data. Bounding box predictions in red with
the confidence of the prediction.

FIGURE 24. Sample 2 of test data. Bounding box predictions in red with
the confidence of the prediction.

Although the model performs satisfactorily, some false
positives and false negatives remain. Samples of these failures
can be seen in Figure 25, in which the upper right and upper
left images are examples of false positives and overlapping
bounding boxes. In the upper right image, the model mistakes
the shape and color of the leaf for an insect, giving even
more confidence to this prediction than to the actual fly
captured in the image. The upper left image has two valid
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FIGURE 25. Samples of failed predictions on test data. Bounding box
predictions in red with the confidence of the prediction.

overlapping bounding boxes that should have been removed
during post-processing using the Non Maximum Supression
method, although this is a minor failure as the insect is
properly detected.

The bottom two images are false negatives, meaning that
the model is not able to recognize the insects that are in
the picture. In the case of the lower right image, the model
does not detect the grasshopper in this particular position,
but as observed in Figure 23, it is detected in other cases.
It is therefore beneficial to supplement the training datasets
with a wider variety of insect poses since their detection
requires capturing the target as it moves, adopting different
perspectives, and the model may have difficulties in this
regard.

As for the lower left image, this false negative is surprising
since aphids, the insects in the image, are one of the most
represented species in the dataset. This contradiction between
the representation of the species in the dataset and the
failed detection is due to the distance at which the image
is taken. The vast majority of the images in the dataset
are close-ups of insects that feed the model with detailed
views for accurate identification. However, the lower left
image deviates from this trend by presenting a more distant
perspective. This variation in distance has contributed to the
inability of the model to recognize the aphids in the image.
The dataset, which is dominated by close-ups, suggests
that the model may have problems with insect detection in
scenarios involving greater distances. This underscores the
importance of extending the dataset to incorporate a wider
range of perspectives, specifically including images captured
from more distant viewpoints. By enriching the dataset with
such variations, the model can be trained to better generalize
across different spatial contexts, improving its performance
in scenarios where insects are observed at varying distances.

This generic approach for insect detection is appropriate
for real-time use in agricultural fields as shown by the average
inference time of the set of test images that was recorded for
each model (See Table 4). The test was performed in a desktop
computer with the specifications detailed in Table 5. As it is
expected, lighter models (n and s) have lower inference time
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TABLE 4. Inference time recorded for each model.

Model Inference time (ms)
n 103.5
s 140.8
m 297.1
1 521.5

TABLE 5. Specifications of the desktop computer.

Element Description
os Microsoft Windows 10 Pro
RAM 16 GB
HHD 2TB

SSD 240 GB
Processor  Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz, 3001MHz
(4 core)

values, which make them more suitable for computation at
the edge in devices with limited resources.

VI. CONCLUSION AND FUTURE WORK

Pests in crops can cause serious damage that reduce yields
and calls into question further investment in PA systems.
In this paper, we explored the challenges associated with PA
insect detection, testing the efficacy of the YOLOvVS archi-
tecture, an open-source deep-learning (CCN) framework, for
this specific domain. The complexities inherent in insect
detection, arising from variations in species, environmental
conditions, and spatial perspectives have been exhaustively
explored. Furthermore, there is an added difficulty in
acquiring images in real environments, without resorting to
traps and other type of devices to capture insects, due to
several factors, such as the scale of the insect compared
to the plant leaves, obstructions from leaves and branches,
inaccessible positioning of insects on the underside of
leaves and lower parts of the plants, variations in lighting,
and weather conditions. These factors can contribute to a
reduced visibility and clarity of the resulting picture that
interferes with the adequate operation of an Al model. This
can be mitigated using data augmentation techniques to
transform the images into a more suitable input for the model.
Additionally, even when an adequate input image from the
data acquisition device or resulting from data augmentation
techniques is fed to an Al model, if the solution is based
on classifying the insect from a reduced number of possible
insect types, there is an added difficulty that can render the
model useless for farmers. If an insect is captured in an
image but the model fails to classify it into one of the insect
classes, the output would suggest that there is no presence of
insects when the truth is the opposite. The approach presented
in this paper consists of following a generic strategy for
insect detection instead of classification. This would avoid
giving farmers a false sense of security as they would be
alerted of the presence of any type of insect. All the insect
classes in the dataset have been grouped into a single insect
dataset to facilitate insect detection for general purpose.
This generalization provides more flexibility and enables the
model to adapt to a wider range of scenarios, extending
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its real-time detection capabilities to: i) encompass insect
species beyond those included in the dataset and ii) consider
any arbitrary crop type. The comprehensive analysis of the
dataset has provided valuable insights into the limitations
and potential deviation that may influence the model’s
performance. Although YOLOvVS8 demonstrated appropriate
performance in certain scenarios, with an mAPg 95 metric
value of 0.632 for model / and an mAPg 5 value of 0.967 for
model m, challenges arose when dealing with variations
in spatial distances. This highlights the importance of
incorporating diversity into the dataset to generalize the
model under multiple conditions. The findings underscore
the need to continuously refine detection models, considering
the dynamic nature of insect-related datasets. Therefore, our
study contributes valuable insights to the ongoing research on
insect detection methodologies, emphasizing the importance
of the type of information contained in the dataset and model
architecture considerations.

Future work will focus on improving the detection of
insects as a general class by creating a dataset with much
more variability in aspects such as insect perspectives,
location, and distance. In addition, we are working to create
an automated pest-detection system for PA that gathers
real-time images from cameras directly deployed in the
fields, analyzes them, and makes intelligent decisions, issuing
appropriate alerts when insects are detected.
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