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ABSTRACT Echocardiography is essential for the diagnosis and treatment of cardiovascular diseases,
especially congenital heart disease. However, the interpretation of echocardiography requires the accu-
mulation of abundant professional experience for cardiologists, which may lead to missed diagnoses and
misdiagnoses due to differences between operators. The development of artificial intelligence and its subset,
deep learning, has altered this potential crisis in recent years with their rapid, accurate, and consistent
nature. While the application of deep learning in echocardiography is still in its infancy, recent studies
demonstrate that deep learning models can quickly obtain information by extracting samples from large
databases. Moreover, growing evidence suggests that deep learning can be used for standard section
recognition in echocardiography and auxiliary diagnosis of heart disease. In this review, we begin by
outlining the principles of deep learning. Then, we investigate the current application of deep learning in
echocardiography, underscoring its significance. Furthermore, we discuss its limitations and finally highlight

future development prospects.

INDEX TERMS Artificial intelligence, deep learning, echocardiography.

I. INTRODUCTION

Accurate quantitative evaluation of cardiac morphology and
functionality underpins the formulation of clinical diagnoses
and effective treatment strategies. The intricacies of human
perception play a crucial role, as echocardiographers tra-
ditionally rely on their visual faculties to interpret static
and dynamic cardiac imagery. This conventional diagnostic
process involves the conversion of light signals into elec-
trochemical impulses by retinal photoreceptors, followed by
their transmission through an intricate neuronal network to
the brain, where they culminate in a blend of conscious
and unconscious interpretations [1]. Echocardiography is
paramount in cardiovascular diagnostics and therapy, noted
for its unique ability to visualize the heart’s dynamics and
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detect anomalies in real-time [2]. Clinicians depend on this
modality to discern intricate cardiac motions and patterns,
translating them into diagnostic insights and therapeutic
directives. Yet, the intrinsic subjectivity of this interpretation,
especially in the quantification of two-dimensional echocar-
diographic images, is fraught with potential inaccuracies.
Variances in diagnostic techniques and interpretations among
physicians, exacerbated by suboptimal image quality, present
a significant challenge [3].

Conversely, Deep Learning (DL), a subset of Artifi-
cial Intelligence (AI), heralds a paradigm shift, endowing
machines with the capability to discern intricate features
within a myriad of echocardiographic images. These sys-
tems can then apply their learned knowledge to new images,
empowering them to pinpoint regions of interest and iden-
tify pathologies with increased precision [4]. As detailed in
Fig. 1, while echocardiographic practice has progressed from
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mere two-dimensional interpretation to semi-quantitative
analyses, it remains hindered by human variability and the
labor-intensive nature of manual evaluation. Traditionally,
echocardiographers undergo extensive training over the years
to hone their diagnostic acumen. However, the advent of
Al, particularly DL, has sparked a renaissance in medical
imaging research. DL’s profound capabilities for rapid data
analysis and pattern recognition offer a robust solution to
these challenges, augmenting the echocardiographer’s role
by assimilating insights from an expansive compilation of
echocardiographic studies.
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FIGURE 1. Common DL models in echocardiography.

This manuscript provides a succinct exposition of deep
learning’s foundational principles and delineates its burgeon-
ing applications in echocardiography. These applications
encompass the recognition of canonical imaging sections, the
automated quantification of cardiac functions, the systematic
evaluation of valvular pathologies, and the nuanced diagnosis
and differentiation of cardiac diseases.

Il. BACKGROUND

In recent years, the expansive utility of Artificial Intelligence
(AD) has penetrated diverse sectors, notably in medical imag-
ing analysis. This section unfolds the essential principles of
Deep Learning (DL) and its pivotal component, the Convolu-
tional Neural Network (CNN), which tackles key challenges
in medical imagery interpretation. Furthermore, this segment
offers an all-encompassing review of DL’s multifaceted appli-
cations and delves into the inherent limitations that mark its
current state of evolution.

A. BASIC PRINCIPLE OF DL

DL stands at the forefront of Al, endowed with the pro-
found ability to emulate and potentially exceed human
cognitive processes. It allows computational systems to
perceive and analyze their environment, solving complex
problems with heightened efficiency and goal-orientation,
akin to human reasoning [1]. Within the broader Al spec-
trum, Machine Learning (ML) serves as an integral subset
whereby computers derive knowledge from data, not through
explicit programming, but via adaptive learning from labeled,
partially labeled, or even unlabeled datasets. This sub-
set is further stratified into supervised, unsupervised, and

83406

reinforcement learning paradigms, each distinguished by the
nature of feedback provided during the training process.
Fig. 2 illustrates the intricate interplay between Al, ML, and
DL, mapping out their symbiotic relationship.

Arificial Intelligence | MachineLearing | Deep Learning

[ 1 | >
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FIGURE 2. Relationship of artificial intelligence, machine learning, and
deep learning.

B. CNN DYNAMICS

DL artfully replicates the workings of human neural networks
by orchestrating a symphony of multi-layered neuronal cas-
cades. This sophisticated approach distills complex data into
a hierarchy of abstract features through successive nonlinear
processing layers, each contributing to the system’s capacity
for making predictive classifications. The CNN, a preeminent
algorithm within the DL paradigm, comprises a series of
interconnected neuronal layers, each mirroring the intricate
interplay of synapses in the human brain, modulated by vari-
able weights.

Within these networks, each artificial neuron assimilates
input signals weighted by their relative importance. Sum-
mation of these inputs leads to activation when a certain
threshold is surpassed, thus propelling a signal forward
that modulates the activity of subsequent neurons. Such
intricate layering escalates the network’s complexity and,
consequently, the need for extensive training data. Tradition-
ally, achieving a leaner neural network necessitated laborious
manual extraction of features from raw data. Yet, DL has
ushered in a new era where such limitations are transcended
by automated learning algorithms, enabling refined pattern
recognition with minimal human intervention [5].

C. DL-DRIVEN FIELD

It is demonstrated that DL has revolutionized the domain
of feature analysis by supplanting the need for manual fea-
ture delineation with algorithms capable of unsupervised
and semi-supervised learning, alongside hierarchical feature
extraction [4], [6], [7]. This shift towards automation facil-
itates the application of these sophisticated techniques in
practical, real-world scenarios. Presently, DL’s capabilities
are not only on par with, but in some instances, exceed human
proficiency in sectors such as speech and image recognition,

VOLUME 12, 2024



Q. Qi et al.: Application Status and Prospect of Deep Learning in Echocardiography

IEEE Access

and in prognosticating the efficacy of pharmaceutical com-
pounds [8], [9]. Specifically, within drug discovery, Al acts
as an accelerant, parsing through extensive chemical datasets
to predict potential efficacy and toxicity, thereby expediting
the journey from conception to clinical application of new
medicinal drugs.

D. RESTRICTION OF DL

While AT harbors the transformative potential across numer-
ous facets of human life, its translational capacity in clinical
contexts demands rigorous scrutiny. DL models, proficient in
parsing extensive datasets, are contingent upon the volume
and integrity of data for their training efficacy. The health-
care sphere, in particular, mandates stringent validation of
data to confirm its sufficiency, integrity, and precision before
its employment in model training. Paramount to this is the
assurance of dataset representativeness to circumvent biases
and data omissions that could undermine a model’s predictive
accuracy [10]. ADl’s prospective utility in addressing these
fundamental challenges is reflected in the advent of various
echocardiography software tools, leveraging Al to enhance
the analysis of cardiac imagery and facilitate structural and
functional assessments [11], [12].

1Il. APPLICATION OF DL IN ECHOCARDIOGRAPHY
Clinical protocols advocate for the utilization of echocardiog-
raphy in guiding therapeutic decisions via quantitative evalu-
ation of the heart’s chambers and valvular structures [13]. Yet,
this quantitative scrutiny is intricate and time-intensive, often
encumbered by manual delineation, rendering it impractical
amidst the exigencies of a dynamic clinical setting [14].
Consequently, qualitative visual assessments, which hinge
on substantial expertise in image procurement and interpre-
tative acumen, prevail in practice—a level of proficiency
not always possessed by less experienced sonographers. The
complexity escalates for internal medicine practitioners who
encounter ultrasonography more frequently in emergent care
yet lack specialized training [15]. DL stands as an instrumen-
tal breakthrough, potentially elevating diagnostic precision.
It emulates the analytical insights of a seasoned sonographer,
discerning and extracting subtle diagnostic cues impercepti-
ble to the clinician’s eye [16]. Fig. 3 graphically elucidates
how DL algorithms streamline and demystify the echocardio-
graphic evaluation process.

Although in its incipient phases within the echocardio-
graphic field, deep learning has been progressively adopted
across a spectrum of applications. These include the auto-
mated recognition of standard echocardiographic sections,
precise quantification of cardiac functions, systematic evalu-
ation of valvular pathologies, and the intricate diagnosis and
differentiation of cardiac diseases.

A. IMAGE RECOGNITION
In the realm of echocardiography, DL is now heralded
as a robust and comprehensive instrument, essential for
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formulating clinical verdicts. Central to this advancement
is the capacity for image recognition—critical for fully
automated assessment of cardiac function. The initial clas-
sification of standard imagery during preprocessing is fun-
damental, laying the groundwork for the ensuing automated
analysis. This field is characterized by a variety of scholarly
methods developed to address the complexities inherent in
both static and dynamic images.

1) STILL FRAME APPROACHES

Employing spatiotemporal feature extraction and supervised
learning, a segmentation algorithm has been developed to
autonomously discern and categorize key echocardiographic
views—apical two-chamber and four-chamber, as well as
parasternal long-axis—with impressive accuracy rates of
97%, 91%, and 97% respectively, culminating in an average
recognition rate of 95% [17].

To anchor the training, validation, and refinement of deep
learning models in a robust standard, a qualitative assessment
framework for the apical four-chamber view was instituted.
An expert-derived scale from O to 5 gauges image quality
(0 indicating minimal detail, up to 5 indicating compre-
hensive chamber visualization). The model’s proficiency is
underscored by a minimal average absolute error margin of
0.71 £ 0.58 when juxtaposed with expert evaluations [18].

Further enhancing this domain, Vaseli et al. [19] introduced
a streamlined classification model for echocardiographic
analysis, utilizing sophisticated architectures like VGG-16,
DenseNet, and ResNet via knowledge distillation techniques.
The model showcased an 88.1% accuracy in identifying
12 canonical views and boasts compatibility with mobile
technology, offering the potential for immediate diagnostic
application, a crucial feature for urgent care settings.

The integration of Convolutional Neural Network (CNN)
models has notably advanced the automated quality assess-
ment of echocardiographic views. Illustrated in Fig. 4 is a
schematic representation of a CNN model tailored for the
classification of echocardiographic images. Wu et al. [20] and
colleagues pioneered a knowledge distillation-based CNN,
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specifically aimed at recognizing standard echocardiographic
views to evaluate the precision and practicality of diag-
nosing congenital heart disease in pediatric patients. The
model’s training and validation capitalized on an extensive
set of 350,654 echocardiographic images from 3,505 individ-
uals, identifying 23 standard views frequently employed in
the diagnosis of pediatric congenital heart conditions. The
model achieved F1 scores exceeding 0.90 for the majority
of these views, which include crucial perspectives such as
the subcostal coronal/sagittal views of the atrial septum and
the parasternal short-axis views at the level of the mitral
valve.

FIGURE 4. CNN model for classification.

In a related development, Madani et al. [21] proficiently
trained a CNN to categorize 15 quintessential echocardio-
graphic views, encompassing both video and still images,
with the model attaining accuracies of 97.8% for video and
91.7% for still images. Validation exercises, including mask-
ing of the cardiac regions in images, underscored the model’s
dependency on the visualization of the cardiac structure for
accurate classification, with performance diminishing sub-
stantially when the heart was obscured, underscoring the
model’s reliance on cardiac features for precise identification.

2) DYNAMIC FRAME APPROACHES

Dynamic frame methodologies in deep learning confront the
challenge of lacking cohesive temporal and spatial data across
image sequences, which is essential for tasks like detecting
motion abnormalities. Pioneering strides in this realm involve
the creation of algorithms tailored to compensate for these
informational gaps.

Gao et al. [22] innovatively deployed a pair of 2D CNNs
to harness the dynamism of video data, markedly achieving a
classification correctness of 92.1%, thus outperforming tradi-
tional manual techniques. Fig. 5 illustrates this achievement.
Extending these advancements, Shahin and Almotairi [23]
developed an intricate classification mechanism, leverag-
ing the combined spatial and temporal analytics afforded
by ResNet and LSTM algorithms. This synergy not only
bolstered the accuracy but also streamlined the training pro-
cess. The constructed system exhibited formidable precision,
automatically discerning standard cardiac ultrasound views
with an accuracy of 96.3% and a sensitivity of 95.75%.
Notably, it demonstrated an exceptional 99.1% accuracy rate
in identifying standard views from various physiological
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positions, including the apical region, parasternal long axis,
and parasternal short axis, showcasing the profound impact
of integrating spatial-temporal features in deep learning
models.
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FIGURE 5. Architecture for fusing spatial and temporal information
(Gao et al. [23], 2017).

In an innovative step, Huang et al. [24] crafted a 3D convo-
lutional algorithm that synergizes temporal and spatial data,
initially deployed to discern and curate cardiac ultrasound
videos across four established views: the parasternal long-
axis, short-axis at the papillary muscle level, and the apical
4-chamber and 2-chamber views. The algorithm’s capabil-
ities were further harnessed to segment and annotate the
left ventricular wall, culminating in the nuanced assessment
of ventricular wall motion abnormalities through pre- and
post-segmentation video analysis.

Building on these advancements, Kumar et al. [25]
unveiled a rank-based feature selection strategy within the
R-DCNN framework, attaining a remarkable 96.7% accu-
racy in classifying cardiac ultrasound views, thereby sur-
passing traditional methods like Support Vector Machines
(SVM) and Machine Learning (ML) boosting. In paral-
lel, the CNN-derived CVC methodology [26] demonstrated
exceptional prowess in classifying seven cardiac ultra-
sound views with overall accuracies of (98.3 + 0.6) %
for single-frame and (98.9£0.6) % for sequential imaging
modalities.

Moreover, introducing a trailblazing self-supervised tech-
nique, Echo-SyncNet [27] was developed to ensure pre-
cise video synchronization between apical two-chamber
and apical four-chamber views, a breakthrough depicted
in Fig. 6.

Building on contemporary research, Ye et al. [28] intro-
duced the innovative ECHO-Attention model, which inte-
grates an attention mechanism to enhance the recognition of
standard echocardiographic views. This model was trained
and validated on a comprehensive dataset comprising 2,693
ultrasound videos from 267 patients, achieving an impres-
sive overall recognition accuracy of 94.81%. Specifically, the
model distinguished between the closely related views of the
parasternal short-axis apical and the parasternal short-axis
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FIGURE 6. General framework of Echo-SyncNet (Dezaki et al. [27], 2021).
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FIGURE 7. ECHO-Attention for ResNet-50 architecture
(Ye et al. [28], 2022).

nipple with accuracies of 88.65% and 81.70%, respectively,
as illustrated in Fig. 7.

Zhu et al. [29] innovated with EchoV-Net, a profound
deep residual network designed to autonomously discern
various echocardiogram views, both contrast-enhanced and
without contrast. This includes the apical two-chamber, three-
chamber, and four-chamber views, alongside the parasternal
short axis of the left ventricle (LV). The model exhibited
stellar performance, attaining commendable metrics across
the board—achieving an average overall accuracy, recall,
precision, specificity, and F1 score of 97.0%, 96.9%, 96.9%,
100.0%, and 96.9%, respectively.

The challenge of identifying fetal cardiac sections is
amplified due to the diminutive size of the fetal heart and
indistinct anatomical structures on ultrasound imagery. A par-
ticular study [30] addressed this issue by employing the
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FCN-16stride model, which realized a fetal cardiac ultra-
sound classification error rate of 23.48%.

Moreover, deep learning software has demonstrated effi-
cacy in supporting nursing staff to capture high-quality
echocardiographic images. These images span a range of
cardiac views, such as the parasternal long-axis, short-axis,
and a suite of apical chamber views, as well as subcostal
four-chamber and the Inferior Vena Cava (IVC) views, instru-
mental in assessing left ventricular dimensions. Significantly,
the software enabled measurements pertinent to cardiac
functionality, pericardial effusion, and right ventricular size,
achieving a level of precision on par with that of expert
sonographers [31].

B. AUTOMATED QUANTIFICATION OF CARDIAC FUNCTION
The meticulous quantification of left ventricular size and
functional assessment is a critical goal in echocardiogra-
phy. Prior to the integration of ML and DL, deformation
modeling provided promising avenues for edge detection,
segmentation, and tracking of cardiac motions [32]. Contem-
porary research confirms that DL models have streamlined
the measurement process, bolstering repeatability, closing
gaps in expert knowledge, and enhancing overall effi-
ciency [33]. Advancements in DL-based automated software
now offer rapid and reliable metrics for left ventricular
(LV) volumes, ejection fractions, and biplane longitudinal
strains, significantly diminishing subjective variability in
interpretation [34], [35], [36], [37], [38].

1) LV VOLUME QUANTIFICATION

Precision in segmentation is pivotal for an accurate functional
evaluation. Leclerc et al. [39] conducted a comparative study,
revealing that DL algorithms, particularly U-Net and its
variants, outperform traditional ML methods in 2D echocar-
diogram segmentation, demonstrating remarkable accuracy
even under challenging imaging conditions. Building on this,
the LU-Net [40] emerged, incorporating an attention network
to reinforce the precision of LV segmentation, paralleling
expert evaluations with a high average similarity score and
minimal error margin.

2) EJECTION FRACTION CALCULATION

Ouyang et al. [41] deployed a DL model that utilized a
spatio-temporal CNN structure to predict ejection fractions
with minimal error and high reliability in identifying cases
of heart failure with decreased ejection fractions, as vali-
dated by external datasets. Further innovating in this field,
Tian et al. [42] applied the Combined Channel and Spatial
Attention Mechanism (CBAM) alongside U-Net for cardiac
segmentation, enhancing the model’s diagnostic focus. More-
over, Sarkar and Chandra [43] employed the ResNet50 model
for patient classification based on ejection fraction, achiev-
ing high accuracy and F1 scores, showcasing the model’s
capacity to distinguish between normal and reduced ejection
fraction statuses.
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3) BIPLANE LONGITUDINAL STRAIN ANALYSIS

Salte et al. [38] engineered a sophisticated multi-network
system encompassing a classification network to identify
standard echocardiographic views, a temporal network to
demarcate systolic and diastolic phases, a segmentation net-
work dedicated to isolating the LV, and an optic flow network
designed to map out the LV optic flow field. This integrative
strategy has enhanced the accuracy of longitudinal strain
calculations, delivering performance on par with commonly
employed semi-automated systems. Building upon these
innovations, @stvik et al. [44] introduced a groundbreak-
ing fully automated myocardial functional imaging system
derived from the traditional PWC-Net framework, as demon-
strated in Fig. 8. This system adeptly performs automatic
estimations of the LV’s longitudinal strain, showcasing the
potential of deep learning applications to refine and automate
complex cardiac imaging analyses.
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FIGURE 8. Traditional PWC-Net architecture and EchoPWC-Net
(@stvik et al. [44],2021).

Romero-Pacheco et al. [45] have put forward a novel
methodology for calculating the overall longitudinal strain
of the left ventricle (LV) in echocardiographic analysis,
leveraging the capabilities of the GMA algorithm. Comple-
menting this, Tromp et al. [46] harnessed the ATTRACT
platform to develop an advanced CNN-based intelligent
recognition system. This system is adept at classifying,
segmenting, and quantifying echocardiographic video data,
enabling the autonomous annotation of 2D cardiac echocar-
diography and Doppler modalities. It proficiently quantifies
cardiac chamber volumes, assesses LV systolic and dias-
tolic functions, and precisely annotates the endocardium and
chambers of the LV and left atrium across apical 2-chamber
and 4-chamber views. Importantly, the system’s reliabil-
ity has been corroborated through validation on datasets
spanning Canada, Taiwan, China, and the United States,
underscoring the dependability of automated diagnostic
methods.

In terms of 3D echocardiography, pioneering efforts have
been made to segment the left ventricle utilizing a depth
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mapping network—marking the first foray into high-
dimensional LV segmentation with minimal annotated
data [47]. In a significant leap forward, Laumer et al. [48]
unveiled an innovative technique that transforms single-view
2D echocardiographic videos into a personalized 4D cardiac
mesh, using the novel 4DHM architecture depicted in Fig. 9.
This method, using solely 2D echocardiograms as input,
establishes a mapping function between two distinct visual
domains: echocardiographic video and cardiac mesh video.
This self-supervised approach generates a dynamic 4D car-
diac mesh capable of autonomously extracting key echocar-
diographic variables, including ejection fraction, myocardial
mass, and volumetric alterations in ventricular volume, all
with remarkable temporal precision.

>
[ %

FIGURE 9. System architecture of 4DHM (Laumer et al. [48],2023).

C. AUTOMATED ASSESSMENT OF VALVULAR DISEASE
Contemporary echocardiographic guidelines advocate for a
comprehensive evaluation of valvular regurgitation, inte-
grating both semiquantitative and quantitative methods to
precisely ascertain regurgitation severity [49]. Prominently,
the clinical adoption of the proximal iso-velocity surface area
(PISA) method is encouraged. While traditional 2D echocar-
diographic PISA approaches are constrained by assumptions
of hemispheric symmetry, 3D echocardiographic PISA has
demonstrated superior correlation with cardiac magnetic
resonance (CMR), enhancing the accuracy in determining
regurgitant severity [50].

De Agustin et al. [51] showcased the effectiveness of
automated software for quantifying mitral PISA within
3D echocardiography. Additionally, using color Doppler
echocardiography to measure aortic regurgitation volume
revealed a strong positive correlation with CMR findings,
providing a more detailed representation of aortic regur-
gitation severity compared to 2D echocardiographic PISA.
Moreover, automated transesophageal 3D echocardiographic
mitral valve analysis software has proven to be more reliable
and consistent for the quantitative evaluation of the mitral
annulus, surpassing manual assessment in both size and mor-
phological precision [53].
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The emergence of Al technology in valvular disease
assessment presents a promising avenue, minimizing proce-
dural complexities and significantly enhancing the precision
and reliability of quantitative evaluations. The advancements
and their implications are vividly illustrated in Fig. 10.
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FIGURE 10. Comparison of PISA between 2D and 3D.
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In a notable application of deep learning to echocardiogra-
phy, one study [54] transformed transesophageal 3D echocar-
diograms into 2D planar representations to enable automatic
mitral annulus segmentation. The developed method demon-
strated potential for assisting mitral valve treatments, evi-
dencing an average error of 2.0 mm with a standard deviation
of 1.9 mm. Expanding the scope of computational cardiology,
Herz et al. [55] implemented the V-Net architecture [56],
employing a fully convolutional network to delineate left
heart dysplasia and evaluate the tricuspid valve, demon-
strating the versatility of deep learning in complex cardiac
segmentation tasks.

Yu et al. [57] designed a dynamic CNN that capitalizes on
multi-scale data to precisely track the mitral valve, refining
fetal left ventricle segmentation with an average Dice similar-
ity coefficient of 0.945 in testing scenarios. In a similar vein,
Chandra et al. [58] integrated the Yolo3 detection system to
monitor the mitral valve through echocardiograms, achieving
remarkable detection accuracies of 98% for the mitral valve
and 90% for the tricuspid valve.

Further illustrating the power of deep learning in cardiol-
ogy, Vafaeezadeh et al. [59] developed and trained a suite
of 13 models specializing in the identification of prosthetic
valves. Their models achieved an impressive AUC of 98%,
showcasing performance on par with seasoned cardiologists.
The efficacy of their deep learning framework is visually
represented in Fig. 11, providing a compelling testament to
the advancements in automated cardiac diagnostics.

Guided by the 2017 American Society of Echocardiog-
raphy guidelines, which delineate mitral regurgitation (MR)
into four distinct grades based on severity, Zhang et al. [60]
innovated the labeling process of color Doppler echocar-
diographic images using LabelMe software. Following the
labeling, they harnessed the capabilities of the Mask R-CNN
model for the automated evaluation of MR severity. The
accuracy of their model in predicting the correct grade of
MR was impressive, achieving precision scores of 0.90, 0.87,
0.81, and 0.91 for grades I through IV, respectively. These
performance metrics are depicted in Fig. 12, demonstrating
the precision and reliability of their deep learning solution in
clinical diagnostics.
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FIGURE 11. DL framework for prosthetic mitral valve recognition
(Yu et al. [59], 2017).

FIGURE 12. The original image of MR of grade I to grade IV
(Zhang et al. [60], 2021).

Yang et al. [61] have made strides in echocardiographic
analysis by devising a self-supervised learning algorithm,
utilizing an apical four-chamber view dataset for the eval-
uation of mitral regurgitation severity on 2D color Doppler
echocardiograms. To reduce the labor-intensive task of man-
ual annotation, they pre-trained and introduced the CD-SSL
model, which not only surpassed the traditional ResNet-UNet
model with an accuracy of 95.9% for identifying the MR
jet region but also offered six quantitative metrics. These
metrics—proportions and areas such as MR jet length rel-
ative to left atrium (LA) length, MR jet length, LA width,
LA region, MR jet area, and the MR jet region relative to LA
region—provide a robust framework for aiding clinicians in
diagnostic processes.

Complementing these technological advances,
Edwards et al. [62] focused on pediatric echocardiography,
crafting a deep learning model aimed at detecting mitral
regurgitation for rheumatic heart disease screening among
children. This model demonstrated an impressive 98% accu-
racy in classifying standard echocardiographic views and an
86% success rate in pinpointing mitral regurgitation, under-
scoring the potential of DL models in enhancing diagnostic
precision in rheumatic cardiology.

D. DIAGNOSIS AND DIFFERENTIATION OF DISEASE

Hong et al. [63] have crafted a CNN tailored to color Doppler
echocardiography images, automating the detection of
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secundum atrial septal defects in pediatric patients. Their
system executes a tripartite strategy: initially, it identifies four
crucial echocardiographic views that include the subcostal
view targeting the atrial septum, the apical and low paraspinal
4-chamber views, and the parasternal short-axis view. The
subsequent phase involves meticulous segmentation of per-
tinent cardiac structures and identification of probable atrial
septal defect sites. The final phase integrates the segmenta-
tion and detection data to conclude the diagnostic process.
Through rigorous development and validation phases, the
system showcased commendable image-level performance,
with averages of 0.8545 for recall, 0.8577 for precision,
0.9136 for specificity, and 0.8546 for the F1 score, respec-
tively. These findings illuminate the vast potential of machine
learning to revolutionize the intelligent diagnosis of congen-
ital heart conditions.

1) MYOCARDIAL HYPERTROPHY

Differentiating between various pathological conditions that
share echocardiographic characteristics is often challeng-
ing, especially for less experienced practitioners. Cardiac
amyloidosis and hypertrophic cardiomyopathy, for instance,
both manifest as myocardial hypertrophy in imaging stud-
ies [64]. In a significant research effort analyzing 23,745
cardiac ultrasound examinations, a sophisticated end-to-
end model was designed to evaluate left ventricular (LV)
dimensions and wall thickness, with the specific intent to
diagnose left ventricular hypertrophy (LVH). The imple-
mentation of a 3-dimensional CNN with residual learning
pathways enabled this model to accurately differentiate car-
diac amyloidosis (with an AUC of 0.83) from hypertrophic
cardiomyopathy (with an AUC of 0.98) and other LVH
etiologies [65].

Complementing these advancements, Yu et al. [66] devel-
oped a semi-automatic system that applies ResNet for
classification tasks and U-net++ for segmentation tasks.
The resultant integrated system, which is visually detailed
in Fig. 13, proficiently sorts echocardiographic data into
distinct categories, effectively discerning normal cardiac
anatomy from conditions like hypertrophic cardiomyopathy
(HCM), cardiac amyloidosis (CA), and hypertensive heart
disease (HHD).

Xu et al. [67] leveraged transthoracic echocardiogra-
phy (TTE) video data to advance the differential diagnosis
of pathological left ventricular hypertrophy, distinguishing
between hypertrophic cardiomyopathy (HCM), hyperten-
sive heart disease (HHD), and uremic cardiomyopathy
(UCM) with a nuanced approach. Furthering this field,
Zhang et al. [68] engineered an automated system that rev-
olutionizes cardiac ultrasound analysis. This versatile model
proficiently performs multiple tasks: it recognizes 23 differ-
ent cardiac ultrasound image sections, achieves segmentation
of common cardiac chambers with approximately 85% accu-
racy, accurately computes cardiac chamber volumes and
ejection fraction, and adeptly detects complex conditions
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such as hypertrophic cardiomyopathy, cardiac amyloidosis,
and pulmonary hypertension with an overall view classifica-
tion accuracy of 84%.

These pioneering studies showcase the remarkable capac-
ity of deep learning systems to not only automate intri-
cate diagnostic procedures but also provide accurate and
comprehensive cardiac assessments, representing significant
progress in the use of Al for cardiac diagnostics.

2) MYOCARDIAL INFARCTION

Kusunose et al. [69] carried out a pioneering study using
short-axis echocardiographic views from 300 patients with
a history of myocardial infarction alongside 100 patients
exhibiting normal ventricular motion. Their model, feed-
ing on a triad of images from distinct cardiac phases,
demonstrated remarkable concordance with expert human
assessment in detecting regional wall motion abnor-
malities, with a ResNet model achieving an AUC
of 0.97.

Expanding upon these findings, Muraki et al. [70]
developed a sophisticated model integrating CNNs with
LSTM networks to differentiate Acute Myocardial Infarc-
tion (AMI) from normal myocardial conditions. The model
attained overall accuracies of 83.2% and 85.1% for
classifying myocardial states in short-axis and left ven-
tricular long-axis views, respectively, underscoring the
profound impact of DL in improving AMI detection and
categorization.

Moreover, Hamlia et al. [71] engineered a fully automated
CNN-based model capable of real-time early MI prediction
via echocardiography. This model utilized a 2D CNN to
segment the left ventricle with a stellar 97.18% accuracy
from the apical four-chamber view and deployed a 3D CNN
for myocardial infarction classification, attaining an accu-
racy of 90.9%. These figures notably exceed those achieved
by prior active polynomial methods, which score.d 87.94%
accuracy [72].

3) OTHER HEART DISEASES
Martins et al. [73] leveraged the capabilities of 3D
CNNs along with supervised integration techniques to
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autonomously identify rheumatic heart disease (RHD),
achieving a diagnostic accuracy of 72.77%. Building on
these technological advances, Han et al. [74] introduced an
innovative dual-network model that integrates a spatial atten-
tion module. This model aids in the precise segmentation of
abnormal cardiac structures, thereby streamlining the early
screening process for congenital heart disease (CHD), a crit-
ical step in pediatric cardiology.

Complementing this progress, Nova et al. [75] employed
a U-Net-based model specializing in the segmentation of
infant cardiac septal anomalies. Their model demonstrated
exceptional proficiency, distinguishing atrial septal defects
(ASDs), ventricular septal defects (VSDs), atrioventricu-
lar septal defects (AVSDs), and normal cardiac anatomy
with accuracies of 99.05%, 98.62%, 99.39%, and 98.97%,
respectively.

IV. CONCLUSION

Echocardiography, a crucial noninvasive tool for cardiac
assessment, traditionally depends on the expertise of the
interpreting physicians. Models such as ResaNet and U-Net
have risen to prominence, revolutionizing both segmentation
and classification within this field. With a wave of innova-
tion, these models are at the heart of automated systems,
some enhanced by attention mechanisms for superior perfor-
mance. Yet, there remains a noticeable research gap in the
segmentation and classification of the right heart and related
pathologies.

A recent landmark study [76] has validated DL’s trans-
formative power in echocardiogram interpretation, bench-
marking DL-generated cardiac parameters against those of
human sonographers. The findings illustrate DL’s ability
to boost interpretive efficiency, producing more consistent
and precise outcomes while curtailing the time required for
analysis. Despite concerns over DL’s role in the workforce,
it emerges not as a replacement but as an invaluable sup-
port to clinicians, especially those at the early stages of
their careers, and extends its utility to noncardiac ultrasound
experts.

However, the journey of DL in echocardiography is just
beginning. The promise of unsupervised learning looms on
the horizon, hinting at untapped potentials in autonomous
echocardiogram analysis. Hearteningly, DL’s scope is already
expanding into the realm of fetal echocardiography, a testa-
ment to its clinical versatility [77].

In conclusion, despite the significant progress made, DL’s
path is one of ongoing discovery and enhancement. As it
evolves, the expectation is that DL will redefine echocardiog-
raphy, elevating diagnostic precision, operational efficiency,
and broader access, all to the greater benefit of patient care
and clinical outcomes.
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