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ABSTRACT Nowadays, powerful image editing applications not only simplify image processing
significantly but also enhance the realism of processed digital images. However, this convenience has
presented unprecedented challenges in verifying the authenticity of images. Although existing methods
have achieved significant results in image forgery localization, most of them struggle to obtain satisfactory
performance when dealing with tampered areas of various sizes, especially for large-scale tampered regions.
To enhance the localization performance for various types and sizes of tampered regions, we propose
a novel dual-stream intermediate fusion network for image forgery localization, named DIF-Net. This
network adopts an encoder-decoder architecture composed of an adaptive convolutional pyramid and
dual-stream intermediate fusion modules. Specifically, the former extracts multi-scale information from
different depths by utilizing two depth-wise strip convolutions instead of standard large-kernel convolutions.
Moreover, during feature fusion, learnable parameters are employed to dynamically allocate weights to
each feature scale, so that the network can adaptively select the most relevant features at the target
scale. The latter effectively reduces category information differences between the two feature streams by
utilizing two learnable intermediate representations to model channel and spatial consistency in the dual-
stream features. Compared to traditional and previous deep learning methods, the DIF-Net can generate
high-quality prediction masks with fewer parameters. Through extensive experimental validation, our
DIF-Net demonstrates outstanding performance on various datasets, surpassing the state-of-the-art forgery
localization methods currently available. On the commonly used CASIA2 dataset, our DIF-Net achieves an
improvement of 3.3% in F1 and 2.4% in AUC compared to previous methods.

INDEX TERMS Information security, image forensics, image forgery localization, dual-stream network,
feature fusion.

I. INTRODUCTION
With the rapid advancement of digital technology, a large
number of user-friendly image editing applications with
simple operations and excellent effects have been widely
adopted by the general public. These editing tools allow users
to easily and effectively generate realistic images without
requiring professional knowledge. When the general public
uses these editing tools, they typically only alter the contrast
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and colors of photos, thereby enhancing and beautifying
them without changing the content of the images. However,
malicious actors manipulate the content of images and use
manipulated visuals for malicious purposes, such as creating
fake news, spreading rumors, and fabricating false evidence.
These actions can have a significant impact on social security,
information credibility, and legal integrity, among other
factors. There are three main techniques commonly used
in image manipulation [1], [2], [3], [4]: (1) splicing, (2)
copy-move, and (3) removal. As shown in Fig. 1, splicing
involves pasting a region from one image onto another,
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FIGURE 1. Three common examples of tampered images and the
localization results of the proposed method.

copy-move refers to the operation of copying and pasting a
specific region in an image to another location, and removal
erases a region from the image and fills it based on the
surrounding environment. In the real world, distinguishing
between the tampered areas of a forged image and the original
areas using only the naked eye and traditional techniques
is difficult. This is because after an image is tampered
with, it undergoes various post-processing operations to
conceal alteration traces, such as scaling, contrast adjustment,
rotation, and blurring. Therefore, the development of a robust
and efficient pixel-level image forgery localization method
to accurately identify the modified portions from suspected
tampered images has become an urgent need in the current
context.

Over the years, a variety of methods have emerged in the
field of image tampering localization and detection, including
traditional approaches such as Discrete Cosine Transform
(DCT) [5], Color Filter Array (CFA) [6], and Steganalysis
Rich Model (SRM) [7]. These methods manually acquire
local differences between tampered and untampered regions
such that their detection capabilities are limited to specific
types. In the face of complex types of image manipulation in
the real world, these methods are not suitable for practical
applications. In recent years, deep learning has gradually
become an important tool for image tampering detection with
its strong feature learning ability and end-to-end advantages.
Among them, the methods [8], [9], [10] using the traditional
encoder-decoder structure have achieved remarkable success
in image tampering detection. Still, thesemethods ignored the
importance of multi-scale features, thus limiting the further
improvement of model performance. Other researchers have
recognized the significance of multi-scale feature fusion.
Their proposed methods [11], [12], [13], [14], [15] have
effectively integrated shallow and deep features to achieve
interaction among multi-scale features, which enabling the
model to better comprehend images. While these methods
obtain multi-scale features across different levels, they do
not extract multi-scale features from each level. In addition,

some methods [13], [16], [17], [18] attempt to combine
multi-modal features to extract more useful information,
especially from RGB invisible traces. However, these meth-
ods may overlook feature disparities during feature fusion,
potentially impacting the model’s performance.

To address the problems in the aforementioned works,
we propose DIF-Net for pixel-level image forgery localiza-
tion. DIF-Net consists of a dual-stream adaptive convolution
pyramid encoder and an intermediate channel spatial fusion
decoder. In [19], [20], and [21] large kernel convolutions
are widely used to increase the effective receptive field of
the model and have achieved excellent results in multiple
visual tasks. To this end, in DIF-Net, we propose the
Adaptive Convolution Pyramid Module, which extracts
multi-scale features using convolution kernels of different
sizes. Additionally, in the feature fusion stage, we introduce
a self-learning weight parameter to enable the network to
automatically select scale features suitable for the target.
Finally, we employ strip convolutions instead of traditional
large kernel convolutions, enhancing the receptive field while
reducing computational complexity. For the overall network,
the pyramid module in the encoder facilitates multi-scale
feature extraction at each level, and skip connections aid
in the effective interaction of multi-scale information across
hierarchies, thereby fully leveraging multi-scale informa-
tion. Most existing works train models using multi-modal
features, such as noise domain, frequency domain, and
color space. However, these methods tend to simplify the
fusion of multiple features, overlooking the differences in
category information among various features. In our study,
we employ images in two color spaces, RGB and HSV,
and progressively fuse features through an intermediate
spatial fusion module to reduce feature category information
disparities.

For DIF-Net, we initially input images in both RGB
and HSV color spaces and separately extract multi-scale
dual-stream features using two adaptive convolution pyra-
mid encoders with non-shared weights. Subsequently, the
shallow-level detail features from the encoder are fed through
skip connections into the intermediate channel spatial fusion
module, where they are fused with deep semantic features.
Drawing inspiration from [22]’s small-sample segmentation,
CBAM [23] and SENet [24] attention mechanism, we incor-
porate two sets of learnable parameters as intermediate
prototypes in each fusion module of the decoder. These
parameters model the consistency in both channel and
spatial dimensions of the dual-stream features to reduce
their category information differences and establish long-
range dependencies. Thus, it further enhances the network’s
localization performance. DIF-Net does not require any
pre-processing or post-processing and can be trained end-to-
end directly. We conducted experiments on four prominent
image forgery datasets, including CASIA2 [1], Columbia [2],
NIST16 [3], and IMD2020 [4]. The experimental results
demonstrate that this method outperforms the state-of-the-art
forgery localization methods.
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Our primary contributions are as follows:

• We propose DIF-Net, an end-to-end encoder-decoder
architecture for imagemanipulation localization. It com-
bines RGB and HSV features to identify tampered
regions, achieving superior image manipulation local-
ization performance on standard datasets compared to
state-of-the-art methods.

• We propose an adaptive convolution pyramid module
with a multi-branch depth-wise strip convolution. Strip
convolution replaces conventional large kernel convolu-
tion for multi-scale feature extraction, tailored to tamper
regions of varying sizes. Additionally, self-learning
weights are used for selecting multi-scale features,
enhancing the network’s capability to leverage these
features effectively.

• To reduce the feature category disparities resulting from
the direct fusion of dual-stream features, we propose
a novel intermediate channel spatial fusion module.
Within each fusion module, two sets of learnable
parameters are separately employed as channel and
spatial intermediate prototypes, thereby establishing
channel and spatial consistency.

The remaining sections of this paper are organized as
follows: Sec. II comprises a review of relevant research work
in the field of image tampering detection. Sec III presents the
detailed design of the proposedmethod. Sec. IV demonstrates
the experimental results and performance analysis. Finally,
Sec. V provides a summary of the work presented in this
paper.

II. RELATED WORK
A. IMAGE MANIPULATION LOCALIZATION
Most previous work has primarily focused on the detection
or localization of a single type of manipulation, searching
for different traces of manipulation in the image based on
different tampering types to determine the authenticity of the
image. Examples of such methods include Color Filter Array
(CFA) [6] local noise inconsistencies [25], [26], [27], [28],
JPEG compression artifacts [5], [29], [30], [31], etc. These
methods often rely on manual feature extraction and perform
well for specific tampering features. If post-processing has
hidden or disrupted certain specific traces in the image, it will
lead to a significant decrease in the performance of these
methods.

At present, the main work uses deep learning for
image tampering localization, which not only can achieve
better localization results, but also has better robustness.
Salloum et al. introduced a multi-task fully convolutional
network (MFCN) [10], which accomplishes manipulation
localization by learning to splicemasks andmask edges, but it
overlooks multi-scale information. Zhou et al. [16] proposed
a dual-stream network (RGBN) for image tampering detec-
tion, which employs both noise stream and RGB stream. This
algorithm uses steganalysis richmodel (SRM) to extract noise
information, indicating that the participation of noise stream

can better reflect tampering traces. However, the localization
results are only coarse bounding boxes instead of accurate
pixel-wise masks. Inspired by the recall and consolidation
mechanism of the human brain, Bi et al. [12] proposed the
Circular Residual U-Net [32] (RRU-Net) to enhance the CNN
learning method through the process of residual propagation
and feedback. The problem of localizing image manipulation
was addressed as a local anomaly detection task in the study
conducted by Wu et al., resulting in the development of
ManTra-Net [9], which utilizes VGG [33] and Z-pooling
techniques for precise localization of anomalous regions.
Building upon ManTra-Net, SPAN [14] constructs a pyramid
structure using self-attention blocks and dilated convolutions
tomodel pixel-level representations atmultiple scales. PSCC-
Net [11] processes forged images through two paths, one
from top to bottom and the other from bottom to top. The
former extracts features at different scales, while the latter
generates prediction masks at four scales, progressively from
coarse to fine. To better distinguish the feature differences
between tampered and untampered regions in images, CFL-
Net [34] utilizes both contrastive loss and cross-entropy loss
simultaneously. Zhang et al. [15] extract image and label
edges and use global edge information to guide the network
in learning label masks, thereby enhancing the network’s
localization results. To address the issue of limited training
data in image forgery detection, Zhou et al. [35] proposed
an adversarial training strategy and used self-attention
mechanisms to locate tampered regions. To capture subtle
manipulation traces that are no longer visible in the RGB
domain,Wang et al. proposed Objectformer [18]. It combines
high-frequency features from the image with RGB features
to create multimodal patch embeddings. Das et al. [17]
proposed a novel gated context attention network (GCA-Net)
for forgery localization. It extracts multimodal features and
utilizes non-local attention along with gating mechanisms to
capture finer image differences.

In this work, firstly, we employ images of two color
spaces as input, and use adaptive convolution pyramids in
the encoder to extract features with different scales in each
feature map and perform adaptive aggregation. Secondly,
we input the shallow features of the dual branches into
the fusion module of the decoder through skip connections.
In each fusion module, two sets of learnable parameters
are used as intermediate prototypes to model the channel
and space consistency respectively to reduce the feature
difference and generate channel and space weights. Finally,
the weights are used to optimize the fused two-stream shallow
features in turn, and the deep features of the decoder and the
optimized ultra-shallow features are fused and output.

B. ATTENTION MECHANISM
It is well known that attention plays a crucial role in the
human visual system. In order to make rational use of
the limited visual resources, humans will select the salient
part when paying attention to things and then focus on it.
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By imitating this mechanism, researchers have introduced
an attention mechanism into deep learning to suppress
useless information and highlight important information.
Attention has been widely used in the visual field, which
is mainly divided into channel attention, spatial attention,
and mixed attention according to the field of use. Many
recent works have proposed multiple kinds of attention,
and channel attention is introduced in SENet [24], which
focuses more on important features by assigning different
weights to different channels and supports plug-and-play.
SENet ignores the information interaction in the feature
graph space. CBAM [23] adds a kind of spatial attention
on the basis of it, and forms a comprehensive feature
attention method by combining channel and spatial attention.
In order to solve the inefficiency and optimization difficulty
of convolution and recursion operations in capturing long-
range dependencies. In deep neural networks, they [36],
[37] employ a simple and efficient non-local operation to
capture long-range dependencies. Aiming at the problem of
the high computational complexity of non-local operations,
a cross-attention method is proposed in [38], which obtains
the information interaction of each pixel for all pixels
of the feature map by stacking two attention blocks.
Fu et al. [39] by combining channel and spatial self-attention,
a comprehensive dual attention is proposed. Inspired by
attention SENet [24] and CBAM [23], we generate channel
and spatial weights after using intermediate prototypes to
model the consistency of channel and space, respectively,
to optimize the fused features for channel and space in turn.

III. PROPOSED METHOD
A. OVERVIEW
In this section, we will provide a detailed explanation
of the proposed image forgery localization method. The
architecture of this network is illustrated in Fig. 2, com-
prising the Adaptive Convolution Pyramid module and
the Intermediate Channel Spatial Fusion module, which
together form a complete encoder-decoder structure. Due
to the post-processing applied to tampered images to hide
forgery traces, which can be challenging to detect in RGB
images, some prior research [40], [41], [42], has proposed
using the HSV color space for image forgery detection.
Therefore, we also introduce the HSV color space to provide
supplementary clues for forgery localization.

In DIF-Net, we first convert the given RGB manipulated
image into the HSV color space image. Next, we input
these two color space images into two adaptive convolution
pyramid encoders with non-shared weight parameters to
obtain dual-stream features. In the encoder, we extract
features from different scales and adaptively aggregate
them to enhance the representation capability. Subsequently,
we progressively fuse the dual-stream shallow details from
the encoder with the deep semantics from the decoder through
the Intermediate Channel Spatial Fusion module. It is worth
noting that we do not perform feature fusion in the final

layer. Instead, we directly use the convolutional output head
to output pixel-level prediction masks. Through experiments,
we have found that this design not only greatly reduces the
model parameters but also enables the model to predict the
tampered regions in the image more accurately at the pixel
level.

B. ADAPTIVE CONVOLUTION PYRAMID ENCODER
In the encoder stage, we use both RGB and HSV images
as input. Compared to the RGB color space, the HSV
color space exhibits better color separation properties,
which facilitates more precise identification and analysis of
different color characteristics. When images are tampered
with, differences may exist in the hue, color saturation,
and brightness between the tampered and untampered parts.
Therefore, by leveraging these characteristics of the HSV
color space, we can capture the features of image tampering
more accurately. All the time, designing multi-scale networks
has been a prominent area of research in computer vision
[43], [44], [45], [46]. In tampered images, the size of the
manipulated regions can vary significantly. For instance,
in the image size is 256 × 256, small manipulated regions
may consist of just a few dozen pixels, whereas large
manipulated regions may encompass tens of thousands of
pixels. This poses higher demands on pixel-level localization
methods. To address varying sizes of manipulated regions,
we propose a multi-scale architecture constructed using
convolution operations of different sizes, known as the
Adaptive Convolution Pyramid Module (ACPM), to obtain
multi-scale features at each level. Simultaneously, to tackle
the issue of excessive computational complexity associated
with using large-kernel convolutions, we have employed
depth-wise strip convolutions in each branch as a substitute
for standard convolutions. As depicted in Fig. 2, we illustrate
the structure of the dual-branch encoder, which consists
of the ACPM and max-pooling. The specific structure of
ACPM is shown in the bottom left corner of Fig. 2. Initially,
we increase the network’s depth through a 1× 1 convolution.
Subsequently, we employ a 3× 3 convolution to extract local
information and capture information at different scales using
multi-branch depth-wise strip convolutions. Finally, to better
fuse multi-scale features, we introduce learnable weights
to dynamically allocate weights to different scale features.
After completing the adaptive fusion ofmulti-scale features, a
1×1 convolution is employed to model relationships between
different channels and adjust the output channels. The ACPM
can be described as follows:

Fout = Conv1×1(
3∑
i=0

wi · Branchi(DwC(Conv1×1(F)))) (1)

where F represents the feature of the previous stage after
downsampling. Meanwhile, DwC stands for depth-wise
strip convolution, where depth-wise convolution can reduce
the number of model parameters. Branchi and wi respec-
tively denote the i-th branch and its corresponding weight.
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FIGURE 2. The proposed architecture of DIF-Net. Each encoder network contains five ACPM blocks and four 2 × 2 Max pooling layers. The
decoder network contains four ICPM, four bilinear interpolation upsampling layers, and a 3 × 3 convolution for predicting the output
mask. UP, RGBF, and HSVF respectively represent the upsampled feature, RGB stream feature, and HSV stream feature after the number of
channels is reduced to 1/r after 1 × 1 convolution. Each 1 × 1 convolution in the figure is followed by batch normalization and GELU.
⊗ and ⊕ respectively denote element-wise multiplication and addition of the matrix.

Here, Branch3 denotes the identity connection operation.
To address the issue of excessive computational burden that
may arise from using large-kernel convolutions, we utilize
two stacked strip convolutions in each branch as a replace-
ment for standard convolution. Since the size of the feature
map is 16 × 16 after four downsampling, the maximum
size of the large kernel convolution is set to 17. For each
branch, we set the kernel size to be 5, 11, and 17, respectively.
In Fig. 3, we visualized the model’s results using multi-scale
convolutions and single-scale convolutions in the encoder.
From the visual results, it can be observed that multi-scale
convolutions greatly improved the completeness of forged
region localization. Following the 3 × 3 convolution and
the 1 × 1 convolution for feature fusion, we applied batch
normalization and the GELU.

C. INTERMEDIATE FUSION DECODER
Fig. 2 bottom right corner illustrates the overall structure
of ICPM. We input the multi-scale shallow features from
the encoder and the deep upsampled features from the
decoder into ICPM through skip connections. The sizes of
these three input features are H × W × C . To reduce
computational complexity while establishing channel and
spatial consistency, three 1 × 1 convolutions are used to
reduce the number of channels in the input feature map,
obtaining feature maps RGBF, HSVF, and UP with sizes
of H × W × C1 (where C1 = C/r , r is the scaling
factor) (i.e., Fr , Fh, and Fu). Next, we separately input Fr
and Fh into the Intermediate Channel Fusion module (ICF)
and Intermediate Spatial Fusion module (IPF) to generate
channel attention weight matrix Ac and spatial attention
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FIGURE 3. For the visualization results using single-scale and multi-scale
convolutions.

weight matrix Ap. At the same time, we sum Fr and Fh, and
perform information interaction and feature fusion between
channels using a 1×1 convolution, resulting in featuremap Y .
To reduce the differences between features and generate fine-
grained features, we element-wise multiply the generated
intermediate channel attention matrix Ac and intermediate
spatial attention matrix Ap with the fused feature map Y .
It is noteworthy that in the process of applying attention
mechanisms, we do not employ parallel channel attention and
spatial attention. Instead, we first utilize channel attention,
followed by feature fusion through a 3 × 3 convolution.
Finally, we merge the upsampled feature Fu, feature Y , and
the feature post-channel attention through a 3×3 convolution
for the final output fusion. The whole process can be
described as:

Out = Conv3×3(Ap · Conv3×3(Ac · Y ) + Y + Fu) (2)

where (·) denotes element-wise multiplication. For each
3 × 3 convolution, both batch normalization and the GELU
are applied afterward.

1) INTERMEDIATE CHANNEL FUSION
Each channel map of the high-level features can be consid-
ered as distinct semantic features, and these different seman-
tic features are interrelated with each other. By exploiting
the interdependence among channels, we can strengthen the
interdependent feature mappings and reduce the disparities
among feature categories. To achieve this, we introduce the
Intermediate Channel Fusion module (ICF), which utilizes a
set of learnable parameters
Go1 ∈ RC1×1 as intermediate prototypes for channels.

It weights and adjusts the features based on the relationships
between different channels to model the interdependence
among channels and the consistency of feature categories,
generating the channel attention matrix.

The ICF, as shown in Fig. 4, we first reshape the input
features Fr and Fh into F ′

r and F
′
h and transpose them to F

′T
r

and F
′T
h , in particular,{Fr ′,Fh′} ∈ RC1×HW . Then, a matrix

FIGURE 4. The structure of ICF. Here ⊗ represents the matrix
multiplication and ⊕ the element-wise addition. S denotes the Sigmoid
function.

multiplication is performed between Go1 and F
′T
r , followed

by the application of the Softmax function to compute
the channel attention map. Subsequently, another matrix
multiplication is applied betweenFr and the channel attention
map, resulting in the matrix Wr ∈ RC1×1. Simultaneously,
similar operations are performed forGo1, Fr , and Fh to obtain
Wh ∈ RC1×1. Finally, theWr ∈ RC1×1,Wh ∈ RC1×1, andGo1
summation results are reshaped into RC1×1×1 and the channel
attentionmatrixAc is generated using 1×1 convolution, batch
normalization, and Sigmoid functions. The can be described
as follows:

Wi = F ′
iSoftmax(F

′T
i Go1) i ∈ {r,h} (3)

Ac = Sig(BN (Conv1×1(reshape(Wr +Wh + Go1)))) (4)

where Sig and Softmax represents Sigmoid and Softmax
functions respectively, and BN is batch normalization.
Conv1×1 denotes 1 × 1 convolution.

2) INTERMEDIATE SPATIAL FUSION
In order to establish distant contextual information to
differentiate feature representations of forged regions from
original regions and prevent overfitting to specific features
during training, we introduce the Intermediate Spatial Fusion
module (IPF). This module encodes contextual information
from different branches into local features, enhancing their
representational capacity. Simultaneously, IPF dynamically
updates the spatial positions’ weights by weighting and
aggregating information from all positions of dual-stream
features. This helps suppress redundant information, enabling
the network to selectively focus on tampered regions.
As shown in Fig. 5. Similar to the Intermediate Channel
Fusion module, in the Intermediate Spatial Fusion module,
we also employ a set of learnable parameters Go2 ∈ R1×HW

as spatial prototypes. The process of generating the spatial
attention matrix is similar to that of the channel attention
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TABLE 1. Summary of the dataset we used (✔ and ✘ indicate where or not the manipulation type is involved).

matrix and can be concisely described as follows:

Wi = F ′
iSoftmax(Go2F

′T
i ) i ∈ {r,h} (5)

Ap = Sig(Conv3×3(reshape(Wr +Wh + Go2))) (6)

where Sig and Softmax represents Sigmoid and Softmax
functions respectively, Conv3×3 denotes 3 × 3 convolution.

D. LOSS FUNCTION
In pixel-level forgery localization, the area of themanipulated
region is often much smaller than the original region, leading
to class imbalance. To address this issue, we use both dice
loss [47] and binary cross-entropy loss as the final loss
function for the model. The dice loss is represented as follows
for the given predicted mask P and ground truth mask M:

Ldice = 1 −
2 ×

∑
(M(i,j) · P(i,j)) + ϵ∑

M(i,j) +
∑
P(i,j) + ϵ

(7)

where M(i,j) and P(i,j) represent the pixel values of the label
image and the model’s prediction result at position (i, j),
respectively. ϵ is a small constant (e.g., 1e-8). The binary
cross-entropy loss can be described as follows:

Lbce = −

W∑
j=1

H∑
i=1

M(i,j) logP(i,j) + (1 −M(i,j)) log(1 − P(i,j))

(8)

Finally, the loss function can be represented as follows:

Ltotal = Ldice + Lbce (9)

IV. EXPERIMENTS
We conducted various experiments to assess the performance
of the proposed method. Additionally, we compared this
method with several other image forgery localization meth-
ods on different datasets.

A. EXPERIMENTAL SETUP
1) DATASETS
We analyzed and evaluated the DIF-Net on four publicly
available datasets, including CASIA2 [1], Columbia [2],
NIST16 [3], and IMD2020 [4]. For each dataset, we adopted
an 8:1:1 training-validation-testing split ratio, and specific
image partition details are provided in Table 1. The CASIA2
dataset is a widely used and challenging dataset, comprising
two types of operations: splicing and copy-move. It consists
of 5120 images with a resolution mostly at 384× 256. In this
dataset, all tampered images undergo post-processing steps

FIGURE 5. The structure of IPF.

such as filtering and blurring. Columbia dataset contains only
spliced images with 180 uncompressed images, each having
a resolution of 757 × 568. All manipulated images in this
dataset have not undergone any post-processing. IMD2020
dataset consists of 2010 real-world operation images col-
lected from the internet. NIST16 is a challenging dataset
encompassing three types of operations: splicing, copy-move,
and object removal. It includes 564 high-resolution images
with a resolution of 3888×2592. Post-processing operations
have also been used on the images in NIST16 to conceal
visible operation traces.

2) EVALUATION METRICS
In our research, we utilized pixel-level F1 score, Area
Under the Curve (AUC), and Intersection over Union (IOU)
as the evaluation metrics for performance comparison.
By employing these comprehensive evaluation metrics,
we could objectively assess the performance of our proposed
method in the task of image forgery localization and compare
it with other methods. Firstly, we employed the pixel-level
F1 score to measure the precision and recall of the model.
The F1 score is used to evaluate the model’s localization
accuracy at the pixel level. To assess the true performance
of the model, we set the threshold to 0.5. Secondly, we used
IOU to evaluate the model’s localization accuracy. IOU
is calculated by measuring the degree of overlap between
the predicted boundaries and the true boundaries. Finally,
we employed the AUC to measure the model’s performance.

VOLUME 12, 2024 90517



C. Yan et al.: Dual-Stream Intermediate Fusion Network for Image Forgery Localization

AUC is commonly used to evaluate the accuracy of binary
classification models. In our research, we transformed the
image forgery localization task into a binary classification
problem. We calculated the area under the ROC curve as the
AUC value. A higher AUC value (closer to 1) indicates better
classification accuracy at different thresholds and, thus, better
model performance. The corresponding formula is as follows:

F1 =
2TP

2TP + FP + FN
(10)

IOU =
TP

TP + FP + FN
(11)

AUC =

∫ 1

0
TPRd(FPR) (12)

TPR =
TP

TP + FN
FPR =

FP
FP + TN

(13)

where TP and FN respectively represent the numbers of true
positive and false negative classified forged pixels. TN and
FP represent the numbers of true negative and false positive
classified original pixels. TPR stands for True Positive Rate,
which corresponds to the proportion of correctly classified
forged pixels among all forged pixels. FPR stands for
False Positive Rate, indicating the proportion of incorrectly
classified original pixels among all original pixels.

3) IMPLEMENTATION DETAILS
DIF-Net is an end-to-end lightweight model implemented
using PyTorch.We trained it using an NVIDIAGeForce GTX
TITAN GPU. In comparison to ManTra-Net with 3.8 million
parameters and RRU-Net with 4 million parameters, DIF-Net
has a significantly smaller parameter count, only 1.4 million
parameters. The input image size is 256 × 256. We use
AdamW for optimization with an initial learning rate of
0.003. The learning rate decay strategy is Reduction on
Plateau, where the reduction factor is 0.5. For DIF-Net,
we trained it for 200 epochswith a batch size of 16. Themodel
weights that achieved the highest F1 score on the validation
set were utilized for testing. Data augmentation techniques
were employed during training, including flipping, random
rotation, Gaussian noise, and Gaussian blur.

B. COMPARISON WITH EXISTING METHODS
1) COMPARATIVE METHODS
To evaluate the pixel-level forgery localization performance
of our proposed DIF-Net, we compared it with several other
methods on different datasets. The selected methods include
both handcrafted traditional methods and deep learning-
based methods.

The traditional methods consist of Error Level Analysis
(ELA) [31], Noise Residual Analysis (NOI) [25], and Color
Filter Array (CFA) [6]. ELA is an error level analysis
method aimed at finding compression error differences
between tampered and original regions by using different
JPEG compression qualities. The CFA pattern estimation
method approximates the camera filter array pattern using
neighboring pixels and then generates tampering probabilities

for each pixel. NOI is a local noise modeling method based
on noise inconsistency of high-pass wavelet coefficients. For
deep learning-based methods, we chose the following four:
RRU-Net [12], ManTra-Net [9], CFL-Net [34], MTSN [15],
SATFL [35], and GCA-Net [17]. RRU-Net, based on the
UNet [32] structure, uses a CNN with residual feedback to
enhance the visibility of image attribute differences between
untampered and tampered regions. ManTra-Net captures
manipulation traces using a feature extractor and performs
tampering localization through local anomaly detection.
CFL-Net learns amapping to a feature space using contrastive
loss to differentiate untampered and tampered regions for
each image. MTSN locates the tamper region by utilizing
both the image edge and the mask edge. SATFL utilizes
self-adversarial training and self-attention mechanisms to
achieve tampering localization. GCA-Net utilizes gate mech-
anisms and non-local attention to identify forged regions.
We retrained RRU-Net, MTSN, SATFL, and CFL-Net using
their available complete codes and tested them. ManTra-Net
did not provide complete code, but they offered pre-trained
weights, so we used the provided pre-trained weights for
testing. GCA-Net did not publicly release their code, so we
performed comparisons using the available data from the
paper.

2) COMPARISON RESULT
We evaluated our method on four datasets: CASIA2,
Columbia, NIST16, and IMD2020. Table 2 presents the local-
ization performance of various methods on these datasets.
From the table, it can be observed that we achieved the best
localization performance on most of the datasets. On the
CASIA2 dataset, our F1 and AUC outperformed GCA-Net,
which used pre-training and fine-tuning on a comprehensive
dataset, by 3.3% and 2.4%, respectively. This indicates that
we obtained promising localization results evenwithout using
pre-training. However, on the IMD2020 dataset, our F1
lagged behind GCA-Net by 1.1%, but the AUC remained
comparable. We believe that two key reasons contribute to
the occurrence of this situation. On one hand, IMD2020 is
composed of images obtained from the real world, which
makes it highly challenging. On the other hand, our model’s
training data is significantly smaller compared to GCA-Net.
On the NIST16 dataset, our AUCwas the same as the second-
ranked RRU-Net, but our F1 and IOU improved by 1.1% and
1.6%, respectively. On the Columbia dataset, our F1, AUC,
and IOU significantly outperformed the compared methods.
Visualizations of the partial results of various methods on
these datasets are shown in Fig. 6.

C. ABLATION STUDY
We conducted extensive experiments to validate the impact of
model parameter settings and important components on the
model’s final performance. All experiments were performed
on the CASIA2 dataset, and the results are reported in terms
of IOU, AUC, and pixel-level F1 score. Fig. 7 displays the
Visualization results of some of the ablation experiments.
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TABLE 2. The localization results of the compared methods on different datasets, the best results are highlighted in bold. - denotes the result is
unavailable using the original method.

FIGURE 6. Results of different methods on four publicly available datasets. From the first column to the eighth column, we show tampered images,
RRU-Net, ManTra-Net, CFL-Net, and the prediction results of our proposed method, the GT mask of tampered images.

1) HSV COLOR SPACE
As shown in Table 3, we compared the results of RGB color
space and HSV color space combinations to demonstrate the

effectiveness of the HSV color space. From the research find-
ings, it can be observed that the HSV color space improves
the model’s localization performance, F1/AUC/IOU have
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TABLE 3. Localization results of HSV color space ablation study on
CASIA2.

TABLE 4. Localization results of multi-scale ablation study in ACPM on
CASIA2.

TABLE 5. Localization results of ICF and IPF ablation study in ICPM on
CASIA2.

improved by 3.4%/1.3%/3.1% respectively. The reasons for
this improvement can be explained as follows: On the one
hand, by utilizing both color spaces, a more all-around
representation of color information can be captured, aiding
in distinguishing different regions. On the other hand, when
images are manipulated, the HSV color space provides
discriminative features that are less sensitive in the RGB color
space, such as changes in hue, color saturation, and brightness
anomalies.

2) ADAPTIVE CONVOLUTION PYRAMID MODULE
In this experiment, we aim to demonstrate the significance
of ACPM. For comparison, we replaced the ACPM with two
3 × 3 convolution blocks. The results are displayed in
Table 4, the absence of the multi-scale component resulted
in a substantial decrease in localization performance, with
F1/AUC/IOU score dropping by 18.4%/5.4%/19.5%. This
clearly illustrates the critical importance of multi-scale
feature extraction in the encoder for image tampering
detection. Compared to the multi-scale structure without
self-learned weights (SLW), using self-learned weights in
ACPM resulted in improvements of 2.2%/0.9%/2.1% in
F1/AUC/IOU. This indicates that self-learned weights can
more effectively integrate multi-scale features.

3) ICF AND IPF MODULES IN ICPM
We designed five experiments to assess the impact of
these two modules on the final localization performance.
Specifically, we also investigated the reason for using a
3 × 3 convolution instead of the ICPM in the last layer. The
results are as shown in Table 5. Compared to the proposed

method, the absence of ICF and IPF led to a decrease of
8.5%/2.8%/9% in F1/AUC/IOU scores, respectively. When
using only ICF (IPF), a noticeable drop in localization
performance was observed, with F1/AUC/IOU decreasing by
4.6%/1.3%/4.8% and 5.1%/1.6%/5.4%, respectively. We also
conducted experiments to determine the order of using
ICF and IPF and found that applying ICF first, followed
by IPF, resulted in an F1/AUC/IOU improvement of
3.8%/0.2%/3.9%. When ICPM was used in the last layer,
F1/AUC/IOU dropped by 6.3%/0.7%/6.8% respectively. The
aforementioned results can be explained as follows: On
the one hand, combining ICF and IPF enhances feature
representation by exploiting the interdependencies between
channel and spatial mappings. On the other hand, replacing
ICPM with a 3 × 3 convolution in the decoder was done
because the initial layers of the encoder contained too much
low-level information. Utilizing ICPM for fusion not only
degrades themodel’s performance but also introduces a heavy
computational burden.

D. ROBUSTNESS ANALYSIS
To assess the robustness of our proposed image manip-
ulation localization method, we performed pre-processing
operations on the tampered images in the test dataset.
These pre-processing steps included applying JPEG com-
pression with different quality factors, Gaussian blurring
with varying kernel sizes, and the addition of Gaussian
noise and Salt pepper noise with a standard deviation of
sigma. Subsequently, we tested the pre-processed images
using models trained on the NIST16 [3] and Columbia [2]
datasets. In our experiments, we selected RRU-Net [12],
ManTra-Net [9], SATFL [35], MTSN [15], and CFL-Net
[34] as comparative methods and compared their localization
performance on manipulated images subjected to various
pre-processing operations. Fig. 8 and 9 display the F1
scores of these methods under different pre-processing
operations. The following observations can be made from the
figures.

1) ROBUSTNESS RESULTS AGAINST JPEG COMPRESSION
In image forgery tasks, the tampered images are often
subjected to JPEG compression to conceal the forgery
traces. To evaluate the robustness of our proposed DIF-Net
under different JPEG compression quality factors (QF),
we varied the QF values as QF ∈ { 50, 60, 70, 80, 90, 100} .
Subsequently, we employed the DIF-Net model trained
on the NIST16 and Columbia datasets to perform forgery
localization on the test images, comparing its performance
with five other methods. The experimental results on both
datasets are illustrated in Fig. 8(a) and 9(a). From the
figures, it can be observed that when confronted with JPEG-
compressed images, only ManTra-Net exhibits a relatively
noticeable performance drop on the Columbia dataset, while
the performance of the other five methods remains relatively
stable. Among these methods, our DIF-Net achieves the best
localization results.
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FIGURE 7. Visualization results of partial ablation experiments.

FIGURE 8. Robustness results of different methods on the NIST16 dataset. (a) JPEG compression, (b) Gaussian blur, (c) Gaussian noise, (d) Salt
pepper noise.

2) ROBUSTNESS RESULTS AGAINST GAUSSIAN BLUR
Gaussian blur is a common post-processing operation
that can make the edges of tampered images smoother,
thereby reducing the visibility of forgery traces. In the pre-
processing stage, we applied Gaussian blur with different

kernel sizes, i.e., k ∈ { 3, 5, 7, 9, 11, 15} , to simulate
various levels of blurring effects. The experimental results
in Fig. 8(b) and 9(b) allow us to observe the impact on the
performance of the six methods. Specifically, for tampered
images processed with Gaussian blur of different kernel
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FIGURE 9. Robustness results of different methods on the Columbia dataset. (a) JPEG compression, (b) Gaussian blur, (c) Gaussian noise,
(d) Salt pepper noise.

sizes, except for CFL-Net and ManTra-Net, which were
significantly affected. The localization results of the other
four methods remained basically unchanged, with DIF-Net
achieving the best localization performance.

3) ROBUSTNESS RESULTS AGAINST GAUSSIAN NOISE
Adding Gaussian noise to forged images is also a commonly
used method for robustness testing. In this experiment,
we compared the localization performance of the six methods
under the Gaussian noise perturbation attack. The different
standard deviations, set as δ ∈ { 0.02, 0.04, 0.06, 0.08, 0.1,
0.12} , to simulate varying degrees of Gaussian noise
interference. Based on the experimental results presented in
Fig. 8(c) and 9(c), it can be observed that as the standard
deviation of Gaussian noise increases, the localization results
of MTSN remain relatively stable. In contrast, ManTra-
Net’s localization performance starts to improve, while the
localization performance of the other four methods begins
to decline. This indicates that, in the face of increasingly
intense Gaussian noise interference, the localization ability
of most methods is affected to some extent. For the stable
performance of MTSN, we attribute this to the role played
by edge guidance and multi-task loss. Edge guidance makes
the tampered edges more prominent, reducing the impact
of noise on the localization results. As for the unexpected
results of ManTra-Net, we speculate that this may be because

ManTra-Net used up to 385 types of tampered images from
various image operation types during its training process.
Such a training strategy may have made ManTra-Net more
adaptable to different levels of Gaussian noise because it
learned a wider range of manipulation operation types.
Although DIF-Net’s performance is slightly weaker than
MTSN on the Columbia dataset, overall, when faced with
Gaussian noise attacks, DIF-Net still achieves the best
localization results.

4) ROBUSTNESS RESULTS AGAINST SALT PEPPER NOISE
We also compared the localization performance of the
six methods under salt-and-pepper noise attacks. In the
pre-processing stage, we set different standard deviations,
denoted as δ ∈ { 0.02, 0.04, 0.06, 0.08, 0.10, 0.12} , to intro-
duce varying degrees of salt-and-pepper noise interference.
Salt-and-pepper noise is a common type of noise that
randomly adds black and white pixels to an image, simu-
lating image corruption. As shown in Fig. 8(d) and 9(d),
we observed that under salt-and-pepper noise attacks, CFL-
Net is the most sensitive, and its localization results are
significantly affected by the presence of salt-and-pepper
noise. This may be attributed to CFL-Net using contrastive
loss during training to learn feature distinctions between
tampered and untampered regions. However, for salt-and-
pepper noise, which is highly random noise, accurately
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modeling feature differences becomes challenging, leading
to a decline in localization performance. ManTra-Net’s per-
formance on the Columbia dataset exhibits the same upward
trend as it does when facing Gaussian noise attacks. The
other four methods showed some degree of degradation in
localization performance under salt-and-pepper noise attacks.
Nevertheless, DIF-Net still achieved the best localization
results under these noise conditions.

In summary, the performance of almost all models tends
to degrade when different attacks are applied to test images.
Particularly, the performance degradation is most pronounced
when Gaussian noise and salt-and-pepper noise are added.
However, DIF-Net shows more stable performance compared
to other methods under these attacks, showcasing its strong
robustness.

V. CONCLUSION
In this study, we propose a novel DIF-Net for the task
of image forgery localization. Firstly, we introduce a color
space combination strategy during the feature extraction
phase, which leverages both RGB and HSV color spaces
to capture richer feature information. This strategy allows
our model to better discriminate different regions, especially
when significant color variations exist between tampered
and untampered areas. Secondly, we introduce the Adaptive
Convolution Pyramid Module (ACPM) in the encoder of
the feature extraction process, using multi-branch depth-wise
convolutions with learnable weights to handle features at
different scales. This enhances our model’s capability to han-
dle tampered regions of various sizes, resulting in improved
localization accuracy. Finally, we propose a novel Interme-
diate Channel Fusion Module (ICPM) to establish coherence
between channels and spatial information, enhancing feature
representation. The ICPM module conducts feature fusion in
the decoder, enabling more effective encoding and expression
of features for the forgery localization task through themutual
dependence between channel and spatial mappings.

To evaluate our method’s performance on different
datasets, we conducted extensive experiments. Compared to
previous methods, DIF-Net improved the F1 by 3.3%, 1.1%,
and 5% on the CASIA2, NIST16, and Columbia datasets,
respectively. On most datasets, the proposed method achieves
the best performance in digital image tampering localization,
significantly outperforming other hand-crafted traditional
methods and deep learning-based approaches. Furthermore,
ablation experiments prove the effectiveness of individual
modules and parameters in the model’s performance. While
our DIF-Net exhibits remarkable robustness and maintains
stable performance against various types of pre-processing
attacks, it still has limitations in terms of generalization and
stability. We acknowledge these issues and will strive to
address them in future research, developing more adaptable
and versatile approaches. Finally, we hope that DIF-Net can
provide valuable assistance in scenarios that require ensuring
the authenticity of digital images and the integrity of visual
information, such as digital forensics, media, and journalism.
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