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ABSTRACT Interactive visual navigation tasks, which involve following instructions to reach and interact
with specific targets, are challenging not only because successful experiences are very rare but also because
complex visual inputs require a substantial number of samples. Previous methods for these tasks often rely on
intricately designed dense rewards or the use of expensive expert data for imitation learning. To tackle these
challenges, we propose a novel approach, Visual Hindsight Self-Imitation Learning (VHS), which enables
re-labeling in vision-based and partially observable environments through Prototypical Goal (PG) embedding.
We introduce the PG embeddings, which are derived from experienced goal observations, as opposed to
handling instructions as word embeddings. This embedding technique allows the agent to visually reinterpret
its unsuccessful attempts, enabling vision-based goal re-labeling and self-imitation from enhanced successful
experiences. Experimental results show that VHS outperforms existing techniques in interactive visual
navigation tasks, confirming its superior performance, sample efficiency, and generalization.

INDEX TERMS Visual hindsight, interactive navigation, visual reinforcement learning.

I. INTRODUCTION
Embodied AI [1], [2], [3], [4], [5], which focuses on enabling
artificial intelligence to sense, understand, and act in a human-
like manner, is rapidly evolving and gaining significance.
This line of research is increasingly being applied to tasks
for service robots such as indoor errands [6], [7], [8], [9],
[10]. Many of these tasks can be represented as interactive
visual navigation tasks [9], [10], [11], [12], [13], [14],
where an agent must be able to perceive and understand its
surroundings from first-person perspective and interact with
the environment according to given instructions. However,
these tasks demand a vast amount of samples for learning [15],
[16], [17], considering the high-dimensional visual inputs.
In addition, useful feedback is only sparsely provided in such
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environments, making sophisticated behaviors difficult to
attain without prior knowledge.
For these tasks, various solutions have been proposed,

such as designing reward functions or imitating the behavior
of experts. Among them, studies that utilize dense reward
functions [2], [9], [11], [12], [14], [16] require task-specific
experts to design such complex rewards. For indoor navigation
tasks, these studies [9], [14], [16] consider not only the
distance between the goal and the agent but also details
like the camera angle and the goal’s position within the
camera’s view. These methods are difficult to generalize, even
for similar tasks. An alternative is imitation learning [18],
[19], [20], [21], [22], [23], [24], [25] that utilizes expert
demonstrations, after which tuning is often applied for
learning the environments [26]. This requires building datasets
by humans, which is time-consuming and expensive, and
each annotator has different criteria, which makes tuning
difficult [27].
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FIGURE 1. Illustration of the learning process for the proposed method. This approach employs prototypical goal embeddings to pursue
goals, diverging from traditional word embedding instructions. Our method introduces a strategy for re-labeling goals in failed episodes and
facilitates learning through self-imitation. This ultimately benefits the agent in environments with visual inputs and sparse reward settings.

As a way to enhance sample efficiency or explo-
ration without expert data or complex reward shaping,
methods based on Hindsight Experience Replay (HER)
[28], [29], [30], [31], [32], [33], [34], [35] and learning
representations about goals [13], [36] have been proposed.
In fully observable environments where numerical coordinates
or robot poses are given as goals, re-labeling after failure
via HER is simple and feasible. However, in partially
observable environments involving first-person view, such
information is not directly observed, so it is not straightforward
to re-label in a similar manner. Hallucinatory GAN [35]
that allows re-labeling visual inputs is limited in that it
requires data collection and generative model training in
advance, and it does not cope well with dynamically changing
visual inputs such as varying backgrounds. Regarding the
representation learning methods, GDAN [13] proposes
attention networks to learn about goals, while LSA [36]
prompts more trials on more difficult-to-reach goals that
require further learning. Nonetheless, these works do not
adequately utilize experiences, mainly relying on sparse
successful experiences.
In this work, we propose the Visual Hindsight Self-

Imitation Learning (VHS) to address the problems of sample
efficiency in instruction-based visual interactive tasks. The
pivotal idea behind VHS is 1) to enhance sample efficiency
by utilizing failed episodes by re-labeling desired goals or
actions to achieved goals or actions and 2) to exploit failed
experiences like successful ones via self-imitation, promoting
exploration with enriched successful experiences. To enable
re-labeling, we devise Prototypical Goal (PG) embedding:
instead of using word embedding from instruction [13],
[14], [36], we replace the given instruction with prototype
features, which is the average of features of the instructed
goal as shown in Figure 1. Notably, this embedding is our
novel method that allows the usage of visual observations as
goals for re-labeling trajectories in hindsight. Our method
allows the agent to learn from negative rewards in failed
episodes and from self-imitation in re-labeled successful
episodes, facilitating efficient learning that does not rely
on expert demonstrations. We demonstrate state-of-the-art
success rates, sample efficiency, and generalization to complex

backgrounds on challenging interactive visual navigation
tasks. The visualization of our proposed prototypical goal
embedding illustrates its effectiveness in encapsulating the
visual characteristics of goals. Additionally, ablation studies
reveal that our method outperforms the standard word
embedding in interactive visual navigation environments.

Our contribution points in this paper are as follows.
1. We introduce the Prototypical Goal (PG) embedding

method for interactive visual navigation tasks. This method
embeds goals based on the agent’s experience and is more
effective than word embedding.
2. We propose novel Visual Hindsight Self-imitation

learning (VHS) method which leverages PG embedding to
enable goal re-labeling and utilize unsuccessful experience
for efficient learning. To the best of our knowledge, our work
is the first to make such re-labeling feasible in vision-based,
partially observable environments.

3. Experimental results show that our VHS achieves state-of-
the-art success rate and sample efficiency in MuJoCo [37] and
generalization to complex backgrounds andMaze environment
in Miniworld [38]. These results demonstrate that our method
is effective in challenging interactive visual navigation tasks.

II. RELATED WORK
A. VISUAL NAVIGATION
Visual navigation tasks, aimed at finding a goal object or
location from a first-person perspective, have diversified
into specialized categories such as scene-driven navigation,
instruction-based visual navigation, and interactive tasks.
Among these, scene-driven navigation tasks [17], [23], [39],
[40], [41], [42], [43] involve guiding an agent to reach
a specific or similar goal in the environment based on a
given picture of the goal. Our method is inspired by these
studies, particularly the concept of pursuing features from
an image or a multi-modal [12] goal, leading us to adopt
prototypical goal embedding for the instructions. This enables
the extraction and pursuit of desired goals. However, the
previous works mentioned above require goal images to
be collected beforehand and provided to the agent during
execution, which is not feasible in the dynamically changing
interactive visual navigation tasks we focus on. In contrast,
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our approach uniquely leverages the agent’s own experiences
of goal states during learning, as opposed to using a given
target image.

Instruction-based visual navigation is receiving increasing
attention [2], [13], [14], [16], [36], [44], [45]. In these studies,
the instruction specifies the desired goal among various targets
in the environment, with a focus on exploring and recognizing
targets [13], [14], [36], [45]. Additionally, interactive tasks [9],
[10], [12], [46], [47] require the agent to perform interactions
with various goals in interactive indoor environments.
However, due to the difficulty of the task, which requires
reaching the goals in visual navigation and performing the
appropriate interaction in interactive navigation, they rely on
pre-trained models for identifying targets and sophisticatedly
designed dense rewards for efficient exploration. On the
other hand, our approach uses straightforward and intuitively
defined rewards of {Success, Timeout, Timestep penalty, and
Fail} and can interact with a wide variety of target objects
without the need for pre-trained models.

B. SELF-IMITATION LEARNING WITH HER
Self-imitation learning (SIL) [32], [48], [49], [50], [51], [52],
[53] is used for exploiting past underestimated experiences to
indirectly invoke exploration. SIL involves storing experiences
in a replay buffer and focuses on imitating state-action pairs
in the replay buffer only when the return in the past trajectory
is greater than the agent’s estimated value. SIL can be
applied to dense reward settings to estimate value and return.
SIL offers advantages in enhancing exploration based on
previous experiences, eliminating the need for expensive
demonstration data. However, SIL might not perform well
in environments with sparse rewards. Since it relies on past
rewards to guide learning, the lack of frequent rewards can
hinder its effectiveness.
In goal-conditioned reinforcement learning, studies have

combined SIL and HER to increase the frequency of positive
rewards and improve sample efficiency, even in sparse reward
settings. ESIL [32] is a self-imitation algorithm that leverages
entire re-labeled episodes, whereas original self-imitation
learning samples state-action pairs with underestimated
value from the experience replay buffer. GRSIL [49] learns
self-imitated policies with goal re-labeling and actor policies
separately and then combines them to infer the most rewarding
actions. These studies are similar to ours in that they use the
agent’s past experience and re-labeling, but they are limited
to environments where the goal coordinates and robot pose
are fully observable. Unlike these studies, the method we
propose uses features based on the agent’s experience for
instructions, enabling re-labeling even in vision-based and
partially observable environments. As a result, the re-labeled
episodes are learned to imitate, yielding sample efficient and
effective results.

III. PRELIMINARIES
A. REINFORCEMENT LEARNING
We consider the instruction-based interactive visual naviga-
tion tasks, where the agent is given an RGB image from

an egocentric camera view and an instruction from the
environment. We use the formulation of Partially Observable
Markov Decision Process (POMDP) that is augmented with
the notion of instruction. In detail, we denote the task as a
tuple (S,O,A,R,P, γ, I), where S denotes the state space,
O the observation space, A the action space, R the reward
function, P the transition probability function, and γ ∈ [0, 1)
the discount factor. In the interactive visual navigation tasks
that we tackle, the action space is A = M ∪ K, where
M is the set of actions for agent movements and K is
the set of actions for agent’s interaction with goal objects.
I denotes the set of instructions, where each instruction
I k,x ∈ I specifies an interaction k ∈ K and a goal
x ∈ X among possible interactions K and goal objects X .
In each episode, an instruction I k,x specifies with which
goal (x) and via which interaction type (k) the agent must
interact. As outlined later in Sec. III-C, the reward function
is determined based on the given instruction. State-value
function in this instruction-based POMDP is V (s, I k,x) =
V (s|k, x) = E[Rt |St = s,X = x,K = k], where St is state
at time t and X , K are goal and interaction type given by the
instruction respectively. Rt =

∑T
t ′=t γ

(t ′−t)rt ′ denotes the sum
of decayed rewards rt ′ from time step t to terminal step T . The
aim of an agent is to find an optimal policy π∗ : O→ 1(A)
that maximizes E[Rt ].

As the base Reinforcement Learning (RL) algorithm, we use
Asynchronous Advantage Actor-Critic (A3C) [54]. In this
method, the policy gradient for the actor function πθ and
the loss gradient for the critic function Vφ are defined as
Eq. 1 and 2 respectively:

∇θLRL = −∇θ logπθ (at |ot , x, k)(Rt − Vφ(ot |x, k))

− β∇θH (πθ ( · |ot , x, k)) (1)

∇φLRL = ∇φ(Rt − Vφ(ot |x, k))2. (2)

We note that the critic function Vφ : O→ R serves to estimate
the value function V while given only the observation, rather
than the actual state.

B. GOAL-AWARE LEARNING
In visual navigation tasks, it is crucial for an agent to
recognize goals based on its experiences. We use goal-
aware representation learning [13], [36] to train the agent to
distinguish between different goals during policy learning.
This involves using the SupCon [55] loss, a contrastive
learning method that pairs same-labeled data as positives.
Additionally, this approach requires datasets with labeled
goal observations. When an instruction is successfully
executed, the observation at the terminal step is considered
a goal observation, and a (goal observation, desired goal
x) pair is stored in the Goal Storage Dg, which serves as
the dataset for representation learning. In this setup, the
desired goals in the instructions act as labels for the goal
observations. Data corresponding to the same goal are treated
as positive pairs, while data for different targets are negative
pairs. This framework helps train the feature extractor using
the Goal-aware SupCon loss function Ls, which is defined as
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FIGURE 2. The overall architecture. (a) Prototypical Goal (PG) embedding module samples goal observations collected from goal storage and
computes prototypical features from the latent representations of those goal observations. (b) If the episode ends successfully, the goal
observation is collected by pairing the end-of-episode observation with the desired goal. (c) When the episode ends, the agent updates the
RL loss and Goal-aware loss. (d) For each episode that fails, the re-labeling process is run to replace the goal with the last observation of the
episode, and then perform the Visual Hindsight Self-Imitation Learning.

follows:

Ls =
∑
j∈J

−1
|P(j)|

∑
p∈P(j)

log
exp(gj · gp/τ )∑

h∈J\{j}
exp(gj · gh/τ )

(3)

where J is the set of indices of goal states in the batch, and P(j)
is the set of all positive pair indices corresponding to the j-th
goal state (where j itself is not in P(j)). |P(j)| is the cardinality
of P(j), · is the dot product operator, gj is the output of the
feature extractor of j-th goal state, and τ is temperature as a
hyperparameter.

C. REWARD SETTINGS
In order to perform interactive visual navigation tasks, it is
common to design complex rewards based on distance from
agent to the goal [2], [9], [11], [14], [16] or observation of
agent including goals [12], [14]. To ensure that the agent can
perform the task correctly even with a simple and intuitive
reward setting, we present the following minimal reward
function design.
• Success: Given the instruction I k,x , if the instructed goal
object x is reached correctly and the required interaction
k is performed, the agent is judged to be successful and
receives a success reward.

• Timeout: Timeout penalty is given when the maximum
number of steps T is reached.

• Failure: If the agent reaches an incorrect goal or executes
an incorrect interaction, it is given a failure reward. At this
juncture, the agent is not aware of which specific goal
was incorrectly reached or which erroneous interaction
was performed.

• Timestep Penalty: The agent receives a penalty reward
for every step to accelerate trial and error.

IV. METHOD
A. INSTRUCTION TO PROTOTYPICAL GOAL EMBEDDING
Acrucial aspect of hindsight methods is their ability to redefine
the goals of failed episodes. However, in visual navigation
tasks [2], [13], [14], [36], [44] with multiple objects or goals,
where the instructions or words specify which goal to reach,
setting the terminal observation as a new goal poses a practical
problem. In general, the tasks specify various goals to be
reached as representations within an embedding space, such
asword embeddings. Yet, when an agent fails to reach a desired
goal, representing the final location of the failed episode in
word form is not straightforward, in contrast to tasks where
goals are given as coordinates. For instance, if the agent
is instructed to navigate and pick up a ketchup but instead
picks up a mustard, then re-labeling this terminal observation
as ‘‘Pick up a mustard’’ is infeasible without an additional
external signal of which object the agent has arrived at.
To address this issue, we introduce the Prototypical Goal

(PG) embedding method for instructions, as depicted in
Figure 2. This method diverges from the typical approach
of word embedding instructions. Instead, it substitutes the
instruction input with feature representations of the target x
with which the agent is supposed to interact. PG embedding
utilizes the goal observations stored during the learning
process to replace conventional input instructions with
prototype representations. These prototype representations
px are computed as the average vector of the embedded goal
observations associated with each class x as defined by the
following equation:

px =
1
|Dxg|

∑
o∈Dxg

f (o). (4)
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Algorithm 1 VHS With A3C
Initialize actor and critic
Initialize representation parameters: θ and φ

Goal Storage: Dg← ∅

Global, thread step counter: T ← 0, t ← 0
repeat
Environment Reset t ← 0
Hindsight Episodic Buffer: Df ← ∅

Get observation o0, instruction I k,x from environment
Get Prototypical Goal embedding px from Eq. 4
repeat
at ∼ πθ (at |ot , px , k)
Receive reward rt and next observation ot+1
Store the transition (ot , at ,Vφ(ot |px , k)) in Df
if Success then
Collect success states Dg← Dg ∪ {(ot , I x)}

end if
t ← t + 1
T ← T + 1

until terminal ot or t = tmax
for i ∈ {t − 1, . . . , 0} do

Calculate LRL with Eq. 1 and 2
end for
Calculate Goal-aware loss Ls from Dg with Eq. 3
if Fail and Random(0,1) < η then

Re-labeling px to f (ot ) and k to at in Df
Calculate LVHS from Df with Eq. 5

end if
Update the parameters θ and φ using loss L in Eq. 6

until T > Tmax

In the above equation, f (·) : O→ Z is a convolution neural
network that extracts the features of the input observation, Z
is an observation embedding space, and Dxg is the portion of
the goal storage Dg that pertains to goal object x. If there is
no goal observation for I k,x in the agent’s experience Dxg, p

x

is instead a random vector sampled from N (0, I).
This method is similar to prototypical networks for few-shot

learning [56], [57], [58] and we use our embedding method
to guide the pursuit of a prototype of the desired goal, akin to
strategies employed in scene-driven navigation.

B. HINDSIGHT EPISODIC BUFFER
To solve the challenging problem of sparse reward settings,
HER learns by replacing agent’s unsuccessful experiences
with successful ones by re-labeling the goal. Rather than
discarding such unsuccessful yet informative feedback, such
re-labeling can serve as a textbook for exemplary behavior for
the agent, driving its exploration towards potentially successful
interactions with various goals. We take this approach and
apply it to an interactive visual navigation agent that uses
re-labeling to change its experience, as shown in Figure 2.
Given an instruction I k,x , there are three cases of rewards,
outlined in Sec. III-C. Among these, we choose to perform

FIGURE 3. Example scenes of our environment, MuJoCo and Miniworld.
At each reset, the agent is located at the center of the map, and the objects
are placed in a randomized pose. We set up an agent to perform
interactive visual navigation by combining a UR5 arm robot and a Fetch
mobile robot in MuJoCo. Miniworld experiments with generalization in
environments evaluate complex background changes.

FIGURE 4. Images of the objects used in the MuJoCo experiment. From left
to right, the objects are SaladDressing, Mustard, Milk, BBQSauce and
OrangeJuice.

re-labeling when a failure reward is encountered, i.e., when
an incorrect goal is reached or an incorrect interaction is
performed. In such cases, the observation and action at
final time step T can be readily used as the new goal and
interaction. Thus, upon receiving failure reward, the goal and
interaction are re-labeled from (px , k) to (f (oT ), aT ). Note
that PG embedding from Sec. IV-A precisely makes such
re-labeling of goal possible, by placing both f (oT ) and px in
the same embedding space Z .

The experience converted by this process, while successful,
is a suboptimal path because it is an unintended experience
from a suboptimal policy. We describe how to utilize this
suboptimal path for learning in Sec. IV-C.

C. VISUAL HINDSIGHT SELF-IMITATION LEARNING
We have previously explained an embedding method for
re-labeling failed episodes in the vision domain in Sec. IV-A.
Using this method, we propose self-imitation for online
learning using the newly obtained trajectories. The overall
algorithm is outlined in Algorithm 1. First, for each episode,
we collect the trajectory {(ot , at ,Vφ(ot |px , k))}Tt=1 in a buffer
Df . While calculating the RL loss for each episode, if it
is a failed episode, we additionally compute the VHS loss
according to the reward of the episode as shown below:

LVHS = −Eoi,ai,vi∈Df logπθ (ai|oi, f (oT ), aT )

+ ∥Vφ(oi|f (oT ), aT )− vi∥2. (5)

In this way, online learning with hindsight becomes possible.
Note that the data Df collected by the current agent is
not accumulated after the agent learns through behavioral

83800 VOLUME 12, 2024



K. Kim et al.: Visual Hindsight Self-Imitation Learning for Interactive Navigation

FIGURE 5. Learning curves for visual navigation tasks in MuJoCo and Miniworld. In all tasks, our method shows rapid improvement and saturation in
performance, demonstrating high sample efficiency. Especially in Task3, it shows a significant gap with baselines in task performance. In Miniworld, VHS
is superior not only in success rate and sample efficiency but also in generalization. The horizontal axis is the number of updates, and the vertical axis is
the success rate. Each curve is produced from 7 trials and indicate bounds as mean ± standard deviation.

cloning of actions and values, because it is a suboptimal path.
We additionally clarify that Df is for the purpose of learning
the proposed method, VHS loss in Eq. 5, independent of RL
loss LRL that may use its own separate replay buffer.
Instructions of the failed episodes are re-labeled using PG

embedding, and observation, action, and value of each time
step are used for imitation learning. By generating informative
experiences through the hindsight method and self-imitating
them, the agent can operate efficiently and effectively with
visual inputs, even in hard exploration problems such as
interactive navigations with sparse feedback.

Finally, the overall loss function is as follows:

L = LRL + αLs + βLVHS . (6)

We also use hyperparameter η ∈ [0, 1], whereLVHS is ignored
in Eq. 6 by probability (1− η), in order to mitigate the agent
overfitting to suboptimal re-labeled trajectory.

V. EXPERIMENTS
A. EXPERIMENTS SETUP
Through experiments, we aim to evaluate whether our
method can efficiently learn interactive visual navigation
tasks with sparse reward settings. We set up a fetch
mobile robot in the MuJoCo environment [37] where five
objects (Mustard, BBQSauce, SaladDressing, OrangeJuice,
Milk), which are 3D models from Hope3D dataset [59],
are placed at random locations in each episode. To show
scalability and generalization, we further experiment with

an interactive visual navigation task in Miniworld [38].
This environment comprises seven objects (e.g. RedBox,
YellowKey, BlueBox, etc) and is about 2.1 times larger
than the MuJoCo environment. In the environment, two
tasks have numerous textures applied to the background
and one task has walls to form a maze. This allows us to
experiment with generalization to unseen textures in a larger,
more object-rich, and visually complex environment. At each
time step, the agent can choose a movement action from
Mmu = {MoveForward,TurnLeft,TurnRight} in MuJoCo
and fromMmi = {MoveForward , MoveBackward,TurnLeft ,
TurnRight} in Miniworld. An interaction action is from K,
where K depends on the given task as outlined in Sec. V-A1.
In case the agent is not at the boundary of any object,
an interaction action is neglected, treated as a no-op action.
An episode ends upon success/timeout/failure, and agent
parameter updates are performed at the end of each episode.
The evaluation measures the success rate with 300 episodes.
Further details of the experimental details are described in the
Appendix A.

1) TASK DETAILS
We set up three tasks to evaluate whether our method learns
efficiently with various interaction settings. The agent is
located in the center of the room at episode reset. The three
tasks are as follows, in order of increasing difficulty.
• Task1 - Object Navigation: Success and failure
are determined automatically when the agent finds
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and reaches within a certain boundary of an object.
No interaction is required, i.e. K = ∅. If the object
specified by the instruction is reached, the episode is
a success; otherwise, it is a failure.

• Task2 - Interactive Object Navigation: Task2 is similar
to Task1, except that the agent must perform a single
interactionK = {Interaction}with an object to determine
success and failure. If an object boundary is reached
but no interaction is performed, the episode continues
without terminating.

• Task3 - Multi-interaction ObjNav: In Task3, the
number of interactions increases to three as K =

{Interaction1, Interaction2, Interaction3}, so the total
number of instruction types increases to 15 with five
objects. The instruction is given by the environment
randomly, and the episode is considered a success if
both the object and the interaction are correct, and a
failure if either the object or the interaction is incorrect.
Compared to Task1 and Task2, Task3 is a challenging
task that requires more exploration and is significantly
more difficult to success due to the diverse instructions
and wider action space.

For experiments in a more diverse environment and setting,
we experiment with an interactive visual navigation task in
Miniworld.
• Miniworld - Training: In training, the task is similar to
Task2, with the number of objects increased to 7. This
environment is 2.1 times larger in width and height than
the MuJoCo environment. It also randomizes the textures
on walls, ceiling, and floor among 12 possible textures,
providing 123 = 1728 background combinations,
to evaluate robustness in a visually complex environment.

• Miniworld - Test: We perform experiments to verify the
generalization performance with 33 = 27 background
combinations using textures that are not learned in
training.

• Maze: This task is set up with the same size and objects as
Miniworld-Training, but instead of changing the textures
of the background, it has walls to form a maze. In the
maze environment, objects are obscured by walls, so the
agent must search efficient paths in order to find the goal
and perform interactions.

2) REWARD SETTINGS
The reward settings for each task are as follows.
• Success: If the goal is reached within a certain range, the
episode is considered a success and the agent receives a
reward of 10. For tasks that require interaction, if the
agent does not perform any interaction K even after
reaching the goal, it only receives a timestep penalty
without the episode terminating.

• Failure: If the agent reaches the wrong object or performs
the wrong interaction, the episode terminates as a failure.
In this case, the agent receives a reward of −1.

• Timeout: The reward for reaching the maximum number
of steps T in an episode is −0.1. Timeouts incur a

lesser penalty (−0.1) than failure (−1), which initially
encourages agents to wait out and avoid haphazardly
approaching any goal.

• Timestep penalty: To encourage the agent to explore goals
quicker, the environment provides a reward of −0.01 to
the agent at every step.

3) BASELINES
We compare our method to the competitive methods below:

• A3C (Asynchronous Advantage Actor-Critic) [54]: The
most basic reinforcement learning algorithm, it learns
asynchronously in multiple environments through multi-
processing to accelerate learning speed.

• BC (Behavior Cloning) [22]: A method for imitation
learning of inputs and outputs, following expert demon-
strations. We collected 100K successful trajectories using
a trained VHS agent. BC agent is trained on these
trajectories.

• RL tuning (BC and RL finetuning) [26]: The model
pre-trained using BC is further trained by RL finetuning.
The method prioritizes tuning the critic for consistent
evaluation, and then performs an iterative learning
process of finetuning the actor and critic together.

• GDAN (Goal-Discriminative Attention Networks) [13]:
It learns through cross-entropy loss using goal obser-
vations collected for goal-aware learning in visual
navigation tasks. It proposes an agent that pursues goal-
directed behavior, learns samples efficiently, and further
proposes an attention network to maximize the efficiency
of the proposed method. The instruction is input by the
word embedding method.

• LSA (Learning Sampling and Active querying) [36]: This
research addresses the phenomenon of experience bias
toward easy goals in navigation due to the imbalanced
difficulty of reaching each goal object. It proposes
sampling for representation learning and an active
querying method for collecting experiences, which is
state-of-the-art among previous works. Also, this work
uses the word embedding method for the instruction
input.

• GCSL (Goal-Conditioned Self-Supervised Learning)
[53]: This method performs efficient learning using only
self-imitation learning by re-labeling the next state or the
terminal observation as the goal. Because this method
does not account for visual navigation tasks, we add
our proposed PG embedding to re-label the terminal
observation as the goal, and also apply SupCon loss to
learn about the goals. Themain difference between GCSL
and our method is that it performs self-imitation learning
without a reward-maximizing RL policy.

• VHS (Ours): In our proposed method, we calculate
SupCon loss for learning the goals based on A3C. When
learning, we use PG embeddings to pursue the goal, re-
label the last observation and interaction in the failed
episodes, and learn by self-imitation.
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FIGURE 6. Learning curves of ablation studies. Experiments are performed on Task2 (Interactive Object Navigation). The horizontal axis is the
number of updates, and the vertical axis is the success rate.

TABLE 1. Success rate comparison for each algorithm and ablation study for embedding methods on Task1, Task2, Task3, Miniworld and Maze.

FIGURE 7. Proportion of three reward types. Experiments are performed
on Task2. The horizontal axis is the number of updates, and the vertical
axis is the probability for each reward type.

We iteratively trained with random seeds at least 7 times,
and the details of the hyperparameters used and additional
ablations are shown in Sec. VI and Appendix A.

B. EXPERIMENTAL RESULTS
Below, we summarize the results of our experiments with
the reward settings and baselines for each environment. The
learning curves of the three tasks in the MuJoCo environment
and the Training/Test tasks in the Miniworld are shown in
Figure 5, and the results are recorded in Table 1.

1) EXPERIMENTAL RESULTS OF MUJOCO
A3C demonstrates marginal progress, with a performance of
23.1± 7.0% in Task1 and negligible improvement in Task3,
suggesting that the three tasks are very challenging to learn
with a conventional RL algorithm.

GDAN shows learning performance of 87.2 ± 4.2% and
74.3 ± 15.1% on the Task1 and Task2 in Figure 5(b) and
Figure 5(c), respectively, with slow and steady improvements
in learning, indicating that an agent with goal-directed
behavior can learn even under sparse reward designs. However,
in Figure 5(d) where GDAN achieves 13.3± 8.3% in Task3,
the learning curve improves very weakly, suggesting that the
goal-directed behavior and attention models alone are not
sufficient in this task, which requires a variety of interactions.

In contrast, GCSL underperforms compared to A3C in the
first two tasks and fails to exhibit learning across all tasks.
This outcome suggests that a self-imitation learning through
re-labeling without explicit rewards is inadequate for robust
learning.
BC method is less affected by task difficulty because it

learns by imitating successful trajectories, and it performs
uniformly across all tasks. However, its success rate is
somewhat lacking, probably because it only imitates the given
expert trajectories. It seems unable to explore and generalize
to goal locations that do not occur in the dataset.

RL Tuning finetunes the agent that is pre-trained from BC.
This improves upon the BC agent, leading to competitive
performance in Task1 and Task2. It also performs better
than other baselines in Task3. Nonetheless, we observe a RL
Tuning’s significant performance gap from our VHS. This
may be due to RL Tuning’s lack of particular method in
encouraging exploration.
LSA is a method that boosts sample efficiency and

performance by focusing on one type of instruction at a time.
Thus, LSA shows high performance in Task1 and Task2.
Nevertheless, it fails to learn well in Task3. This is likely
because Task3 involves not only numerous goal objects but

VOLUME 12, 2024 83803



K. Kim et al.: Visual Hindsight Self-Imitation Learning for Interactive Navigation

also multiple interactions, increasing the number of interaction
types from 5 to 15. From the result, we speculate that LSA
struggles to scale to a huge variety of instructions.
On the other hand, our proposed method, VHS, shows the

highest learning performance as well as the lowest variance in
all tasks, converging stably in each iteration. Specifically, VHS
exhibits remarkable sample efficiency, achieving state-of-the-
art success rates of 92.1±0.8%, 92.0±0.8% and 89.5±0.9%
on the three tasks, respectively. Notably, in Task3, VHS shows
a significant gap compared to the baselines, indicating that our
method is robust in sparse reward settings in interactive visual
navigation tasks. As depicted in Figure 5(d), where successful
trials are exceedingly sparse, our method reaches a saturation
point in learning with a high success rate. These results
demonstrate the effectiveness of the proposed approach that
combines re-labeling with self-imitation learning to facilitate
the acquisition of successful experiences via PG embedding.

2) EXPERIMENTAL RESULTS OF MINIWORLD
To evaluate scalability, we use Miniworld environment, which
is larger than the MuJoCo environment and has a greater
diversity of objects. In addition, the Training and Test
environments serve to evaluate robustness to visually complex
scenes, as well as generalization to unseen background
textures. Maze task poses a more complex environment,
contain inner walls that obstruct the agent’s view and
movement. This serves to evaluate the agent’s ability to scale
to structurally complex task.
In this task, Figure 5(e) and 5(f) show that most baselines,

including A3C and GCSL, as well as GDAN, do not improve
their learning curves. On the other hand, BC, which learns
from successful experiences, and RL tuning based on BC, have
a relatively high success rate and show good generalization
even with complex backgrounds. However, the improvement
in success rate is limited, which we speculate is due to the
limitations of BC and RL tuning, which lack representation
learning of the goal and feedback on unsuccessful experiences.
In addition, LSA, which increases the experience of goals
that need to be trained, also shows a delayed improvement
in success rate. This is likely due to the large number of
goals and complexity of their backgrounds, which results in
intensive training on individual goals but not enough feedback
on failed experiences. This proves that sufficient experience
with success and feedback on failures are essential to solving
the task.
Figure 5(g) depicts the learning curves for the Maze task.

A3C and GCSL fail to learn, and GDAN starts to improve late.
LSA and RL Tuning, which lack re-labeling, achieve higher
performances than the baselines but are still insufficient.

For these complex and difficult tasks, the proposed method
has much steeper learning curves with higher success rates,
showing rapid saturation. These results support that our
method can not only scale well to larger environments with
greater diversity of objects and to a more structurally complex
maze, but also generalize well to unseen, visually noisy
backgrounds. In other words, for difficult tasks with frequent

FIGURE 8. Visualization of prototypical goals and embeddings of goal
observations. The center of each region shows the prototypical goal
embedding of the corresponding object, while the neighboring images
visualize data from goal storage with close feature distances and point
outward to the source images.

failures, our proposed VHS, which re-labels the experience
and learns by self-imitation, is more effective and sample
efficient.

VI. ANALYSES
A. ABLATION STUDIES
1) EMBEDDING METHODS
To evaluate the efficacy of PG embedding, we contrast it with
the conventional word embedding technique. The learning
curves are shown in Figure 6(a) for Task2 and the success
rates are shown in Table 1 for all tasks. The algorithm we
used for training is based on SupCon loss Ls for goal-aware
learning with A3C as LRL , applying each embedding method.
The learning curves reveal consistent progress for both the
word embedding and our PG embedding methods. Regarding
the performance improvement of PG embedding compared
to word embedding, Table 1 shows that the more difficult
the task, the greater the improvement. In Task3, the success
rate of word embedding is only 13%, while PG embedding
increases it to 32%. Overall, the agent better performs with
PG embedding compared to word embeddings.

2) PROBABILITY OF TRIGGERING VHS LOSS
We calculate and update the VHS loss by re-labeling when the
agent has failed episodes. Asmentioned in Sec. IV-C, we apply
the VHS loss LVHS with probability η to lessen potential
overfitting to suboptimal re-labeled trajectories. We perform
an ablation study on this probability η by conducting
experiments on Task2 with η ∈ {40%, 60%, 80%, 100%}. The
learning curve for each probability of VHS loss is plotted in
Figure 6(b). Overall, the learning curve improves and saturates
more rapidly with higher η, indicating that our proposed
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FIGURE 9. Visualization of goal observations using t-SNE. Note the distinct
regions for different objects, indicating that the features are
well-segmented.

method is effective. However, there is a slight gap between
80% and 100%, with 80% saturating more rapidly and reliably.
This suggests that the trajectories used for self-imitation
learning are indeed suboptimal paths and that some of the
experiences cause noise or overfitting.

3) PROPORTION OF REWARD TYPES
Figure 7 shows the reward distribution across different
methods during the learning process. Timeouts are notably
more frequent than successes and failures, a trend attributed
to the agent’s rarity in reaching any goal through random
behavior.
A3C consistently records the highest rate of timeouts and

the lowest rate of failures, suggesting a tendency towards
non-productive trial and error instead of successful task
completion. GCSL, occasionally reaching incorrect goals
due to PG embedding and SupCon loss, shows prolonged
periods of high failure rates. This method, which relies on
imitation learning without RL incentives, suggests that its
failure to reach a correct goal does not significantly impact
its learning outcomes. GDAN predominantly encounters
timeouts early in learning but exhibits gradual improvements
in goal differentiation over time, leading to reduced timeouts.
However, since GDAN does not account for interactions,
its learning remains inefficient. In contrast, VHS starts
with a higher failure rate that diminishes over time.
It enhances learning through self-imitation and penalization
of unsuccessful attempts. Consequently, VHS achieves the
highest success rates and sample efficiency.

4) ABLATION ON RE-LABELING OF GOALS
For VHS, we propose Prototypical Goal embedding method
to re-label the terminal observation as goal, only in the
case of failed episodes. For an ablation study on re-labeling
methods, we perform additional experiments by re-labeling
when episode ends in a failure, when the episode timeout
occurs, and when either a failure or a timeout occurs (referred

TABLE 2. Sample efficiency measures in Task2. SRR (lower the better) and
SEI (higher the better) are measured with GDAN performance as a
reference. ‘‘Number of Updates’’ indicates the number of updates required
to reach the reference performance.

to as Both). These experiments are conducted in Task2. For
timeout, we re-label the terminal observation as goal when
the maximum number of steps T = 20 is reached within an
episode.
Figure 6(c) shows the learning curves, and we can see

that unlike the curve for re-labeling on failure, there is no
improvement in performance when learning by re-labeling on
timeout, and a slight improvement at the end for re-labeling on
‘‘Both.’’ When the agent ends the episode with a timeout, the
agent is still approaching the wall without sufficiently having
learned to reach the goals, or it is performing unnecessary
actions without reaching the goal that requires interaction.
For this reason, re-labeling on timeout is not considered
appropriate. Additionally, we can see a small improvement
for re-labeling on ‘‘Both,’’ from which we speculate that
re-labeling on timeout is mostly interfering with learning.
Thus, our results support that only the proposed re-labeling
of failed episodes leads to efficient learning in an interactive
visual navigation task.

5) SAMPLE EFFICIENCY MEASURE
To quantitatively measure the sample efficiency, we use the
Sample Requirement Ratio (SRR) and Sample Efficiency
Improvement (SEI) metrics as proposed in [13]. With
algorithm A as the reference, these measures are calculated
based on the success rate X% of this reference algorithm
A and the number of updates nA required for A to reach
the corresponding success rate. Then we find the number
of updates nB required to reach the success rate X% for the
algorithm B we want to measure, and calculate SRR = nB/nA.
The SEI is calculated as (nA− nB)/nB. Lower SRR and higher
SEI indicate better sample efficiency relative to the baseline.
We show the measurements of the sample efficiency in

Table 2. We choose GDAN as the reference algorithm and take
74.3% after 500k updates as the criterion in Task2 to measure
the efficiency of PG embedding and VHS. The results show
that VHS is significantly more sample efficient than GDAN
and LSA, with SRR of 20.6% and SEI of 385.4%. In addition,
PG embedding has SRR of 69% and SEI of 44.9%, indicating
that it also improves sample efficiency compared to word
embedding.

B. VISUALIZATION OF PROTOTYPICAL GOALS
We visualize the extracted features and the prototypical goal
embeddings for the goals pursued by the agent. To perform
the visualization, we add a decoder training by Variational
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AutoEncoder (VAE) [60], [61] with the proposed method,
where we train the decoder with samples from the goal storage.
Then, the prototypical goal embeddings obtained with Eq. 4
are visualized using the decoder.

The visualization of the five objects used in our experiments
is shown in Figure 8, where we visualize the PG embeddings
in the center of each region. The surrounding images are
sampled from the goal storage with close feature distances
and visualized in the same way, with arrows pointing to
the original images. Since each object is placed in different
orientations and positions in the environment, we can see that
the visualization of the embedding reflects the shape and color
of objects. The surrounding images also reflect the shape and
color well. For the goal pursued by the agent, it is shown that
these visual aspects of the desired goal can be well-extracted
and pursued through PG embedding. Thus, when re-labeling is
performed in the failure episode, PG embedding-like features
can be set as the goal even for the incorrect goal similar to PG
embedding.

C. VISUALIZATION USING T-SNE
About 1,000 goal observations are collected for each class
by an agent with uniform random policy, and the features
are extracted by the learned VHS and visualized using t-
SNE [62] in Figure 9. This figure shows that there are distinct
regions for different classes, and the features for each goal
are distinguishable once the representations are sufficiently
trained. This result supports Figure 8 where the regions are
well-segmented by features.

VII. CONCLUSION
In this paper, we present the VHS approach with prototypical
goal embedding, designed to enhance the task performance
and sample efficiency in interactive visual navigation tasks
with sparse rewards. Our comprehensive experimental results
reveal that VHS significantly improves success rates and
sample efficiency by hindsight visual goal re-labeling of
unsuccessful episodes and by boosting deep exploration
through leveraging self-imitation with enriched successful
episodes. Notably, our PG embedding, crucial for enabling
goal re-labeling from visual observations, operates effectively
within this framework without reliance on any pre-trained
models. This work is the first one to demonstrate the feasibility
of using the hindsight experience replay technique in real-
time vision-based tasks, eliminating the need for prior data
collection. It paves the way for the integration of this approach
into a range of related fields.
Moreover, we anticipate that subsequent research will

validate the utility of VHS in incremental learning, especially
for effectively interacting with new, unseen objects. Our
proposed method can be combined with LLMs (Large
Language Models) [27], [63], [64], [65] to generalize to more
advanced navigation tasks, such as navigation by reasoning
the locations of arbitrary goal objects using commonsense
knowledge. Our method can also be extended to more general,
high-level interactive tasks with VLMs (Vision Language

Models) [66], [67], [68], such as having an arm robot prepare
a meal through multiple steps of interacting with ingredients.
Such extension may lead the future research closer to a more
human-like embodied AI.
A current limitation, however, is that the approach has not

been evaluated in settings that require a continuous action
space. Additionally, failure rewards and timeout rewards are
assumed to be distinguishable for the re-labeling method.

APPENDIX A
EXPERIMENTS DETAILS
A. EXPERIMENTS DETAILS
We share the details of the implementation, such as neural
network architecture and hyperparameters used in the
experiments.

1) IMPLEMENTATION DETAILS
The agent receives a 2-frame-stack of 64× 64 RGB images as
an input. The feature extractor processes this input and outputs
256 hidden features. The feature extractor is a 4-layered
Convolutional Neural Network, and batch normalization is
applied to each layer. All convolutional layers have kernel
size 3, stride 2 and padding 1, and the output dimension
is 256. Afterward, the input image and the PG embedding
are processed via gated-attention [69], and the resulting
feature vector is fed into a Long Short-TermMemory (LSTM)
module, where the output hidden vector and context vector
have dimensions of 256. In Task3, which involves various
interactions, the interactions provided by the instruction are
embedded and concatenated into the features before and
after the LSTM. Finally, the action and value are output by
feeding the LSTM’s output hidden vector into the policy and
value function, each composed of a 2-layered Multi-Layer
Perceptron (MLP).

2) HYPERPARAMETERS
The hyperparameters used in the experiment are recorded in
Table 3. For VHS trigger η, the higher the value, the more
the loss calculation is reflected, While we used the η that we
found during hyperparameter tuning, we believe that it can be
set higher depending on the experimental environment. The
sampling size for PG embedding was set according to the
hardware used for training, and other values were set similarly
or identically to [36].

B. ENVIRONMENT DETAILS
1) MUJOCO ENVIRONMENT
The first-person perspective navigation in the MuJoCo
environment we used for our experiments is shown in
Figure 3(a). Themapwe used for our experiments is 3m×3m in
size, and the agent has a stride length of 0.5 m. The maximum
number of steps in an episode T is 15 in all MuJoCo tasks.
At each episode reset, the agent is located in the center of the
map, and the objects are located in random positions within
the map boundaries and in random postures. Our agent is
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TABLE 3. Hyperparameters used in our experiments.

a combination of a fetch mobile robot and a UR5 arm and
is set up to perform the task of approaching and interacting
with objects. Our environment is characterized by the need
to perform the task in a sparse reward setting, without a
pre-trained model such as object detection or recognition.
The five objects that need to be reached are illustrated in
Figure 4, all of which are placed in random postures, including
orientation. All of the objects are easily encountered in
real-world environments.

2) MINIWORLD ENVIRONMENT
The Miniworld environment, which implements an interactive
visual navigation task to experiment with generalization and
scalability, is shown in Figure 3(b). The environment we used
is 9m× 9 m in size, and the agent has a stride length of 0.7 m.
The maximum number of steps in an episode T is 50. The
number of steps required from the left end of the environment
to the right end is 13 steps, compared to 6 steps in the MuJoCo
environment, so this environment is 2.1 times larger when
map size and stride width are considered together. In each
episode, like the MuJoCo environment, the agent is located
in the center of the environment, and objects are placed in
random locations. The objects and textures used from those
provided by the environment are shown below:
• Objects: RedBox, GreenBox, YellowKey, GreenKey,
BlueKey, PurpleBall, YellowBall.

• Seen textures: brick_wall, airduct_grate, asphalt,
cardboard, ceiling_tile_noborder, ceiling_tiles, cin-
der_blocks, concrete, concrete_tiles, floor_tiles_bw,
grass, lava.

• Unseen textures: marble, metal_grill, picket_fence.

C. EXPERIMENTAL COMPLEXITY
We perform the experiments in the machine with the following
specifications.
• CPU: AMD Threadripper 3970X (32 cores)
• RAM: 256 GB
• GPU: RTX 3090 × 2
The training time and RAM spent on the Miniworld-

Training experiment using this machine is shown below.

(Note that we do not aggregate RAM usage for the learning
environment).
• A3C: 7.5 hours, 13GB
• GCSL: 18.5 hours, 13.7GB
• GDAN: 8.2 hours, 13GB
• BC: 36 hours, 23.4GB
• RL Tuning: BC + 4.5 hours, 21.7GB
• LSA: 9.2 hours, 13GB
• VHS (Ours): 9.8 hours, 13.7GB

Both the memory usage and the training time of VHS
is increased marginally compared to the other baselines.
We equalized the number of updates for comparison with
all baselines, but we expect our method to take less than
half the time in practice compared to baselines due to early
convergence with high sample efficiency.
Furthermore, our research enables online learning in

vision-based tasks using re-labeling. This work can be
extended by collecting, sharing, and updating experiences
with large-scale multi-agent systems [70], [71], recognizing
and processing a wider variety of objects. Combined with
anomaly detection methods [72] for event-triggering, the
agents may proactively respond to unseen or rewarding states.
Such extension may allow our method to be applied in the real
world.

REFERENCES
[1] J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan, ‘‘A survey of embodied AI:

From simulators to research tasks,’’ IEEE Trans. Emerg. Topics Comput.
Intell., vol. 6, no. 2, pp. 230–244, Apr. 2022.

[2] M. Savva, A. Kadian, O.Maksymets, Y. Zhao, E.Wijmans, B. Jain, J. Straub,
J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, ‘‘Habitat: A platform
for embodied AI research,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 9338–9346.

[3] S. Franklin, ‘‘Autonomous agents as embodied AI,’’ Cybern. Syst., vol. 28,
no. 6, pp. 499–520, Sep. 1997.

[4] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese,
‘‘Gibson Env: Real-world perception for embodied agents,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 9068–9079.

[5] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra, ‘‘Embodied
question answering,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2018, pp. 2135–213509.

[6] J.-B. Yi and S.-J. Yi, ‘‘Mobile manipulation for the HSR intelligent home
service robot,’’ in Proc. 16th Int. Conf. Ubiquitous Robots (UR), Jun. 2019,
pp. 169–173.

[7] B. Ramalingam, J. Yin, M. Rajesh Elara, Y. K. Tamilselvam, M.
Mohan Rayguru, M. A. V. J. Muthugala, and B. Félix Gómez, ‘‘A
human support robot for the cleaning and maintenance of door handles
using a deep-learning framework,’’ Sensors, vol. 20, no. 12, p. 3543,
Jun. 2020.

[8] C.-Y. Lee, H. Lee, I. Hwang, and B.-T. Zhang, ‘‘Visual
perception framework for an intelligent mobile robot,’’ in
Proc. 17th Int. Conf. Ubiquitous Robots (UR), Jun. 2020,
pp. 612–616.

[9] K.-H. Zeng, L. Weihs, A. Farhadi, and R. Mottaghi, ‘‘Pushing it out of the
way: Interactive visual navigation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 9863–9872.

[10] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi, ‘‘Visual room
rearrangement,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 5918–5927.

[11] M. Wortsman, K. Ehsani, M. Rastegari, A. Farhadi, and R. Mottaghi,
‘‘Learning to learn how to learn: Self-adaptive visual navigation using
meta-learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 6743–6752.

VOLUME 12, 2024 83807



K. Kim et al.: Visual Hindsight Self-Imitation Learning for Interactive Navigation

[12] Z. Al-Halah, S. K. Ramakrishnan, and K. Grauman, ‘‘Zero experience
required: Plug & play modular transfer learning for semantic visual
navigation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 17010–17020.

[13] K. Kim, M. W. Lee, Y. Kim, J. Ryu, M. Lee, and B.-T. Zhang, ‘‘Goal-aware
cross-entropy for multi-target reinforcement learning,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 34, 2021, pp. 2783–2795.

[14] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, ‘‘Building generalizable agents
with a realistic and rich 3D environment,’’ 2018, arXiv:1801.02209.

[15] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva,
and D. Batra, ‘‘DD-PPO: Learning near-perfect pointgoal navigators from
2.5 billion frames,’’ in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–12.

[16] O. Maksymets, V. Cartillier, A. Gokaslan, E. Wijmans, W. Galuba, S. Lee,
and D. Batra, ‘‘THDA: Treasure hunt data augmentation for semantic
navigation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 15354–15363.

[17] L. Mezghan, S. Sukhbaatar, T. Lavril, O. Maksymets, D. Batra,
P. Bojanowski, and K. Alahari, ‘‘Memory-augmented reinforcement
learning for image-goal navigation,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2022, pp. 3316–3323.

[18] W. Sun, J. Andrew Bagnell, and B. Boots, ‘‘Truncated horizon policy
search: Combining reinforcement learning imitation learning,’’ 2018,
arXiv:1805.11240.

[19] Z. Cheng, L. Shen, and D. Tao, ‘‘Off-policy imitation learning from
visual inputs,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2023,
pp. 12402–12413.

[20] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, ‘‘Imitation learning:
A survey of learning methods,’’ ACM Comput. Surveys, vol. 50, no. 2,
pp. 1–35, Mar. 2018.

[21] J. Ho and S. Ermon, ‘‘Generative adversarial imitation learning,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–6.

[22] S. Schaal, ‘‘Is imitation learning the route to humanoid robots?’’ Trends
Cognit. Sci., vol. 3, no. 6, pp. 233–242, Jun. 1999.

[23] Q. Fang, X. Xu, X. Wang, and Y. Zeng, ‘‘Target-driven visual navigation in
indoor scenes using reinforcement learning and imitation learning,’’ CAAI
Trans. Intell. Technol., vol. 7, no. 2, pp. 167–176, Jun. 2022.

[24] R. K. Thakur, M.-N. S. Sunbeam, V. G. Goecks, E. Novoseller, R. Bera,
V. J. Lawhern, G. M. Gremillion, J. Valasek, and N. R. Waytowich,
‘‘Imitation learning with human eye gaze via multi-objective prediction,’’
2023, arXiv:2102.13008.

[25] H. Karnan, G. Warnell, X. Xiao, and P. Stone, ‘‘VOILA: Visual-observation-
only imitation learning for autonomous navigation,’’ in Proc. Int. Conf.
Robot. Autom. (ICRA), May 2022, pp. 2497–2503.

[26] R. Ramrakhya, D. Batra, E. Wijmans, and A. Das, ‘‘PIRLNav: Pretraining
with imitation and RL finetuning for ObjectNav,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 1–13.

[27] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton,
L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike,
and R. Lowe, ‘‘Training language models to follow instructions with
human feedback,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2022,
pp. 27730–27744.

[28] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, ‘‘Hindsight
experience replay,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–15.

[29] T. Dai, H. Liu, K. Arulkumaran, G. Ren, and A. A. Bharath, ‘‘Diversity-
based trajectory and goal selection with hindsight experience replay,’’ in
Proc. 18th Pacific Rim Int. Conf. Artif. Intell., 2021, pp. 32–45.

[30] M. Fang, T. Zhou, Y. Du, L. Han, and Z. Zhang, ‘‘Curriculum-guided
hindsight experience replay,’’ inProc. Adv. Neural Inf. Process. Syst., vol. 32,
2019, pp. 1–20.

[31] B. Manela and A. Biess, ‘‘Bias-reduced hindsight experience replay
with virtual goal prioritization,’’ Neurocomputing, vol. 451, pp. 305–315,
Sep. 2021.

[32] T. Dai, H. Liu, and A. Anthony Bharath, ‘‘Episodic self-imitation learning
with hindsight,’’ Electronics, vol. 9, no. 10, p. 1742, Oct. 2020.

[33] M. Fang, C. Zhou, B. Shi, B. Gong, J. Xu, and T. Zhang, ‘‘Dher: Hindsight
experience replay for dynamic goals,’’ in Proc. Int. Conf. Learn. Represent.,
2018, pp. 1–19.

[34] Y. Tang and A. Kucukelbir, ‘‘Hindsight expectation maximization for goal-
conditioned reinforcement learning,’’ in Proc. Int. Conf. Artif. Intell. Statist.,
2021, pp. 2863–2871.

[35] H. Sahni, T. Buckley, P. Abbeel, and I. Kuzovkin, ‘‘Addressing sample
complexity in visual tasks using her and hallucinatory gans,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–16.

[36] K. Kim, H. Lee, M. Whoo Lee, M. Lee, M. Lee, and B.-T. Zhang, ‘‘L-SA:
Learning under-explored targets in multi-target reinforcement learning,’’
2023, arXiv:2305.13741.

[37] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for model-
based control,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 5026–5033.

[38] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems,
S. Lahlou, S. Pal, P. Samuel Castro, and J. Terry, ‘‘Minigrid miniworld:
Modular customizable reinforcement learning environments for goal-
oriented tasks,’’ 2023, arXiv:2306.13831.

[39] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, ‘‘Target-driven visual navigation in indoor scenes using deep
reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2017, pp. 3357–3364.

[40] Q. Wu, X. Gong, K. Xu, D. Manocha, J. Dong, and J. Wang,
‘‘Towards target-driven visual navigation in indoor scenes via generative
imitation learning,’’ IEEE Robot. Autom. Lett., vol. 6, no. 1, pp. 175–182,
Jan. 2021.

[41] Y. Lyu, Y. Shi, and X. Zhang, ‘‘Improving target-driven visual navigation
with attention on 3D spatial relationships,’’ Neural Process. Lett., vol. 54,
no. 5, pp. 3979–3998, Oct. 2022.

[42] A. Devo, G. Mezzetti, G. Costante, M. L. Fravolini, and P. Valigi,
‘‘Towards generalization in target-driven visual navigation by using deep
reinforcement learning,’’ IEEE Trans. Robot., vol. 36, no. 5, pp. 1546–1561,
Oct. 2020.

[43] X. Ruan, P. Li, X. Zhu, and P. Liu, ‘‘A target-driven visual navigation
method based on intrinsic motivation exploration and space topological
cognition,’’ Sci. Rep., vol. 12, no. 1, p. 3462, Mar. 2022.

[44] D. S. Chaplot, D. Gandhi, A. Gupta, and R. R. Salakhutdinov, ‘‘Object goal
navigation using goal-oriented semantic exploration,’’ in Proc. Annu. Conf.
Neural Inf. Process. Syst., 2020, pp. 4247–4258.

[45] H. Du, L. Li, Z. Huang, and X. Yu, ‘‘Object-goal visual navigation via
effective exploration of relations among historical navigation states,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 2563–2573.

[46] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H.
Wang, L. Yi, A. X. Chang, L. J. Guibas, and H. Su, ‘‘SAPIEN: A simulated
part-based interactive environment,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 11094–11104.

[47] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
M. Deitke, K. Ehsani, D. Gordon, Y. Zhu, A. Kembhavi, A. Gupta, and
A. Farhadi, ‘‘AI2-THOR: An interactive 3D environment for visual AI,’’
2017, arXiv:1712.05474.

[48] J. Oh, Y. Guo, S. Singh, and H. Lee, ‘‘Self-imitation learning,’’ in Proc. Int.
Conf. Mach. Learn., 2018, pp. 3878–3887.

[49] Y. Li, Y. Wang, and X. Tan, Self-Imitation Guided High-Efficient Goal-
Conditioned Reinforcement Learning, document SSRN 4419852, 2023.

[50] S. Luo, H. Kasaei, and L. Schomaker, ‘‘Self-imitation learning by planning,’’
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 4823–4829.

[51] Y. Tang, ‘‘Self-imitation learning via generalized lower bound q-learning,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 13964–13975.

[52] G. Pshikhachev, D. Ivanov, V. Egorov, and A. Shpilman, ‘‘Self-imitation
learning from demonstrations,’’ 2022, arXiv:2203.10905.

[53] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. M. Devin, B. Eysenbach, and
S. Levine, ‘‘Learning to reach goals via iterated supervised learning,’’ in
Proc. Int. Conf. Learn. Represent., 2020, pp. 1–25.

[54] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[55] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,
C. Liu, and D. Krishnan, ‘‘Supervised contrastive learning,’’ in Proc. NIPS,
2020, pp. 18661–18673.

[56] J.Wang andY. Zhai, ‘‘Prototypical Siamese networks for few-shot learning,’’
in Proc. IEEE 10th Int. Conf. Electron. Inf. Emergency Commun. (ICEIEC),
Jul. 2020, pp. 178–181.

[57] Z. Ji, X. Chai, Y. Yu, Y. Pang, and Z. Zhang, ‘‘Improved prototypical
networks for few-shot learning,’’ Pattern Recognit. Lett., vol. 140,
pp. 81–87, Dec. 2020.

83808 VOLUME 12, 2024



K. Kim et al.: Visual Hindsight Self-Imitation Learning for Interactive Navigation

[58] F. Pahde, M. Puscas, T. Klein, and M. Nabi, ‘‘Multimodal prototypical
networks for few-shot learning,’’ in Proc. IEEE Winter Conf. Appl. Comput.
Vis. (WACV), Jan. 2021, pp. 2643–2652.

[59] S. Tyree, J. Tremblay, T. To, J. Cheng, T. Mosier, J. Smith, and S. Birchfield,
‘‘6-DoF pose estimation of household objects for robotic manipulation: An
accessible dataset and benchmark,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2022, pp. 13081–13088.

[60] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

[61] D. P. Kingma and M. Welling, ‘‘An introduction to variational autoen-
coders,’’ Found. Trends Mach. Learn., vol. 12, no. 4, pp. 307–392, 2019.

[62] L. Van der Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, no. 11, pp. 1–26, 2008.

[63] H. Touvron et al., ‘‘Llama 2: Open foundation and fine-tuned chat models,’’
2023, arXiv:2307.09288.

[64] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[65] W. Xin Zhao et al., ‘‘A survey of large language models,’’ 2023,
arXiv:2303.18223.

[66] T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing,
D. Schnurr, J. Taylor, T. Luhman, E. Luhman, C. Ng, R. Wang, and
A. Ramesh. (2024). Video GenerationModels as World Simulators. [Online].
Available: https://openai.com/research/video-generation-models-as-world-
simulators

[67] G. Team et al., ‘‘Gemini: A family of highly capable multimodal models,’’
2023, arXiv:2312.11805.

[68] H. Liu, C. Li, Q. Wu, and Y. J. Lee, ‘‘Visual instruction tuning,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 36, 2024, pp. 1–5.

[69] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Rajagopal, and
R. Salakhutdinov, ‘‘Gated-attention architectures for task-oriented language
grounding,’’ in Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 1–15.

[70] C. Yu, X. Yang, J. Gao, H. Yang, Y. Wang, and Y. Wu, ‘‘Learning efficient
multi-agent cooperative visual exploration,’’ in Proc. Eur. Conf. Comput.
Vis., 2022, pp. 497–515.

[71] H. Wang, W. Wang, X. Zhu, J. Dai, and L. Wang, ‘‘Collaborative visual
navigation,’’ 2021, arXiv:2107.01151.

[72] S. Aberkane and M. Elarbi-Boudihir, ‘‘Deep reinforcement learning-based
anomaly detection for video surveillance,’’ Informatica, vol. 46, no. 2,
pp. 1–34, Jun. 2022.

KIBEOM KIM received the B.E. degree in
computer engineering from Sejong University,
Seoul, South Korea, in 2017. He is currently
pursuing the Ph.D. degree with the Interdisci-
plinary Program in Neuroscience, Seoul National
University, Seoul. His research interests include
reinforcement learning, embodied AI, and robot
learning.

MOONHOEN LEE received the B.S. degree in
computer science and the M.S. degree in engi-
neering from Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2005 and 2007, respectively. He is currently
pursuing the Ph.D. degree with the Interdisciplinary
Program in Cognitive Science, Seoul National
University, Seoul, South Korea. His research
interest includes reinforcement learning.

MIN WHOO LEE received the B.Eng. degree
in computer science and engineering from Seoul
National University, South Korea, in 2021, where
he is currently pursuing the Ph.D. degree in
computer science and engineering. His research
interests include out-of-distribution generalization
and multi-agent reinforcement learning.

KISUNG SHIN received the B.E. degree in
computer engineering from Kyung Hee University,
South Korea, in 2020, and the M.S. degree
in brain and cognitive engineering from Korea
University, South Korea, in 2023. He is currently
pursuing the Ph.D. degree with the Interdisci-
plinary Program in Artificial Intelligence, Seoul
National University, South Korea. His research
interests include reinforcement learning, embodied
artificial intelligence, and brain-inspired artificial
intelligence.

MINSU LEE received the B.S. degree in math-
ematics and the M.S. and Ph.D. degrees in
computer science and engineering from Ewha
Womans University, South Korea. Currently, she
is a Research Professor with the AI Institute,
Seoul National University. Prior to this, she
was a Research Professor with Ewha Womans
University and a Visiting Scholar with Indiana
University, USA. Her research interests include
active learning and machine learning techniques

for video understanding and real-world reinforcement learning applications.

BYOUNG-TAK ZHANG (Member, IEEE) received
the B.S. and M.S. degrees in computer science
and engineering from Seoul National University,
South Korea, in 1986 and 1988, respectively, and
the Ph.D. degree in computer science from the Uni-
versity of Bonn, Germany, in 1992. He is currently
a POSCO Chair Professor of computer science and
engineering with Seoul National University (SNU)
and the Director of the SNU Artificial Intelligence
Institute. He was the President of Korean Society

for Artificial Intelligence, from 2010 to 2013, and Korean Society for
Cognitive Science, from 2016 to 2017.

VOLUME 12, 2024 83809


