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ABSTRACT Traditional pattern mining algorithms are based on tree and linked list structures. However, they
often only consider a single factor of frequency or utility and have to deal with exponential search spaces
as well as generate numerous candidates. Thus, we propose a frequent closed high-utility itemset mining
(FCHUIM) algorithm based on Leiden community detection and a compact genetic algorithm (LcGA).
This algorithm first employs Leiden community detection to decompose a dataset into several highly
related transaction communities and then uses an approximate or exact strategy to mine frequent itemsets.
Subsequently, it checks for closures in the mined frequent itemsets and finally employs the compact genetic
algorithm to efficiently mine high-utility patterns from the frequent closed itemsets. Experimental results on
four real datasets, namely Retail, Chainstore, Chess, Accidents,among which the datatype of the former
two is Sparse and that of the latter two is Dense, demonstrate that compared with modified traditional
closed high-utility mining algorithms, including CHUI-Miner-S, CLS-Miner-S and the most advanced
algorithms for mining frequent closed high-utility mining algorithms called FCHUIM, the average runtime
of LcGA-FCHUIM is lower by 40.5% than the optimal contrastive algorithm. Moreover, LcGA-FCHUIM
can mine an average of 96% of frequent closed high-utility itemsets, making it an effective algorithm for
frequent closed high-utility itemset mining and suitable for most scenarios.

INDEX TERMS Frequent closed high-utility itemset mining (FCHUIM), Leiden community detection,
compact genetic algorithm (cGA), approximate strategy, exact strategy.

I. INTRODUCTION
The objective of data mining is to extract effective,
unusual, potentially valuable, and interpretable patterns from
massive data. The primary tasks include predictive and
descriptive processing, offering specific sales strategies or
other decision-making information. Frequent itemset min-
ing (FIM) [1] is a descriptive task applied in market basket
analysis to extract frequently occurring patterns for promo-
tional purposes. However, FIM is limited by two assumptions.
First, it assigns equal importance to all items without
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considering other semantic factors, such as profit and cost.
Second, it only considers whether an item exists in a trans-
action and does not reflect the original purchase quantity
in that transaction. For instance, the pattern {instant noo-
dles, cola} may be frequent, but it may yield very limited
profit because supermarkets often use cola as a low-price
promotional item. Conversely, the pattern {diamond ring,
Maotai liquor} may not be frequent, but it can generate
substantial profit. To address these limitations, high-utility
itemset mining (HUIM) was introduced [2]. The utility of
items can be evaluated based on different criteria, such as the
number of website visits, the profit from selling items, and
other user-specified standards. High-utility itemsets (HUIs)
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are itemsets with utility function values that are not less than
the user-specified minimum utility threshold. Mining based
on utility patterns has widespread applications, such as web-
site clickstream analysis, mobile e-commerce, biomedical
applications, and cross-marketing [3].

HUIM algorithms based on tree structures [4] and evolu-
tionary models [5] often produce a large number of HUIs,
which can sometimes be challenging for users to compre-
hend. Further, numerous HUIs can deteriorate an algorithm’s
execution time and memory usage [6]. Thus, efforts have
been made to generate compact and lossless HUI represen-
tations, known as closed high-utility itemsets (CHUIs) [7].
An itemset is a CHUI if it satisfies two conditions: 1) it is
an HUI and 2) it has no supersets with the same support.
Therefore, CHUI mining (CHUIM) can provide comprehen-
sive yet more concise information for decision-makers. The
first CHUIM algorithm was proposed in [8]. This algorithm
uses a two-phase approach to mine information. However,
the first phase generates numerous candidate sets and the
second phase requires repeated dataset scanning. Thus, its
mining efficiency needs improvement. Reference [9] used
an extended utility list to maintain itemsets discovered in
transactions and applied a divide-and-conquer model to mine
complete CHUIs. However, operations to maintain the utility
list are time-consuming, and its pruning strategy uses a loose
upper bound. Thus, overall efficiency still needs improve-
ment [10], after analyzing the strengths and weaknesses
of reference [9], proposed strategies such as link-estimated
utility co-occurrence pruning and closure detection. The
modified algorithm based on the combined effect of these
strategies is a state-of-the-art CHUIM algorithm. However,
it cannot effectively handle large-scale datasets [11].
Traditional CHUIM algorithms typically consider finding

all required CHUIs. First, such algorithms are unsuitable for
making online recommendations in a short time, such as in the
stock market. Second, mined itemsets need further analysis
to be effectively used, and the interpretation of CHUIs may
require domain knowledge; otherwise, they might not be
intuitive. Finally, some CHUIs may not be frequent enough to
be of significant reference value for most merchants. In real
life, only a few merchants focus on the sales of luxury goods.
Best-selling products are more favored by merchants because
they can quickly recirculate funds to reduce unnecessary
financial risk issues. Therefore, people are more interested in
mining frequent CHUIs (FCHUIs) [12], [13] because mining
a vast majority of FCHUIs in a short time can also meet
daily decision-making needs, and its mining results are more
intuitive, i.e., it has stronger interpretability. In other words,
we need to mine an itemset that can simultaneously meet or
exceed the minsup and minutil thresholds in a transactional
dataset and has a concise representation. Here, minsup and
minutil are specified by users. An efficient algorithm for
mining frequent closed high-utility itemsets (FCHUIM) was
proposed in [14]. This algorithm employs strategies such
as extended utility pruning upper bounds, a total counting
list structure, and prechecking to accelerate the mining of

target itemsets. Although it is efficient to a certain extent,
it remains a mining algorithm based on a linked list structure.
A solution to address the above limitations is to first consider
dataset decomposition, then find all frequent closed itemsets,
and finally use a fast search algorithm to find HUIs among
the frequent closed itemsets.

At present, there is no research on the combination of the
Leiden community detection algorithm and compact genetic
algorithm (cGA) for FCHUI mining (FCHUIM). To improve
mining efficiency, we propose a CHUIM algorithm based
on the Leiden community detection algorithm and compact
genetic algorithm, with the following key features: 1) it uses
the Leiden community detection algorithm to decompose a
dataset andminimizes interclass shared items, thereby obtain-
ing knowledge discovered as a training set for subsequent
prediction or mining with higher accuracy; 2) it uses cGA
to efficiently mine FCHUIs in a short time, benefiting online
decision-making for large-scale databases. Extensive exper-
iments on various large-scale datasets demonstrate that the
proposed algorithm outperforms modified CHUI-Miner and
chain lower branch strategy miner (CLS-Miner) algorithms.

II. RELATED WORK
A. COMMUNITY DETECTION
Community detection is commonly used to understand com-
plex network structures. The Louvain algorithm [15] is
a widespread model for revealing community structures.
However, it has some limitations such as low accuracy in
community partitioning, sensitivity to the distribution of
cell sizes within groups, and the identification of small
subgroups with no connections within the same cluster.
To address these limitations, the Leiden community detec-
tion algorithm was proposed in [16]. This algorithm is a
hierarchical clustering approach that optimizes modularity
through greedymoves, recursively merging communities into
single nodes and repeating the process on a compressed
graph. The algorithm involves three stages: local move-
ments of nodes, refinement of partitions, and aggregation of
networks based on the refined partitions. The Leiden commu-
nity detection algorithm ensures strong connections between
communities, has higher speed and better scalability than the
Louvain algorithm, and can operate on graphs with millions
of nodes [17].

Transaction databases also possess community proper-
ties, with each database representing a collection of similar
transactions. Reference [18] used various algorithms to
decompose transaction databases. However, the algorithms’
results were affected by the decomposition quality and sev-
eral shared items were observed between clusters. If there
is no shared item between clusters, the number of patterns
discovered with and without decomposition is the same [19].

B. cGA
Several evolutionary algorithms have been proposed for
mining association patterns [20], [21]. However, they have
limitations in terms of runtime and accuracy, especially for
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large datasets. To address these limitations, we introduce
cGA to explore transaction communities. Although cGA is a
so-called genetic algorithm, it is essentially an estimation of
distribution algorithm (EDA) [22]. It has similar accuracy to
that of genetic algorithms but requires less time and memory,
making it more efficient. Compared with other EDAs, cGA
has a more concise probability model and a smaller popula-
tion size. In cGA, a candidate solution is represented by a
probability vector, and two individuals are generated based
on this probability vector to compete. The probability vector
is then updated according to a specific strategy. The cGA pro-
cess is simple and does not require large-scale crossover and
mutation operations as in traditional genetic algorithms, sig-
nificantly reducing storage space and improving efficiency.

The cGA workflow is as follows (Steps 1-6):
Step 1: Initialize the probability vector, typically setting

the probability for each gene to 0.5.
Step 2: Sample using the probability model to generate two

individuals.
Step 3: Evaluate the fitness of the two individuals.
Step 4: Select the individual with a higher fitness as the

winning individual.
Step 5: Update the probability model using the winning

individual.
Step 6: Repeat Steps 2-5 until the termination condition

is met.

C. CHUIM
Existing studies mostly focus on FIM and HUIM, with
research on FCHUIM being relatively rare. The basic con-
text of utility pattern mining has been described above.
In this section, we only provide a review of the research
progress on CHUIM, which is most relevant to this study.
Because HUIM generates a large number of results, which
are time-consuming for users to analyze, a more concise
itemset representation, that is, CHUIM, is necessitated. The
concept was first proposed by Tseng et al. [8], who incor-
porated four effective strategies to reduce the number of
candidate itemsets. However, their algorithm’s two-phase
mining process requires additional database scans and is quite
time-consuming in practice. Thus, Wu et al. [19] proposed
CHUI-Miner, a one-phase mining algorithm that adopts a
special structure called EU-List to store the utility informa-
tion of itemsets without additional database scans, effectively
improving mining efficiency. However, CHUI-Miner only
uses TWU and the remaining utility as pruning strategies and
several candidate itemsets are still retained in the search pro-
cess. Another CHUIM algorithm, named EFIM-Closed, was
proposed in [7]. Two tighter upper bounds and a method for
forward and backward closure checking were introduced to
effectively prune more search spaces, but there is a drawback
of needing to repeatedly scan a database when the dataset
is dense. CLS-Miner was proposed in [10]. CLS-Miner is
similar to CHUI-Miner but employs more effective strate-
gies, such as Chain-EUPC, coverage, LBP, and an improved

subsume relationship check method, making it a state-of-the-
art CHUIM algorithm. Reference [23] used a multi-objective
model to mine CHUIs, initially clustering with the k-means
model and then using the MapReduce model and cGA to
test potential and probable candidates for mining large-scale
CHUIs in a large database, significantly improving mining
efficiency. However, the model is not a complete algorithm
and its mining accuracy needs improvement. FCHUIs, as a
compact form of expression, are not only few in number but
can also provide lossless information. Reference [14] studied
FCHUIs using amethod similar to CLS-Miner by introducing
an extended utility pruning upper bound strategy, which is
tighter than the traditional pruning upper bounds and can
effectively mine the research targets. Nevertheless, it is still
time-consuming. In this study, we aim to achieve a balance
between mining efficiency and accuracy.

III. PREPARATION OF RELEVANT KNOWLEDGE
In this section, we provide a detailed introduction to the
relevant knowledge and definitions involved in this study.

Let I = {i1, i2, . . .ik} be a finite set of items and the trans-
action database D = {T1,T2, . . .Tn} comprises transaction
information and external utility tables. The external utility
table stores the unit profit or importance of each item, and
the transaction information table records the frequency of
occurrence of each item in each transaction and the utility
value of each transaction. Each transaction is a subset of
item collection I , i.e., Tc⊆I , and each transaction Tc has a
unique identifier Tid . Table 1 presents a small quantitative
transactional database, and Table 2 lists the profit of different
items in this database.

TABLE 1. Transaction information.

TABLE 2. External utility.

Definition 1 (Frequent Itemset (FI)): For any given item-
set X , if its support is greater than or equal to a given support
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threshold minSup, i.e., sup(X ) ≥ minSup, then X is called
an FI.
Definition 2 (Utility of a Single Item in a Transaction):

The utility of item ij in transaction data Tq, denoted by
u

(
ij,Tq

)
, is defined

u
(
ij,Tq

)
= q

(
ij,Tq

)
× p

(
ij
)
. (1)

For example, in Table 1,

u(c,T3) = q(c,T3) × p(c) = 4 × 1 = 4,

u(e,T5) = q(e,T5) × p(e) = 1 × 6 = 6.

Similarly, the utility of itemset X in transaction Tq is
defined as follows:

u(X ,Tq) =

∑
ij∈Tq∧X⊆Tq

u(ij,Tq). (2)

For example,

u({a, c} ,T5) = q(a,T5) × p(a) + q(c,T5) × p(c)

= 3 × 3 + 25 × 1 = 34.

Definition 3: (Utility of a Single Itemset in the Database):
The utility of itemset X in database D, denoted by u (X),
is used as the fitness function for the subsequent cGA HUIM.
It is defined as follows:

u(X ) =

∑
ij∈Tq∧X⊆Tq

u(X ,Tq). (3)

For example,

u({a, c}) = u({a, c} ,T1) + u({a, c} ,T5)

= u(a,T1) + u(c,T1) + u(a,T5) + u(c,T5)

= 3 + 18 + 9 + 25 = 55.

Definition 4: (Utility of a Single Transaction in the
Database): The utility of transaction Tq in database D,
denoted by tu(Tq), defined as follows:

tu(Tq) =

∑
ij∈Tq

u(ij,Tq). (4)

For example,

tu(T6) = u(b,T6) + u(f ,T6) = 1 × 9 + 2 × 1 = 11.

Definition 5 (Total Utility of the Database): The total util-
ity of transaction database D is the sum of the utilities of
individual transactions:

U (D) =

∑
Tq∈D∧X⊆Tq

TU (Tq). (5)

For example,

U (D) = tu (T1) + tu (T2) + tu (T3)

+ tu (T4) + tu (T5) + tu (T6)

= 27 + 11 + 16 + 11 + 55 + 15 = 135.

Definition 6: (HUIM): Assuming the minimum utility
threshold coefficient is δ, itemset X is considered an HUI if

its utility value is not less than the minimum utility value,
minUti:

u(X ) ≥ minUti =
∑
Tq∈D

tu(Tq) × δ (6)

For example, if δ = 30%, then minUti = 135 × 30% =

40.5. Because u ({a, c}) = 55 > 40.5, {a, c} is an HUI;
meanwhile, because u ({a, b, f }) = 15 < 40.5, a, b, f is not
an HUI.
Definition 7: (CHUI): Given itemset X . It is considered

a CHUI if and only if it has no proper superset Z such
that sup(X ) = sup(Z ) (in other words, X and Z are HUIs,
i.e., u(X ) ≥ minUti, u(Z ) ≥ minUti).
Definition 8: (FCHUI): Given itemset X . It is considered

an FCHUI if and only if its support value sup(X ) ≥ minSup,
its utility value u(X ) ≥ minUti, and it is closed.
For example, if minSup = 33.3% and minUti = 30, then

{d, e} is an FCHUI because it has a support of exactly 33.3%,
u ({d, e}) = 32 > 30, and there are no supersets of {d, e}
with the same support. Meanwhile, {c, e} is not an FCHUI.
Although it satisfies the minimum support and minimum
utility requirements, its superset {a, c, e} has the same sup-
port and satisfies the first two minimum requirements. The
purpose of FCHUIM is to discover combinations of items
in transaction databases that are both frequent and have high
utility while still being concise in their representation. These
patterns can assist market decision-makers in developing
rational and effective sales strategies.

IV. FCHUI BASED ON cGA
In this section, we introduce the proposed Leiden commu-
nity detection and cGA-based FCHUIM algorithm (LcGA-
FCHUIM). The algorithm begins by using the Leiden
community detection method to decompose the transaction
database into highly related transaction communities, thereby
reducing the search space. It then proceeds to mine frequent
closed itemsets within each community and finally uses cGA
to mine HUIs within the frequent closed itemsets.

A. LEIDEN COMMUNITY DETECTION
First, the transaction database is transformed into a graph
network, where each transaction is considered a node, and
if two transactions share items, an edge is added between
the corresponding nodes. The graph G =< V ,E > is
constructed from this transaction database D and itemset I ,
where V and E denote the vertex and edge sets, respectively.
The transformation process is given by (7) and (8):

∀Ti ∈ D, ∀Vi ∈ V ,Vi = Ti (7)

∀(Ti,Tj), ∃ik ∈ I , ik ∈ Ti ∨ ik ∈ Tj,Eij = 1

∀(Ti,Tj), ∃ik ∈ I , ik ∈ Ti ∨ ik ∈ Tj,Eij = 1. (8)

For example, in the transaction database shown in Table 1,
if we consider the first four transactions, V is constructed
from four transactions, i.e., V = D = {V1,V2,V3,V4}.
If two vertices share items, an edge is created between them.
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E is defined as E = {E1,E2,E3,E4}, where E1 = {V1,V2},
E2 = {V1,V3}, E3 = {V1,V4}, and E4 = {V2,V3}. The
graph network G corresponding to the transaction database
in Table 1 is shown in Fig. 1.

FIGURE 1. The graph network corresponds to Table 1.

After creating the graph network corresponding to
the transaction database, the Leiden community detection
algorithm can be used to construct highly related trans-
action communities by separating nodes into disconnected
clusters. Thus, the modularity score of each community
can be maximized, where modularity quantifies the quality
of node assignment to communities. In each iteration, the
algorithm optimizesmodularity through greedymoves, recur-
sively merging communities into single nodes and repeating
this process on a compressed graph. The result is a set of
communities, each of which is a highly related subgraph.
In this context, a community corresponds to a set of highly
related transactions.

B. APPROXIMATION AND EXACT STRATEGIES
After Leiden community detection, the transaction database
is decomposed into several highly related transaction com-
munities. Unlike traditional mining of an entire database,
we separately mine each transaction community and propose
two strategies: approximation and exact strategies. These
strategies can be used for mining based on specific needs.
Nevertheless, unless otherwise stated, we use the exact strat-
egy as the general approach. In the approximation strategy,
each transaction community is processed without considering
shared items. Initially, local frequent patterns are extracted
from each transaction community, and a merging function
is then employed to derive global frequent patterns. This
function comprises the concatenation of all local frequent
patterns. The advantage of this strategy is fast mining, but the
downside is that it does not consider shared items, resulting in
an incomplete mining process. Algorithm 1 is a pseudocode
for the approximation strategy.

Algorithm 1 Approximation Strategy
Input: k transaction communities C = {C1,C2, . . . ,Ck};
minimum support minSup;
Output: FIs.

Fig. 2 shows the workflow of the approximation strat-
egy. In the exact strategy, each transaction community is
processed individually and shared items between different
transaction communities are considered. The goal of this
strategy is to capture frequent patterns not covered by local

FIGURE 2. Algorithm 1: approximation strategy.

transaction communities, thereby achieving the mining of
all frequent patterns. Initially, local frequent patterns are
extracted from each transaction community, and then the
potential frequent patterns generated by shared items between
different transaction communities are considered. Finally,
a merging function is employed to derive global frequent
patterns. The advantage of this strategy is that it can mine
all frequent patterns, but it is relatively slower due to the
consideration of shared items. Algorithm 2 is a pseudocode
for the exact strategy.

Algorithm 2 Exact Strategy
Input: k transaction communities C = {C1,C2, . . . ,Ck};
minimum support minSup; shared item set S.
Output: FIs.

Fig. 3 shows the workflow of the exact strategy.

C. OVERALL DESIGN AND EXAMPLE DEMONSTRATION OF
LcGA-FCHUIM
Algorithm 3 is the pseudocode for LcGA-FCHUIM. The
algorithm’s goal is to efficiently find as many FCHUIs as
possible that meet certain criteria, but it does not guarantee
to find all of them. The algorithm proceeds as follows.

Use Leiden community detection to decompose the trans-
action dataset into several categories. Use an approximation
or exact strategy to mine FIs. Apply closure detection to FIs
to obtain frequent closed itemsets. Use cGA to mine HUIs
within the frequent closed itemsets.

Fig. 4 shows the workflow of LcGA-FCHUIM. For a
clearer demonstration of the algorithm, we consider an exam-
ple. The transaction database is shown in Table 1. After using
Leiden community detection, the transactions are divided into
three classes (Fig. 5).
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FIGURE 3. Algorithm 2: exact strategy.

Algorithm 3 LcGA-FCHUIM
Input: Transaction dataset D; minimum support minSup;
minimum utility threshold minUti; fitness function
f (c) = u(X ).
Output: FCHUIs.

C1 = {T1,T5}, I (C1) = {a, c, d, e}; C2 = {T4,T6},
I (C2) = {a, b, f }; C3 = {T2,T3}, I (C3) = {c, d, e}, where
I (Ci) represents the set of all items between classes. The
shared itemset between C1 and C2 is {a}, that between C1
and C3 is {c, d, e}, and there are no shared items between
C2 and C3. Shared items are indicated above the diagonal
line. Next, we use the approximation and exact strategies to
mine the transaction communities separately. Using a support
threshold of 33%, we obtain L1 = {a, c, e, ac, ae, ce, ace},
L2 = {b, f , bf },L3 = {e}, where Li represents the FIs
mined from each class. For the approximation strategy,
FIs = L1 ∪ L2 ∪ L3 = {a, b, c, e, f , ac, ae, ce, bf , ace}.
For the exact strategy, we consider the FIs obtained
using the approximation strategy and possible combina-
tions of shared items. Thus, L = L1 ∪ L2 ∪ L3 ∪

{a, c, d, e, ce, de} = {a, b, c, d, e, f , ac, ae, ce, de, bf , ace}.
With a support threshold of 50%, L1 = L2 = L3 = ∅ for the
approximation strategy, and L = L1 ∪ L2 ∪ L3 = ∅. Mean-
while, for the exact strategy, L = L1∪L2∪L3∪{a, c, e, ce} =

{a, c, e, ce}. When the support is relatively low, the approxi-
mation and exact strategies yield similar FIs. However, when
the support is relatively high, there are significant differences
in the FIs obtained. In addition, the approximation strategy is

FIGURE 4. Algorithm 3: LcGA-FCHUIM.

faster and does not require the consideration of shared items.
Therefore, for lower support and higher efficiency require-
ments, the approximation strategy can be selected for mining.
Assuming a support of 33% for the exact strategy, closure
detection is then applied, FIs = {de, bf , ace}. After closure
detection, the cGA process for HUIMbegins. First, the proba-
bility vector is initialized, and P = {0.5,0.5,0.5,0.5,0.5,0.5}.
For example, if de and bf are chosen initially, their encod-
ings are 000110 and 010001, and their fitness values are 32
and 23, respectively. Comparing these, the winner is 000110.
Assuming minUti = 30, de becomes an FCHUI. Next, the
probability updating process occurs. Because the encodings
are not the same at each position (000110 and 010001), the
probability vector is updated based on the winner’s position.
Thus, we have P = (0.33,0.33,0.33,0.67,0.67,0.33). Because
the termination condition is not met, the algorithm returns
to Step 6 and continues. In the end, the algorithm returns
FCHUIs = {de, ace}.

D. COMPLEXITY OF LcGA-FCHUIM
In this subsection, we analyze the complexity of the proposed
LcGA-FCHUIM algorithm by considering each main step of
the algorithm. Assuming that the dataset to be mined consists
of m transactions and n items, after applying Leiden commu-
nity detection, the dataset is divided into k communities.
1. Using Leiden Community Detection to Decompose the

Dataset The complexity of the Leiden community detection
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FIGURE 5. Example demonstration.

algorithm depends mainly on the number of nodes and edges
in the graph. Assuming that the transaction dataset is repre-
sented as a graph in which nodes represent items and edges
represent co-occurrence relationships between items, for a
graphwith n items, the time complexity of Leiden community
detection is O(m× n).

2. Mining Frequent Itemsets In this step, we use the
currently optimal frequent itemset mining algorithm Pre-
Post + [24], which itself has a computational complexity of
O(nlogn). Assuming that we adopt an approximation strategy,
we do not need to consider the items shared among commu-
nities. Thus, the final computational complexity of this step is
O((nlogn)/k+k2). If we use an exact strategy, the items shared
among communities must be considered, and in this case, the
final computational complexity of this step is O((nlogn)/k).
3. Closure Detection Closure detection involves checking

whether each frequent itemset is closed. For l frequent item-
sets, the complexity of closure detection isO(m× l2) because
it requires us to compare each frequent itemset with others
and calculate their supports.

4. Mining High Utility Itemsets The cGA is used to mine
high-utility itemsets, assuming an initial population size of
p and t iterations. Here, each utility function evaluation has
a complexity of O(m), and hence, the complexity of cGA is
O(p× t × m).

5. Total Time Complexity The overall time complexity
under the approximate strategy is:

O(m× n) + O((n log n)/k) + O(m× l2) + O(p× t × m)

The overall time complexity under the exact strategy is:

O(m× n)+O((n log n)/k+k2)+O(m× l2)+O(p× t × m)

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we compare the performance of LcGA-
FCHUIM with those of state-of-the-art CHUIM algorithms,
specifically CLS-Miner [10] and CHUI-Miner [9]. Their

modified versions that meet the requirements of FCHUIM are
denoted as CLS-Miner-S and CHUI-Miner-S, respectively.
We will evaluate the performance in terms of runtime, con-
vergence, and the number of discovered FCHUIs.

A. EXPERIMENTAL ENVIRONMENT AND DATASETS
The experiments were performed on a computer with the
following configuration: Intel Core i5-6402P CPU (2.8GHz),
16GB of RAM, and a 64-bit Windows 7 operating system,
with Java as the programming language. Four datasets, Retail,
Chainstore, Chess, and Accidents, were used for compara-
tive experiments. All four datasets are from the open-source
SPMF community [25]. The datasets are described below.
Retail is a medium to large sparse dataset which records

consumer purchase data in a mall. Chainstore is a large sparse
dataset which records customer transaction data in a large
retail chain. Chess is a small dense dataset which records
game moves in chess. Accidents is a medium dense dataset
which records accident data, such as road accidents. Because
of the variations in the performance of different algorithms on
datasets of different sizes and sparsity, we chose these four
datasets to test the performance of the proposed algorithm
from various perspectives.The features of these datasets, such
as average transaction length, number of items, number of
transactions, and data type, are summarized in Table 3. The
number of transactions reflects the size of the dataset, number
of items reflects the size of the solution space to some extent,
and the average length reflects the sparseness of the dataset
to some extent.

B. RUNTIME COMPARISON
In this study, we compare LcGA-FCHUIMwith CLS-Miner-S
and CHUI-Miner-S in two scenarios. The first scenario
involves fixing minSup = 0 and comparing the runtime for
various datasets for different minUtil values. This scenario
represents CHUIM, and the results are shown in Fig. 3.
The second scenario involves fixing minUtil values for
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FIGURE 6. Comparison of running times at minSup = 0 on different datasets.

TABLE 3. The features of datasets.

each dataset and comparing runtimes for different minimum
support thresholds. The results for this scenario are shown
in Fig. 4.

Fig. 3 shows that LcGA-FCHUIM outperforms other
algorithms in terms of runtime across all four datasets,
attributable to the Leiden community detection, which
divides the datasets into highly related communities. cGA
can efficiently search for more concise related patterns
within these communities, significantly reducing the search
space and improving efficiency. In addition, cGA is
inherently an efficient probabilistic search algorithm and
can handle high-dimensional variables, further enhancing

LcGA-FCHUIM’s runtime efficiency. Notably, for sparse
datasets, the runtime decreases significantly at low minSup
values, indicating that there are few itemsets with substantial
support.Meanwhile, for dense datasets, a substantial decrease
in runtime occurs when minSup reaches 30%, suggesting
that dense datasets contain more itemsets with substantial
support. Figure 6 shows that the proposed algorithm does
not have a significant runtime advantage over the comparison
algorithms on sparse datasets such as Retail and Chainstore.
However, because of its structure, the proposed algorithm has
a clear advantage on dense datasets such as Chess and Acci-
dent. Algorithms based on linked list structures are sensitive
to the dataset density. Although they can quickly prune sparse
datasets, they require more search time for dense datasets.
In contrast, probability-based search algorithms are insensi-
tive to the density of the dataset and tend to perform better on
dense datasets.

C. CONVERGENCE COMPARISON
Fig. 8 shows the convergence of two variants of
our cGA-based algorithm. One variant, LcGA-FCHUIM,
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FIGURE 7. Comparison of running times when minSup changes on different datasets.

incorporates Leiden community detection, whereas the other
variant, cGA-FCHUIM, does not. LcGA-FCHUIM con-
verges slightly faster and discovers more FCHUIs than
cGA-FCHUIM, approximately 96% and 77% of FCHUIs,
respectively. This difference is due to the highly related
nature of the data chunks obtained after Leiden commu-
nity detection. cGA can find more FCHUIs within the
communities, supporting the effectiveness of introducing
Leiden community detection for data classification before
pattern mining. However, the convergence speed did not
improve significantly, possibly because LcGA-FCHUIM
only has an additional step of data preprocessing compared to
cGA-FCHUIM. The former can mine a considerable number
of HUIs faster in the early stages, whereas in the later stages,
the explorationmode of the solution space for both algorithms
is guided by a probabilistic model, and there is no significant
difference.

D. COMPARISON OF DISCOVERED FCHUI QUANTITY
Table 4 presents a comparison of the quantity of discovered
FCHUIs using five algorithms acrxoss the four datasets. The
algorithms are as follows.

CLS-Miner-S and CHUI-Miner-S are exact algorithms;
they can discover 100% of FCHUIs. The other three

algorithms are variants of our proposed algorithm. LcGA-
FCHUIM, although not exact, can discover an average
of 96% of FCHUIs, making it suitable for most sce-
narios. LcGA-FCHUIM-AP and cGA-FCHUIM-AC, which
experience more substantial losses in discovering FCHUIs,
average approximately 79.5% and 77.5%, respectively.
The loss in LcGA-FCHUIM-AP arises from not consid-
ering that shared items can generate FCHUIs when using
the approximation strategy. The loss in cGA-FCHUIM-
AC is because is cGA not an exact algorithm, lead-
ing to lower search efficiency for unprocessed datasets.
From another perspective, this reflects the effectiveness
of combining Leiden community detection with cGA to
mine FCHUIs.

LcGA-FCHUIM-AP is suitable for scenarios where preci-
sion is not critical but short execution times are. For instance,
in environments with limited computational resources, such
as mobile devices or embedded systems, the algorithm can
perform efficient data mining tasks without occupying a large
amount of computational resources [26]. Similarly, when
facing large-scale datasets, the algorithm can provide a rough
analysis result within a reasonable timeframe, helping ana-
lysts determine which aspects are worth conducting more
in-depth research on.
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FIGURE 8. Convergence on different datasets.

TABLE 4. Comparison of the mining quantity of each algorithm on different datasets.

VI. CONCLUSION
In this study, we proposed a frequent closed HUIM algorithm
based on the Leiden community detection algorithm and
cGA (LcGA-FCHUIM). The algorithm first uses Leiden
community detection to classify a dataset, creating highly
related transaction communities. Subsequently, an approxi-
mate or exact strategywas used tomine FIs. Closure detection
was applied to the FIs, followed by the use of cGA to
mine high-utility patterns among frequent closed itemsets.
Experiments on four real datasets, both dense and sparse,
demonstrated that LcGA-FCHUIM exhibited the highest run-
time efficiency. Although the proposed mining algorithm is
not exact, it can discover an average of 96% of FCHUIs,

making it suitable for most scenarios. However, we still note
that on sparse datasets, the proposed algorithm does not
have a significant advantage in terms of runtime over other
algorithms. Nonetheless, on dense datasets, it is advanta-
geous in terms of efficiency because of its structure. Mining
algorithms based on linked list structures can rapidly prune
sparse spaces but require more search time for dense spaces.
In contrast, probability-based search algorithms are insen-
sitive to dataset density and perform relatively better on
dense datasets. Future work will explore models that combine
machine learning and evolutionary algorithms to mine util-
ity patterns, further enhancing efficiency. Moreover, parallel
algorithms based on Spark are worth investigating.
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