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ABSTRACT The limited battery life of unmanned autonomous vehicles and ground robots necessitates
efficient routing strategies that enable periodic recharging to extend operational range. To address this issue,
this paper studies an extension of the classical rural postman problem, where a fleet of rechargeable vehicles
with limited battery capacity stationed at multiple depots must traverse required edges in a weighted graph
through multiple trips, minimizing the total travel time. Existing heuristic approaches yield poor solutions
with a high optimality gap due to the NP-hard nature of the problem. We propose a new Mixed Integer
Linear Programming (MILP) formulation for the problem, which is used to obtain optimal vehicle routes and
introduce new techniques to enhance existing metaheuristics, such as simulated annealing, tabu search, and
genetic algorithm, to solve the problem. The routes obtained by testing the metaheuristics on benchmark
and real-world instances based on roadmaps were compared to the optimal solution. Experimental results
for benchmark instances showed that the simulated annealing and genetic algorithm kept the optimality gap
within 1%. For real-world instances, simulated annealing and tabu search improved route quality by 54.1%
and 49.9%, respectively, over routes obtained by only using heuristic approaches.

INDEX TERMS Multi-vehicle route planning, capacity constraints, metaheuristics, rural postman problem,
rechargeable and reusable vehicles.

I. INTRODUCTION
The Multi-Depot Rural Postman Problem with Rechargeable

analysis and expert insights, to warn drivers and prevent
accidents [1].

and Reusable Vehicles (MD-RPP-RRV) addresses a critical
real-world challenge - enabling efficient route planning for
battery-operated unmanned aerial vehicles (UAVs) tasked
with inspecting potentially icy road segments across a given
area of interest (AOI). This problem is motivated by the
need to utilize UAVs equipped with onboard sensors to
inspect hazardous icy road segments, based on historical data

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen

The road network within the AOI is represented as a
graph, with base stations forming a subset of nodes called
depots and potentially icy road segments forming a subset of
edges called required edges that need to be traversed. The
research objective is to develop an optimized strategy for
routing a fleet of UAVs with limited battery capacities to
traverse these required edges while periodically returning to
the depots for recharging. This ensures the UAVs maintain
operational range, ensuring continued functionality during
their inspection mission.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

86523


https://orcid.org/0000-0002-1784-7043
https://orcid.org/0000-0002-4081-1196
https://orcid.org/0000-0001-5248-6266
https://orcid.org/0000-0002-1515-4243

IEEE Access

E. Sathyamurthy et al.: Hybrid Metaheuristic Approaches for the MD-RPP-RRV

The MD-RPP-RRV presents an arc routing problem [2]
on an undirected weighted connected graph containing
rechargeable vehicles with limited capacity stationed at
multiple depots. The objective is to minimize the time needed
to traverse the required edges of the graph at least once with a
set of feasible routes for the vehicles. A vehicle can perform
multiple trips; each trip begins at a depot, visits a sequence of
nodes and possibly required edges, and ends at a depot, where
the vehicle can recharge.

This paper formulates the MD-RPP-RRV into a MILP
model and presents simulated annealing, tabu search, and
genetic algorithm metaheuristics to improve the initial
solution produced by the multi-trip algorithm (MT) heuris-
tic [3]. The MD-RPP-RRYV is a challenging combinatorial
optimization problem that belongs to the class of NP-hard
problems (Section II). Hence, the MT heuristic solutions
exhibited poor quality with an average optimality gap of
162%, necessitating the use of metaheuristics to reduce
this gap. Furthermore, the paper reports on a comparative
analysis of performance for optimal solutions derived from
MILP formulations utilizing the Gurobi optimizer [4] and the
proposed integrated metaheuristic approaches.

The main contributions of this paper are the following:

1) A new class of arc routing problem called
MD-RPP-RRV wherein rechargeable and reusable
vehicles conduct multiple trips across various depots.
While previous literature explores similar concepts
in node routing problems [46], [47], [48], [49], [50]
and multi-trip CARP [21], [32], this paper integrates
rechargeability and reusability aspects for solving
multi-depot arc routing problems with multiple trips.

2) The formulation of the problem as a MILP that can be
used to find optimal routes.

3) Introduction of new ways to apply metaheuristics to
solve the problem that notably enhances the heuristic
solutions provided by the multi-trip algorithm. These
metaheuristics demonstrate effectiveness across var-
ious instances, including those based on real-world
roadmaps.

4) Experimental evaluation and comparison with optimal
solutions generated by the Gurobi optimizer reveal
that the simulated annealing algorithm is scalable
and consistently produces reliable results for both
benchmark and real-world instances.

The remainder of this paper is organized as follows:
Section II presents a literature review of related works.
Section III provides the assumptions considered and presents
a MILP formulation for the MD-RPP-RRV. Section IV briefly
describes the proposed metaheuristics. Section V provides the
results obtained from testing the metaheuristics on instances
for the MD-RPP-RRV. Section VI concludes the paper.

Il. LITERATURE REVIEW
This section reviews the literature related to the MD-RPP-
RRV. The MD-RPP-RRYV is a variant of the Rural Postman
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Problem (RPP) [6], which is an arc routing problem that
aims to find the minimum-length tour of a postman traversing
a subset of arcs in a graph. Unlike the Chinese Postman
Problem (CPP) that requires traversing all edges and can
be solved in polynomial time [7], the RPP is proven to be
NP-hard [8]. The MD-RPP-RRYV inherits the NP-hardness of
the RPP, as it reduces to the RPP when considering only a
single depot and restricting vehicles to a single trip, forming
a Hamiltonian cycle. The MD-RPP-RRV can represent many
real-world problems, such as routing vehicles optimally for
snowplowing or routing UAVs to inspect leaky gas lines or
finding deformed railway tracks.

CPP and RPP are special cases of the well-studied Capaci-
tated Arc Routing Problem (CARP). The CARP involves effi-
ciently servicing a street network with capacity-constrained
vehicles from a central depot, with the objective of mini-
mizing total routing costs. While numerous strategies have
been developed for the single-depot CARP variant [29], [30],
[33], [35], [36], [37], research on the multi-depot CARP
remains relatively scarce in the literature. The literature
review focuses on the approaches developed for solving
multi-depot versions of RPP and CARP, highlighting the
differences from the studied problem.

The Multi-Depot CARP (MD-CARP) [22] is a variant of
the classical CARP, where vehicles are stationed at multiple
depots and must start and end their routes from those
locations. The typical scenario involves vehicles returning
to their respective depots, although variations exist where
vehicles can return to any depot. MD-CARP often involves
a heterogeneous fleet of vehicles and finds application in
various fields, such as package delivery and waste manage-
ment. Kansou and Yassine [24] proposed new upper bounds
for the MD-CARP by developing a new memetic algorithm
based on a special crossover and an Ant Colony Optimization
(ACO) metaheuristic with an insertion heuristic. Hu et al.
[23] proposed a Hybrid Genetic Algorithm with Pertur-
bation (HGAP), which produced competitive solutions on
MD-CARP benchmark instances compared to [24]. Yu et al.
[25] provided several theoretical guarantees by propos-
ing exact and constant-ratio approximation algorithms for
MD-CARP.

Polacek et al. [33] explore a variant of the MD-CARP
known as the CARP with Intermediate Facilities (CARP-IF).
In this problem, there’s one depot, but additional nodes
called intermediate facilities (IF) are introduced. Vehicles
start and end their routes at the depot but can recharge at
any intermediate facility. These facilities can serve practical
purposes like waste disposal sites or storage for winter
gritting materials. The authors propose two lower bounds
and two heuristics for CARP-IF. Another similar variant
of CARP with mobile depots is the CARP with Refill
Points (CARP-RP) which can be seen as a variation of the
MD-CARP where the depots are travelling to the vehicle to
recharge. In this setup, there are two types of vehicles: regular
service vehicles that travel along edges to provide service and
refill vehicles that travel to meet service vehicles anywhere
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on the graph for refueling. Amaya et al. [34] presents a
mathematical model for CARP-RP and proposes a Cutting
Plane algorithm to solve the problem. In the MD-CARP
and its variants, the vehicles only perform single trips from
multiple depots, but in MD-RPP-RRY, vehicles are recharged
and reused to perform multiple trips from multiple depots.

Multi-trip CARP, where each vehicle is capable of per-
forming multiple trips, has also been studied in the literature
but with single depots, not multiple depots. Tirkolaee et al.
[32] created a Mixed-Integer Linear Programming model
for the multi-trip CARP to minimize total costs for urban
waste collection. Their model placed depots and disposal
sites strategically within urban areas. To solve this, they
introduced a hybrid algorithm using the Taguchi parameter
design method with an Improved Max-Min Ant System
(IMMAS). Their approach proved highly effective in solving
both standard test problems and large-scale instances,
showcasing its efficiency. An extension of this problem was
studied by Tirkolaee et al. [21] proposing a Hybrid Genetic
Algorithm for the multi-trip green CARP with the objective
of minimizing the total route cost including the cost of
generation and emission of greenhouse gases and the cost of
vehicle usage. Multi-trip CARP and Multi-depot CARP have
been separately studied in the literature but MD-RPP-RRV
combines the multi-trip and multi-depot aspects of these two
problems.

Compared to multi-trip and multi-depot variants of
the CARP, Multi-Depot RPP (MD-RPP), has been less
extensively studied in the literature. Ferndndez and
Rodriguez-Pereira [20] studied the MD-RPP on undirected
graphs and presented a Mixed-Integer Linear Programming
formulation with two different objective functions: (i) mini-
mize total routing costs and (ii) minimizing the length of the
longest route, by proposing a branch-and-cut algorithm that
solves 95% and 99% of the instances optimally respectively
for these objective functions. Chen et al. [26] formulated the
Min-Max MD-RPP (MMMDRPP) and developed an efficient
tabu-search-based algorithm and proposed three novel lower
bounds to evaluate the routes. The algorithm was tested to
design routes for police patrolling in London, and the results
demonstrate the efficiency of the algorithm in generating
balanced routes. An important area for further investigation
is the exploration of the Multi-Depot RPP (MD-RPP) in
conjunction with multi-trip variants, a research gap that has
yet to be fully addressed. MD-RPP-RRV aims to bridge this
gap.

Due to the NP-hard nature of both the MD-CARP and
the MD-RPP, most of the approaches proposed in the
literature are metaheuristic and exact approaches. Since exact
approaches require significant computational effort and their
computational complexity increases exponentially, they are
not suitable for solving larger instances. Hence, we choose
to develop metaheuristics to solve the MD-RPP-RRV.
As the MD-RPP-RRV differs from both the MD-RPP and
MD-CARP, the metaheuristics developed in the literature
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cannot be directly used to solve the MD-RPP-RRV. Addi-
tional motivation to solve the MD-RPP-RRYV can be attributed
to the increasing prevalence of battery-operated unmanned
vehicles, particularly in surveillance operations. Given their
reliance on batteries, optimizing the routing of these vehicles
is crucial, considering their limited battery life and the
necessity for frequent recharging to ensure efficient task
completion.

IlIl. PROBLEM FORMULATION AND ASSUMPTIONS
This section outlines the key assumptions underlying the

formulation of the optimization problem.

A. ASSUMPTIONS
For the MD-RPP-RRY, the following assumptions are made:

1) All vehicles start from their respective depots with full
battery capacity.

2) The AOIl is represented as a weighted connected graph.

3) Vehicles navigate within the AOI solely by traversing
edges of the graph.

4) The depots at which vehicles start, stop, and recharge
are located at nodes of the network (such as intersec-
tions of roads).

5) If an edge is required, at least one vehicle must traverse
the edge.

6) All vehicles have the same capacity (operating time
when fully charged).

7) All vehicles move at the same speed.

8) The time to recharge the vehicle battery is the same at
all depots. Partial recharging is not possible.

9) The time required to traverse an edge depends only
upon the length of the edge and the vehicle speed.

Note that the description in this paper uses the term
“recharge” because our work was motivated by battery-
powered UAVs. More generally, this also refers to refueling
operations for vehicles that run on gasoline or other fuel, and
thus the formulation is also valid for such vehicles.

B. PROBLEM FORMULATION

The motivation to formulate the MD-RPP-RRV comes
from the increasing deployment of rechargeable autonomous
vehicles like UAVs, ground robots, and electric vehicles in
various applications, which necessitates optimized routing
strategies that account for their limited battery capacities and
recharging requirements. Failing to consider these constraints
can lead to inefficiencies, higher costs, and mission failures.
The MD-RPP-RRV formulation aims to minimize the total
time required for a fleet of rechargeable vehicles to traverse
all required edges while allowing periodic recharging at
designated depots, adhering to battery constraints. Solving
this MILP model enables optimal resource utilization, cost
savings, and improved reliability in applications involving
rechargeable autonomous vehicles for tasks such as monitor-
ing, inspection, transportation, and delivery.
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Let G = (N, E, T) be the undirected weighted connected
graph that models the road network in AOI where N is
the set of nodes (road intersections), E is the set of edges
((i,j) € E) that connect nodes (i,j € N), and T is the set
of edge weights (¢(i,j) € T). An edge represents a road
segment; let /(i, j) be the length of the road segment in meters.
All vehicles traverse road segments at a constant speed S
meters per second, and the edge weight #(i, j) represents the
time taken by a vehicle to traverse edge (i, j), calculated as
1, )) = 5.

S

Let E, C E be the set of required edges that need to be
visited. Let Ny be the set of depots where vehicles can start,
stop, or recharge. Ny € N. Let C be the maximum time
that a vehicle remains operational after charging; this is finite
because a vehicle’s battery has finite capacity. Let K be the
number of vehicles. Let Ry be the time taken to recharge a
vehicle. Let F' be the maximum number of trips that a vehicle
can make, which is determined using an iterative solution
procedure (Section V-Al).

To formulate the MD-RPP-RRV as a MILP model, three
sets of binary decision variables are introduced:

1) x(k,f,i,j) = 1if vehicle k traverses edge (i, j) from
node i to node j during its f-th trip, and O otherwise.

2) y(k,f,d) = 1 if vehicle k ends its f-th trip at depot
node d € Ny, and 0 otherwise.

3) zk,f) = 1 if vehicle k uses its f-th trip, and
0 otherwise.

B(k) € N4, Vk = 1,...,K is an array of constants
representing the depot vehicle k is initially located at the start
of the mission. The values of B(k) are given. The objective
function § represents the maximum total time needed by any
vehicle to complete all its trips and recharge between trips.
Let § be a constant that is much greater than |E|, the number
of edges.

In the MILP formulation given below, constraint (1)
ensures that if vehicle k has initiated its first trip from depot
node B(k), it is tracked using z(k, 1). Constraint (2) restricts
unnecessary trips by ensuring that trip f + 1 is used only
if trip f is used by vehicle k. Constraint (3) keeps track of
the depot node d € Ny where each trip f of vehicle k has
ended using y(k, f, d). Constraint (4) forces vehicle k to start
its trip f from the same depot node d € Ny it ended its
previous trip f — 1 if necessary. Constraint (5) ensures that
vehicle k, if it begins trip f, must end in any of the depot
nodes d € Ny.

Constraint (6) enforces an upper bound for maximum
trip time for all vehicles considering recharge time. Note
constraint (6) only adds recharge time for used trip f >
1 determined using the z(k,f). Constraint (7) ensures that
no trip is too long (exceeds C). Constraint (8) ensures that
all trips made by each vehicle enter or leave depot nodes the
same number of times. Constraint (9) makes sure all trips of
each vehicle have a continuous flow. Constraint (10) ensures
that all trips made by all vehicles traverse each required edge
at least once.
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Constraint (11) ensures that a vehicle traverses no edges
during a trip that is not used. Constraint (12) is a subtour
elimination constraint that is based on one used by
Chen et al. [26]. The set S is a set of nodes that are not depots,
E(S) is the set of required edges between nodes in S, and 5(S)
is the set of edges that have only one node in the set S. This
constraint ensures that, if a vehicle traverses a required edge
(», q@) € E(S), then it also traverses edges that enter and leave
S. Unfortunately, the size of this MILP grows exponentially
with the number of nodes. For constraint (12) alone, there
are 2IN/Nal gubsets S, so the formulation requires a total of
2IN/Nal 5 K x F copies of this constraint.

The following section describes the proposed metaheuris-
tics to solve the MD-RPP-RRV.

IV. SOLUTION APPROACHES

This section describes a route design allocation heuristic that
designs feasible routes to the MD-RPP-RRV and metaheuris-
tics, simulated annealing, tabu search, and genetic algorithm
by presenting their pseudocode and how it improves the initial
solution constructed from the MT algorithm heuristic for the
MD-RPP-RRV.

min 8
subject to:

> xk 1BkK).j)=zk. 1) k=1 K
(BK) JeE

M
2k, f)—zk,f+1)=>0, k=1,....K,f=1,...,.F—1
)
> xkfoidy=ylk.f,d), k=1,....K,f=1,..F
(i,d)eE,
deNy
3)
Yk f =1.dy= > xtk.f.djpk=1,... K,
(d.)eE
f=2..FdeN,
)
ak.f)— > ykf.d)=0 k=1 Kf=1..F
deNy
)
F F
DD xS i)+ 2k, f)= 1) x Ry < B,
S=1G)eE f=1
k=1,...,K 6)

D xltef i )< Cok=1,... . K.f=1,...F
(i,))eE

(N
Z x(k’fvi’j)_ Z x(kvfyivj)zov
(ij)EE, (. ))EE,
ieNg JEN4
k=1,....K.f=1,....F ®)
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FIGURE 1. (a) A sample instance of MD-RPP-RRYV, (b) Vehicle V; getting closer to the required edge. (c) Vehicle

V, traversing the required edge.
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JjeN JjeN

f=1,...,F,ie N/{Ng} ®
K F K F
DD xkfi )+ DD xk.foj i) = 1, VL j) € Ey
k=1f=1 k=1f=1
(10)
> xlk,f, i) < 2k, f) x M,
(.)EE
k=1,....,K.f=1,...,F (11)
> xtk.f. i =2 xxtk.f.p.g), k=1,....K,
(i,)€(S)
f=1,...,F,¥YS CN/{Ng}, (p, q) € E(S) (12)

xtk,f,i,pel0, 1], k=1,....K,f=1,....,F,Vi,)) e E

(13)
vk, f,d)e[0,1], k=1,....K.f=1,....,F,d € Ng

(14)
Wk, f)el0,1], k=1,....K,f=1,...,F (15)
BeRT, §> |E| (16)

A. MULTI-TRIP ROUTES

This section describes with an example a feasible solution to
the MD-RPP-RRV to help the reader better understand the
upcoming sections. A feasible solution specifies a route for
each vehicle. A route includes one or more trips; each trip
begins at a depot and ends at the same or different depot. The
length of a trip is limited by the capacity constraint. Although
its mission is to cover required edges, a vehicle might need
to make a trip that includes no required edges in order to get
closer to one or more required edges.

Consider an instance of the problem consisting of an
undirected graph G with 8 nodes, 12 edges, 2 depot nodes,
and 1 required edge, shown in Figure 1(a). There is only one
vehicle (V1), which begins at the depot at node 1; C = 7 time
units; and Ry = 1.1 time units.

Due to the capacity constraint, the vehicle cannot directly
traverse the required edge (2, 4) in one trip. The best possible
trip to cover this edge is {1-2-4-6}, but this requires 7.5 time
units, which exceeds vehicle capacity C, so it is infeasible.
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TABLE 1. Nomenclature.

Symbols Interpretation
G = (N, E,T) |Connected graph consisting of nodes, edges,
edge weights
Ny Set of depots N C Ny
E, Set of required edges
K Number of vehicles
o Set of current location of

vehicles {a1, s, .., ax }
Rr Time to recharge a vehicle at a depot
C Max time for a trip (capacity)
P Set of routes for vehicles { Py, Ps, .., Pk }
Y Set of times that vehicles arrived at their last
depot of their routes {Y7, Y5, .., Yk}
A Set of allocations of vehicle to s
required edges {A1, Ao, .., Ak}

M,; Maximum number of iterations

Ny Number of generations in Genetic Algorithm
P, Population size in Genetic Algorithm

De Crossover probability

Dm Mutation probability

Dr Reproduction probability

Pe Probability of accepting a better offspring

In a feasible multi-trip route, the vehicle travels from its
current depot to another depot (node 6) to move closer to the
required edge (Figure 1(b)), recharges at that depot, and then
completes a trip that includes the required edge (Figure 1(c)).

The first trip {1-2-6} takes 3.8 time units for the vehicle
to complete. Then, the vehicle recharges at node 6, which
takes 1.1 time units. Finally, the vehicle takes the second
trip {6-2-4-6}, which takes 6.7 time units to complete. Both
trips are feasible because each one’s duration is less than
C. Completing the route and traversing the required edge
requires 11.6 time units, which is the sum of both trip times
and the recharge time and also the maximum trip time.

The following section describes a heuristic used by the
metaheuristics to design routes for the MD-RPP-RRYV, and
Table 1 provides the nomenclature used in the following
sections.

B. ROUTE DESIGN ALLOCATION ALGORITHM (RDA)
As defined earlier, the MD-RPP-RRV requires a subset of
required edges E,, in the undirected weighted connected graph
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Algorithm 1 Required Edges Traversal Based on Allocation

Algorithm 2 SA Algorithm

1. procedure RDA(G, o, A, Ny, C, Rr)
2: for kin1to K do

3 Er <[] Pr <[] Ar <[]

4 while A is not empty do

5: Ty, Ay, E; < trip(G, ag, Ak, Ny, E;, C)
6 if time(7),) # 0 then

7 Ty, Ag, E; <~

closedepot(G, ak, Ak, Ng, E;, C)

8: end if

9: if E; is not empty then
10: Add T, to Py
11: ay < end of last trip in 7,
12: Add E; to Ay

13: E <[]
14: end if
15: end while
16: Add P, to P
17: Add A, to A
18: end for
19: return P, A

20: end procedure

G to be traversed at least once by the K rechargeable vehicles
with limited capacity C from their respective depot nodes
N; € N by minimizing maximum trip time. A feasible
solution for the MD-RPP-RRV will have a set of routes P
for K vehicles such that each vehicle route P for vehicle k&
will traverse a sequence (follows order) of the required edges
Ak € Ey such that UX A; = E,. Let A = {Ay, ..., Ag}
represent the set of allocations of required edges for all
vehicles. Hence, the problem of designing routes to solve the
MD-RPP-RRV can be converted into an allocation problem
of allocating E, required edges among K vehicles such that
routes resulting from the allocation minimize the maximum
trip time the most.

However, determining maximum trip time requires know-
ing the routes of K vehicles. The allocation route design
algorithm (Algorithm 1) takes in the allocated sequence of
required edges Ay of each vehicle k as input and plans the
routes of each vehicle k to traverse all the edges in A in
order with one exception. The exception is if while trying
to traverse a required edge e; € Ay, which is at index 1 in
Ay, the vehicle during its trip also traverses the required edge
e3 € Ay, which is at index 3, the allocation algorithm will
remove both the edges from Ay to avoid redundant traversal
of required edges in subsequent iterations and also keeps
track of actual sequence A; in which the required edges
were traversed. In Ay, which shows the actual sequence of
traversal of required edges by vehicle k in routes Py, the
edges will be ordered [eq, e3, ...]. The edge e3 will appear
after e;.

This allocation route design algorithm loops over each
vehicle k with its respective allocation Ay (Lines 2-4) and
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1: procedure SA(G, a, P, Ny, C, Rt, Tmax, Tmin, Cr, A, M;)

2: Apest <— A

3 Ppesy < P

4 Ybest < triptimes(Ppest, C, RT)

5 T < Tmax

6: for iter in 1 to M; do

7 if T > Tyin then

8 Y <« triptimes(P, C, Rt)

9: Apew < newallocation(A, Y, K)
10: Prew, Anew < RDA(G, o, A, Ng, C, R7)
11: Ynew < triptimes(Ppew, C, RT)
12: Af <« max(Ypew) — max(Y)

13: if Af < 0 then

14: A < Apew

15: P <« Ppew

16: Y < Yiew

17: if max(Y) < max(Ppest) then
18: Prest < P

19: Ypest < Y

20: Apest <— A

21: end if

22: else .

23: if e(%) > random(0, 1) then
24: A < Apew

25: P < Ppew

26: end if

27: end if

28: end if

29: T« TxC,

30: end for

31: return Ppegi, Abest

32: end procedure

tries to design trips to traverse the sequence of required
edges in A in order using the trip subroutine (Line 5). The
subroutine returns the routes for vehicle k consisting of trips
T}, each satisfying vehicle capacity C, the updated allocation
Ay after removing the required edges traversed during the
trips, and finally, the order in which the required edges were
traversed E;. T, and E; are used to update the routes of the
vehicle Py, the vehicle’s current position ay, and the actual
allocation Ay, if the trip 7), traversed any required edges in the
sequence Ay (Lines 9-14). If vehicle k is not able to traverse
a required edge in Ag, the closedepot() subroutine (Line 7)
moves the vehicle to a depot closer to traverse required edge
in Ag. The trip T}, used to move the vehicle k to a closer depot
is also checked for required edge traversal in A (Line 9),
as it is possible that vehicle £ may traverse a future required
edge in the sequence Ax. The pseudocode focuses on how,
after allocating the required edges to the vehicles, the RDA
algorithm will plan routes of vehicle k. The following section
describes the simulated annealing metaheuristic, which uses
the RDA and MT algorithm to design routes for the
MD-RPP-RRV.
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Algorithm 3 New Allocation Procedure

Algorithm 4 Tabu Search Algorithm

1: procedure NewAllocation(A, Y, K)

2: if random(0, 1) > 0.5 then // INSERT
3: kmax <— argmax Yy

4 Remove lkast required edge emax from A [kmax]

5 Randomly select kinsert € {1,2, ..., K} \ kmax
6: Insert eyax at the end of A[kingert]

7 else // SWAP
8 Randomly select k1 € {1,2,...,K}

9: Randomly select ky € {1,2,...,K}\ k1
10: Randomly select edge e; from A[kq]
11: Randomly select edge e> from A[kz]
12: Swap e and e, between Al[k1] and Alk>]
13: end if
14: return Updated allocation A

15: end procedure

C. SIMULATED ANNEALING (SA) ALGORITHM

The SA algorithm [52] takes a set of allocations (A) mapping
vehicles to required edges and their associated routes (P) as
input. The algorithm (Algorithm 2) seeks a better solution by
reallocating the required edges among the vehicles.

A temperature parameter (7) is set (Line 5) to control
the probability of accepting worse solutions during the
optimization process. The algorithm then enters the main
loop (Line 6), where it iteratively explores different allo-
cations (Line 9) of required edges and associated routes of
vehicles (Line 10) using the triptimes() subroutine and the
RDA algorithm (Algorithm 1) respectively till the temper-
ature parameter is greater than the minimum temperature
(Tmin) (Line 7). The initial allocation A is either randomly
generated or can be obtained using the MT algorithm by
examining the routes.

The new allocation method (Algorithm 3) operates on an
allocation A representing required edges assigned to a set
of vehicles, a set containing trip times of all vehicle Y =
[Yy, Y2, ..., Yk], and the total number of vehicles K. This
procedure has two main operations (INSERT and SWAP),
and it chooses one randomly; each has a probability of 0.5.

The INSERT operation (Lines 2-6 in Algorithm 3)
identifies the vehicle with the maximum trip time and
removes its last assigned required edge. Then, it randomly
selects another vehicle and inserts the removed edge into its
allocation.

The SWAP operation (Lines 7-12 in Algorithm 3) ran-
domly selects two different vehicles, k1 and k;, and swaps
a randomly chosen required edge from k; with an edge in
ko. The procedure returns the updated allocation A. This
algorithm dynamically reallocates required edges among
vehicles, which might improve the solution.

The SA algorithm (Algorithm 2) then updates the routes
of vehicles that have new allocations (Line 10). Algorithm 1
is used to design the new routes (Pk,), taking in the new
allocation (Aj), and also updating the allocation based on
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1: procedure TabuSearch(G, o, E,, Ng, C, A, R, M;)

2: P, A <~ RDA(G, o, A,N;, C,Ry)
3 Ppesy < P

4 Apest < A

5: f <[]

6: Add A to g

7 Y <« triptimes(P, C, Rr)

8 vp <— max(Y)

9: for it < 1toM; do

10: Apew < newallocation(A, Y, K)
11: Poew, Anew < RDA(G, a, Apew, Ng, C, Ry)
12: if Apew ¢ 1; then

13: Add Apew to 4

14: Ynew < triptimes(Prew, C, RT)
15: Vn <— max(Ypew)

16: if y, < yp then

17: Yb <= Yn

18: Ppest < Prew

19: Avpest < Anew
20: end if
21: end if
22: A < Apew
23: Y < Yiew
24: end for
25: return Ppegt, Apest

26: end procedure

the routes produced. If the new allocation produces routes
with better maximum trip time (Line 11- 13), the new
routes and allocation are updated with the current values
(Lines 14-16), and the best routes and allocation area are also
stored (Lines 18-20). However, if the new allocation results in
a worse objective function, the algorithm will accept it with
a probability that is determined by the Boltzmann criterion
[52] (Lines 23-25). This probabilistic acceptance allows the
algorithm to escape local optima and explore more of the
search space.

As the algorithm proceeds, the temperature parameter
decreases geometrically by the cooling rate (C,) (Line 29),
which reduces the probability of accepting worse solutions.
This cooling schedule ensures that the algorithm eventually
converges to a locally-optimal allocation. The SA algorithm
finally returns the best allocation Apeg and its associated
vehicle routes Ppeg; it converged to after the iterative process.

The following section describes the tabu search meta-
heuristic to solve the MD-RPP-RRV.

D. TABU SEARCH (TS) ALGORITHM

TS is a powerful metaheuristic algorithm widely employed
for solving combinatorial optimization problems. It operates
by iteratively exploring the solution space while maintaining
a short-term memory, known as the ‘“‘tabu list,” to guide
the search process and prevent revisiting previously explored
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solutions. This memory mechanism facilitates effective solu-
tion exploration and diversification, helping the algorithm
avoid getting trapped in local optima.

The TS algorithm developed to solve the MD-RPP-RRV
(Algorithm 4) takes in an allocation (A) as input and
determines its corresponding routes P using algorithm I
(Line 2). It then initializes variables to store the best routes
and corresponding best allocation found so far, Pp.s and
Apest, and adds the initial allocation to the empty tabu list
#; (Lines 3-6). It then computes the initial objective value
¥, which is the maximum trip time for the initial routes P
(Line 8).

In the subsequent loop (Lines 9-21), the algorithm iterates
through a fixed number of iterations M;, generating new
allocations of vehicles to required edges and updating
solutions accordingly. Within each iteration, a new allocation
Apew 1s computed (Line 10), followed by determining
the corresponding routes Ppeyusing the RDA algorithm
(Line 11).

The algorithm evaluates the feasibility of the new allo-
cation and computes its objective value (y,) (Lines 15).
If the new solution improves upon the current best solution,
the algorithm updates the best solution, best allocation,
and the best objective value (Lines 16-19). Finally, the
algorithm returns the best set of routes Ppe; and the
corresponding allocations Apey; (Line 20). Through its
systematic exploration and refinement process, TS efficiently
navigates the solution space, aiming to minimize the objective
function while adhering to problem constraints. The use of
a tabu list prevents revisiting previously explored solutions,
enhancing the algorithm’s effectiveness in finding optimal
or near-optimal solutions within a reasonable computational
time.

The following section describes the genetic algorithm
metaheuristic developed to solve the MD-RPP-RRV.

E. GENETIC ALGORITHM (GA)

This section describes the GA with the help of a pseudocode
(Algorithm 5). It starts with an initial random allocation
(A) of vehicles to required edges and tries to converge
to an allocation (Apest) With better maximum trip time by
iteratively improving the allocation with each generation
using reproduction, crossover, and mutation operations.
GA starts by creating a population (Lines 8 - 17), which is
a set containing Py number of uniquely random allocations
Ap along with their associated routes (0,) and maximum trip
times (),,) using RDA algorithm (Algorithm 1).

At the beginning of each generation, the GA makes a
copy of the current population (Line 20) to decide if a
particular member of the population needs to be replaced
by new candidates at the end of the generation after
undergoing reproduction, crossover, and mutation operations.
In each generation, reproduction, crossover, and mutation
operations are done probabilistically based on reproduction
(pr), crossover (p.), and mutation (p,,) probabilities. After
undergoing operations, the resulting population is evaluated
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Algorithm 5 Genetic Algorithm
1: procedure GA(G,Ny,E,. K,a, Ry, C, Nga Ps, pc, Pm»
Drs De)

2: A <« Initial random allocation

3: P, A < RDA(G, o, A,Ny, C,R7)

4: Prest < P, Apest <— A

5: Ybest <— max(triptimes(Ppest, C, RT))

6: A <—[Lop<[1y<I]

7: g<0,i<0

8: while i < P; do

9: Apew < newallocation(A, Y, K)

10: if Apew ¢ Ay then

11: Poew, Anew < RDA(G, a, Anew, Ng, C, R7)
12: Add Apew to Ay

13: Add Pyey to op

14: Add max(triptimes(Ppew, C, R7)) to ¥p
15: A < Apew

16: i<—i+1

17: end if

18: end while

19: while g < N, do
20: A PsY < Ao Pps Vp
21: if random(0, 1) < p, then
22: A, p, y < reproduction(A, p, y)
23: end if

24: if random(0, 1) < p. then

25: A, p, y < crossover(A, p, y)
26: end if

27: if random(0, 1) < p,, then

28: A, p, v < mutation(\, p, y)

29: end if

30: for i < 170P; do

31: if min(y;) < min(y),) then

32: if random(0, 1) < p, then
33: Ypi < Vi> Ppi < Pis Ap; < Ai
34: end if

35: end if

36: end for

37: J < argmin(y,)

38: if Vpj < Ybest then

39: Ybest <= Vpj» Abpest < )\pja Prest < Op;
40: end if

41: g<g+1

42: end while

43: return Ppegt, Abest

44: end procedure

(Lines 30 -36), and if they exhibit enhanced performance
(Line 31), they may replace existing individuals in the
population with a certain probability p, (Lines 32-33). This
follows the elitism concept [53] to retain some of the bad
solutions along with the better solutions in the population to
preserve diversity and escape local minima.
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Algorithm 6 Reproduction Step

Algorithm 7 Crossover Step

1: procedure reproduction(}, p, ¥, C, Rt)

2: Anew <= [ 1, Pnew <= [ 1, Vnew <[]
3: W <[]

4 P <]

5 for i < 1toP; do

6: Jfi < max(triptimes(p;, C, Rr))
7 Add ; oW

8 end for

9: for i < 1toPg do

10: Add ZW;'V to P

11: end for

12: for i < 1toPg do

13: Jj < Randomly select index from A based on W
14: k < Randomly select index from A based on W'\

W;

15: ifVVj > W, then

16: Add ) to Apew

17: Add pj to ppew

18: Add - t0 Ynew

19: else "
20: Add A\ to Apew
21: Add pg to ppew

22: Add WLk t0 Vnew

23: end if

24: end for

25: return Anew, Onew, Ynew

26: end procedure

The reproduction step (Algorithm 6) involves making
copies of individuals in the population with better fitness
using tournament selection to create a new population
(Anews Pnews Ynew ) With better individuals. In tournament
selection, tournaments are played by selecting two allocations
(Aj, Ak) (Lines 13 -14) from the population based on their
fitness, where the probability of selection is proportional to
their fitness values (Lines 5 -11). The individuals with better
fitness are placed in the mating pool (Aney) (Lines 15 -22).
As the selection of individuals is based on fitness, a fitter
individual gets selected to participate in more tournaments,
resulting in a mating pool with copies of individuals
with better fitness and eliminating weaker individuals. The
resulting mating pool is the updated population (Line 25)
returned as a result of the reproduction step.

The crossover step (Algorithm 7) involves iterative
selection of two allocations ();, A;) (Lines 5-6) from the
population and combining them to produce a better allocation
(Anew)- This is done by computing the trip times (Y;, Y})
(Lines 7-8) for both allocations and comparing the trip times
of each vehicle k € {l,...,K}. The trip time Y;[k] is
the total time taken by a vehicle k takes to traverse all of
its allocated required edges using single or multiple trips.
The allocation with a better trip time out of A; and )\; for
vehicle k is added to a new allocation (Apew). Of course,
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1: procedure crossover(G, o, Ng, C,Rr, A, p, v, K)
2: Anew <= [ ], Pnew <= [ ], Ynew <[]

3 for i < 1toPg do

4 Apew < {'}

5: Select \; from \

6: Randomly select \; from A \ A;

7 Y; < triptimes(p;, C, RT)

8 Y; < triptimes(p;, C, Rr)

9: for k < 170K do
10: if Y;[k] < Y;[k] then

11: Anewlk] < Ailk]

12: else

13: Anewlk] < /\j[k]

14: end if

15: end for

16: Apew < feasiblealloction(A pew)

17: Poew, Anew < RDA(G, a, Apew, Ng, C, Ry)
18: Add Apew t0 Apew

19: Add Ppew tO pOnew

20: Add max(triptimes(Ppew, C, RT)) 1O Vnew
21: end for

22: return Apew, Onew, Vnew

23: end procedure

Algorithm 8 Mutation Step

1: procedure Mutation(G, o, Ny, C, R, A\, p, ¥, K)

2 Anew <= [ 1, Pnew <= [ 1, Vnew <[]

3 for i < 1t0K do

4 Y <« triptimes(p;, C, Rr)

5: Apew < NEWALLOCATION();, Y, K)
6: Prew, Anew < RDA(G, o, Anew, Ng, C, RT)
7
8
9

Add Apew t0 Apew

Add Ppew 1O Pnew

Add max(triptimes(Ppew, C, RT)) tO Vnew
10: end for
11: return Anew, Pnew, Ynew
12: end procedure

the new allocation (Apew) may contain the same required
edges allocated to multiple vehicles and, in the worst case,
missing unallocated required edges. This is rectified using
the feasibleallocation() subroutine (Line 16), which makes
sure that the new allocation covers all the required edges. The
crossover step is performed on the entire population, so in the
end, a new population with better allocations is obtained.
The mutation step (Algorithm 8) makes use of the
newallocation() (Algorithm 3) to alter each allocation in
the population using INSERT and SWAP techniques to
get a better allocation. After performing the reproduction,
crossover, and mutation for N, generation, the best routes
Prest alongside its associated allocation Apeg iS returned.
The GA explores a wider search space through reproduction,
crossover, and mutation operations in each generation,
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FIGURE 2. (a) A MD-RPP-RRV instance where required edges with one or both of its nodes as depot
nodes, (b) Modified MD-RPP-RRV instance with dummy nodes and edges.

maintaining diversity. This approach may yield superior
solutions compared to TS and SA, though it requires more
computational effort. The following section discusses the
results obtained from proposed metaheuristics on benchmark
and real-world instances and compares those solutions with
the optimal solutions obtained by solving the MILP.

V. RESULTS AND DISCUSSIONS

This section provides details about the instances that we
used in our experiments and describes some important
steps followed to obtain optimal results using the Gurobi
optimizer version 10. Finally, the section discusses the results
from the proposed metaheuristics, along with an analysis
of the improvement in solution quality produced by each
metaheuristic compared to the M T algorithm heuristic and the
decrease in solution gap with respect to the optimum obtained
by solving the MILP. The instances can be accessed from this
GitHub repository link.

1) SET A INSTANCES

We created the Set A instances by converting 23 CARP
instances with undirected graphs [17] to multi-depot capac-
itated RPP instances using the instance generation process.
In these instances, C was set to equal twice the maximum
edge weight of the instance. This was done so that a vehicle
should be able to traverse the longest edge if it were chosen
as one of the required edge.

2) SET B INSTANCES

Set B has eight instances created from real-world roadmaps
of different regions with cold weather. We converted the
roadmaps to undirected graphs and then to testing instances
using the instance generation process. In these instances, C
was set to 31 minutes, the listed capacity of the DJI Mavic
Pro 2 UAV [54].

3) SET C INSTANCES

Set C has eight instances created from the Set B instances
by adding the effect of wind on the edge travel times,
which requires relaxing assumption 8 (Section III-A). In these
instances, each edge had two weights (travel times): one
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for one direction and a second for the opposite direction.
We determined the different weights by considering the
impact of wind on a vehicle’s travel time. In one direction,
the wind may increase the vehicle’s speed (relative to the
ground), which reduces the travel time; in the other direction,
the wind may decrease the speed and increase the travel time.
Sathyamurthy [55] described the details of these calculations.
For set C instances, as only the graph type is changed from
undirected to directed, we decided to keep the number of
vehicles (K), number of required edges (£,,), and the number
of depot nodes (N,), the same as set B instances. For required
edges (E,), only one direction of the edge, i.e., either (i, )
or (j, i), is randomly chosen to be the required edge as edge
weights in either direction are different.

A. OPTIMAL SOLUTIONS USING GUROBI
This section describes the procedure used to determine
the number of trips (F) needed by Gurobi to produce
optimal solutions and also modifications done to the instances
provided as input to the Gurobi optimizer.

1) DETERMINING NUMBER OF TRIPS (F)

From the MILP formulation (Section III-B), in order to define
the decision variables programmatically in Gurobi, fixed
values for the number of vehicles (K') and the number of trips
(F) are needed. However, F' cannot be known beforehand as
each vehicle might take a different number of trips to traverse
the required edges. Hence, F' needs to be an upper bound of
the number of trips of K vehicles. In order to find the upper
bound, a simple iterative procedure is followed.

Initially, we set F = 1 and use Gurobi to find an optimal
solution to the instance. If a feasible solution exists, then
the instance is solved. If Gurobi reports that there are no
feasible solutions, we increase F by 1 and attempt to solve
it again. This continues until Gurobi finds a feasible, optimal
solution.

The number of variables and the Random Access Memory
(RAM) required to solve the problem increase as F increases.
By starting with ' = 1 and increasing it only as needed, this
approach avoids solving any unnecessarily large instances,
which is more efficient.
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2) MODIFIED GUROBI OPTIMIZER INPUT

Because of the subtour elimination constraint (Constraint 12),
if a vehicle traverses a required edge in the subset S, then it
also traverses edges that enter and leave S. This is true for all
possible subsets formed by the node set N/N;. A problem
occurs if a required edge has one or both of its nodes as
depot nodes (Figure 2a). In this scenario, there are no subsets
possible as subsets do not include depot nodes (Ny). To avoid
this scenario, we added dummy nodes and edges with zero
edge weights to modify any instance with such a required
edge.

For example, in Figure 2b, the required edge (1, 3) has
node 1 as the depot node, and hence, a dummy node 9 and
dummy edge (1, 9) is inserted with an edge weight of 0, and
the dummy node 9 is made the depot node instead of node 1.
Note that the insertion of dummy nodes and edges has no
effect on the quality of routes produced. A similar example
is shown in Figure 2b with the required edge (6, 7) where
both of its nodes are depot nodes. Hence, two dummy nodes
and edges are inserted and made depot nodes. The idea here
is to isolate depot nodes from the instance so that it does
violate any constraints of MILP formulation (Section III) thus
restricting the search space of the Gurobi optimizer.

B. RESULTS

This section presents the results from our tests of the proposed
metaheuristics and solving the MILP using Gurobi version
10.03 on the instances in Sets A, B, and C. These tests
were run on an AMD EPYC 7763 64-core Processor with
128 physical cores, 128 logical processors, and 8 CPU cores.
Up to 32 threads were used, and 8 GB of memory was
allocated to each CPU core.

1) PARAMETER SETTINGS

The parameters used in the proposed metaheuristics were
configured empirically from numerous tests performed with
the benchmark and real-world instances. Table 2 presents the
parameters used to test the metaheuristics on benchmark and
real-world instances and their respective values.

2) BENCHMARK INSTANCES RESULTS

Table 3 describes the set A instances, and tables 4 and 5
provide the results obtained by testing these instances on the
proposed metaheuristics.

Table 4 shows the results obtained by metaheuristics SA
and TS for 500 iterations, starting with the initial solution
produced by the MT algorithm. Table 5 shows the results
obtained by metaheuristics SA and TS for 500 iterations
and GA.

The optimal objective function value, which is the optimal
maximum trip time (Mop) obtained from solving MILP using
Gurobi for 19/23 set A instances, is also provided. For set
A instances A.20 - A.23, the Gurobi optimizer could not
produce optimal solutions using the MILP formulation as
it ran out of allocated memory after running for more than
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TABLE 2. Parmeter setting.

Parameter | Value Description
T 100 Max.imum temperatu.re used
in Simulated Annealing
T 0 Minimum temperature used
mn in Simulated Annealing
C, 0.99 | Temperature cooling rate
M; 500 | Number of iterations

Ny 50 Number of generation in GA
P, 25 Populat}on size in each
generation in GA
Reproduction probability

Pr 0.1 in each generation of GA
» 0.7 Mutation probability in
m ' each generation of GA
» 0.9 Crossover probability
¢ ’ in each generation of GA
e 0.8 Probability of accepting a better

offspring in each generation of GA

TABLE 3. Set A instances information.

Instance

Name N|FE|E,| C | K| Ng
Al 8 |11 3 18
A2 11 | 19 51 40
A3 7121 8 16
A4 7121 8 12
A5 12 | 22 7| 40
A.6 11 | 22 8 18
Al 12 | 22 8| 40
A8 12 | 22 7| 44
A9 12 | 22 8| 40
A.10 13 123 71 60
Al 12 | 25 9| 38
A2 12 | 26 91 40
A.13 13 | 26 7| 44

A.l14 10 | 28 9 | 198
A.15 8128 | 10 16
A.16 8128 | 10 14
A7 11 |33 | 11 18
A.18 9136 | 13 16
A.19 11 | 44 | 14 18
A20 22 145 | 16 | 38
A21 27 | 46 | 13 18
A22 27 | 51| 16 18
A23 11 |55 18 16

OO AN IANUNUNNRWERRWRWRERRWRERPRADND—
LW AN N W WMDY W LW W WL WWW LW WINN W

30 hours. For these instances, the results are represented as
* in the table. Each set A instance is run 10 times, and
the average (M), the best (best), and the standard deviation
(STDEV) of maximum trip time along with the average
execution time (ET) in seconds are provided in tables 4 and 5
to capture the stochastic nature of the metaheuristics.

To measure the quality of the metaheuristics solutions
relative to the quality of the optimal solutions found by
solving the MILP using Gurobi, we calculated the relative
difference as follows. Let M be the average maximum trip
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TABLE 4. Benchmark Instances Results of SA and TS using MT heuristic. Instances where the metaheuristic converged to the optimum are denoted by

bold highlighting in both the “Gap” and “B Gap” columns.

Instance MT MT+SA-500 MT+TS-500
Name Mopt | Myt M STDEV | best | Gap | BGap | ET M STDEV | best | Gap | BGap | ET
Al 64 64 64 0 64 0.0 0.0 0.0 64 0 64 0.0 0.0 0.0
A2 148 244 148 0 148 0.0 0.0 3.7 230 0 230 | 554 55.4 3.5
A3 15 15 15 0 15 0.0 0.0 3.2 15 0 15 0.0 0.0 34
A4 7 32 7.2 0.4 7 2.9 0.0 3.1 8.2 1 7 17.1 0.0 3.0
AS 126 140 127.4 1.7 126 1.1 0.0 3.3 130 0 130 3.2 32 3.2
A6 16 58 17 0.8 16 6.3 0.0 39 16.8 1 16 5.0 0.0 39
A7 34 138 344 0.5 34 1.2 0.0 2.9 34 0 34 0.0 0.0 2.7
A8 41 163 51.2 28.6 41 24.9 0.0 3.3 | 100.4 47.7 42 1449 2.4 3.8
A9 134 149 135 1.3 134 0.7 0.0 3.0 136 0 136 1.5 1.5 2.6
A.10 59 351 101.7 65 59 72.4 0.0 3.7 86.8 55.6 59 47.1 0.0 34
A.ll 120 127 123.2 2.9 120 2.7 0.0 4.1 127 0 127 5.8 5.8 4.8
A.12 40 149 116.8 25.8 40 192.0 0.0 43 | 1333 2.1 127 | 2333 | 2175 4.3
A.13 141 166 142.1 1.3 141 0.8 0.0 4.8 | 148.8 4.4 141 5.5 0.0 4.9
A.l4 48 63 48 0 48 0.0 0.0 55 | 532 1.6 50 10.8 4.2 5.6
A.15 12 16 12.4 0.5 12 3.3 0.0 4.6 12.2 0.6 12 1.7 0.0 4.4
A.16 10 40 10 0 10 0.0 0.0 43 10 0 10 0.0 0.0 4.1
A7 15 51 15 0 15 0.0 0.0 55 15.2 0.6 15 1.3 0.0 55
A.18 13 16 14.2 0.4 14 9.2 7.7 5.8 13.7 0.8 13 54 0.0 5.7
A.19 11 50 12.6 0.5 12 14.5 9.1 6.5 13.3 0.9 13 20.9 18.2 6.4
A.20 * * 33.1 1.1 31 * * 6.7 34 0 34 * * 7.4
A21 * * 57.9 13.4 18 * * 10.0 | 48.4 15.2 18 * * 9.2
A22 * * 63.1 1.9 60 * #* 10.7 68 0 68 * * 10.0
A.23 * * 13.7 0.5 13 * * 8.4 15.1 0.7 14 * * 8.1
Average Gap | 445 ¢ 175 | 09 294 | 162
for 19 instances

time of a solution obtained from metaheuristics (SA, TS or
GA). Let My, be the maximum trip time of an optimal
solution of the MILP. The metric Gap is the percentage
relative difference between these values:

M — Moy

Gap = x 100 (17)

opt
The B Gap is the best gap obtained by taking the best value
of the maximum trip time obtained by the metaheuristics in
10 runs.

(18)
opt

When relying solely on the MT algorithm, the average gap
for these 19 instances stood at 162% [3]. However, employing
metaheuristics made a significant difference. Metaheuristics
MT+SA and MT+HTS, starting with solutions generated by
the MT algorithm (Table 4), led to better outcomes, reducing
the average gaps to 17.5% and 29.4%, respectively, with the
best average gaps further diminishing to 0.9% and 16.2%,
respectively. While metaheuristics SA, TS, and GA exhibited
similar patterns when commencing from a random solution,
the average percentage gaps for SA and TS rose to 23.2%
and 75%, respectively, compared to using solutions from the
MT algorithm as starting points. The same could be said
about the best percentage gap for SA and TS, which are
11.9% and 31.2%, respectively. This suggests that providing
the metaheuristics with a suboptimal heuristic solution (MT
algorithm) instead of a randomly generated one as the starting
point can, on average, lead them to converge to a better
solution.
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GA, on the other hand, could achieve a better average and
best percentage gap, which are 13.7% and 0% compared to
other metaheuristics. In fact, GA was able to converge to
the known optimum for all 19 set A instances. However,
this came at the cost of computational time, where GA took
an average of 84.7 seconds to solve each set A instance,
and all the other metaheuristics took an average of under
5 seconds. This represents a 1600% increase in computational
effort for smaller set A instances with the number of edges
ranging between 11 and 55. This shows that GA, however
effective in converging to a better solution, the heavy reliance
on computational resources makes it a less favorable option
to solve larger instances.

The following sections provide the results of the meta-
heuristics for set B and set C instances.

3) REAL-WORLD INSTANCES RESULTS

Tables 6 describe the 16 real-world instances in Sets B
and C, and tables 7 and 8 provide the results obtained by
metaheuristics on those instances. Because these instances
have many more nodes and edges than the benchmark
instances, we were unable to obtain optimal solutions to the
MILP using Gurobi due to the large compute and memory
requirements.

Since the optimal maximum trip times of the set B and
set C instances could not be determined, the solution quality
produced by the metaheuristics was measured by considering
the MT heuristics solution as the baseline. Let My be the
maximum trip produced by the MT algorithm heuristic and
M and best be the average and best maximum trip produced
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TABLE 5. Benchmark Instances Results of SA, TS and GA using randomly generated initial solutions. Instances where the metaheuristic converged to the
optimum are denoted by bold highlighting in both the “Gap” and “B Gap” columns.

for 19 instances

Instance SA-500 TS-500 GA
Name Mpe | My | STDEV | best | Gap | BGap | ET M STDEV | best | Gap | BGap | ET M STDEV | best | Gap | BGap | ET
Al 64 68 0 68 6.3 6.3 0.0 68 0 68 6.3 6.3 0.0 64 0 64 0.0 0.0 9.1
A2 148 148 0 148 | 0.0 0.0 3.6 | 2248 38.7 148 | 51.9 0.0 3.6 148 0 148 | 0.0 0.0 16.1
A3 15 15.1 0.3 15 0.7 0.0 32 | 271 18.3 15 80.7 0.0 3.1 15 0 15 0.0 0.0 32.8
A4 7 7 0 7 0.0 0.0 3.0 7.9 0.9 7 129 0.0 33 7 0 7 0.0 0.0 38.6
A5 126 128 2.4 126 1.6 0.0 33 149 0 149 | 183 18.3 3.8 126 0 126 | 0.0 0.0 21.2
A6 16 17 0.8 16 6.3 0.0 39 | 289 17.5 16 | 80.6 0.0 39 | 162 0.4 16 1.3 0.0 43.0
AT 34 61.5 40.3 34 | 809 0.0 29 | 102.6 445 35 | 201.8 2.9 2.7 | 43.1 26.6 34 | 268 0.0 28.3
A8 41 51.2 28.6 41 249 0.0 3.5 131.5 29.7 43 | 220.7 4.9 3.8 41.4 0.8 41 1.0 0.0 21.8
A9 134 135.4 14 134 1.0 0.0 29 | 140.1 32 136 4.6 1.5 29 | 1346 0.9 134 0.4 0.0 28.7
A.10 59 100.6 63.7 59 | 705 0.0 35 203 0 203 | 244.1 | 2441 | 44 | 735 432 59 | 246 0.0 20.0
A1l 120 121 0.8 120 | 0.8 0.0 4.1 | 1244 5.6 120 | 3.7 0.0 39 | 1214 2 120 1.2 0.0 472
A12 40 128 2.7 124 | 220.0 | 210.0 | 4.3 | 1383 6.7 124 | 245.8 | 210.0 | 4.5 | 116.2 25.5 40 | 190.5 0.0 45.6
A.13 141 142.1 1.3 141 0.8 0.0 4.8 | 1494 3 144 6.0 2.1 4.6 | 1422 12 141 0.9 0.0 32.0
A.14 48 48.1 0.3 48 0.2 0.0 54 | 539 5.5 48 12.3 0.0 57 48 0 48 0.0 0.0 89.9
A15 12 12.5 0.5 12 42 0.0 4.6 16 0 16 | 333 33.3 45 | 123 0.5 12 2.5 0.0 75.6
A.16 10 10 0 10 0.0 0.0 43 10.5 0.7 10 5.0 0.0 4.1 10 0 10 0.0 0.0 86.1
A7 15 15 0 15 0.0 0.0 5.4 16 0 16 6.7 6.7 5.8 15 0 15 0.0 0.0 87.9
A18 13 14 0.6 13 7.7 0.0 59 | 304 18.3 14 | 1338 7.7 62 | 134 0.5 13 3.1 0.0 117.5
A19 11 12.6 0.5 12 14.5 9.1 65 | 172 0.4 17 56.4 54.5 7.0 | 119 0.5 11 8.2 0.0 211.7
A20 * 34.6 2.1 29 * * 6.6 137 0 137 * 9.0 33 2 29 * * 164.4
A21 * 64.3 3.4 58 * * 10.1 | 103.2 344 64 * * 10.6 | 62.7 3.1 56 * * 131.9
A22 * 61.4 33 58 * * 10.7 | 92.3 19.1 69 * 11.4 | 60.3 3.7 57 256.2
A23 * 13.9 0.7 13 * * 84 | 435 13.8 16 * * 8.6 | 13.6 0.7 13 * * 341.7
Average Gap 232 | 119 750 | 312 137 | 00

TABLE 6. Set B and C instances information.

Instance N B B, C K N,
Name
B.1 75 130 39 | 31 19 16
B.2 133 | 214 28 | 31 14 27
B.3 222 | 344 | 115 | 31 | 57 45
B4 192 | 353 113 | 31 | 56 39
B.5 290 | 423 44 | 31 | 22 59
B.6 288 | 494 | 163 | 31 | 81 58
B.7 374 | 622 85 | 31 | 42 75
B.8 461 879 | 286 | 31 | 143 | 93
C.1 75 260 39 | 31 19 16
C.2 133 | 428 28 | 31 14 27
C3 222 | 688 115 | 31 | 57 45
C4 192 | 706 113 | 31 | 56 39
C5 290 | 846 26 | 31 13 59
C.6 288 | 988 | 163 | 31 81 58
C.7 374 | 1244 | 81 | 31 | 40 75
C.8 461 | 1758 | 286 | 31 | 143 | 93

by the metaheuristics for set B and set C instances. Then,
we define percentage improvement (% I) and best percentage
(% B I) improvement (in 10 runs) of maximum trip time of the
metaheuristics w.r.t to MT algorithm heuristics as follows:
g1 =Y =M 100 (19)
Myr

My — best
— X

%BI1= 100 (20)

MT

Table 7 showcases the results obtained from employing
MT+SA and MTHTS, utilizing the MT algorithm’s heuristic
solution as their initial starting point. Notably, both SA and
TS demonstrate considerable enhancements in optimizing the
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FIGURE 3. (a) Convergence plot of SA and (b) MT+SA for 1000 iterations,
for instance, A.13.

maximum trip time of instances in set B and set C. On aver-
age, MT+TS improves the maximum trip time by 49.9%,
while MT+SA achieves a slightly higher improvement of
54.1%. However, delving deeper into the best percentage
improvement reveals MT+TS outperforming MT4-SA with a
notable 88.5% improvement compared to MT+SA’s 69.2%.
Despite this, MT+TS exhibits more variability in solution
quality, as evidenced by its higher average standard deviation
across instances (28.3 for MT+TS compared to 12.8 for
MT+SA). This variability suggests that while TS can achieve
better improvements, its convergence may be less consistent
than that of SA within the same 500 iterations.

Table 8 contains the results of SA, TS, and GA when
initiated with a random feasible solution rather than lever-
aging the MT algorithm’s heuristic. Interestingly, none of
the metaheuristics manage to surpass the solutions obtained
from the MT heuristic for all instances in set B and set C.
With the exception of a few instances (B.2, B.5, C.2, and
C.5), the metaheuristics predominantly yield negative values
in both percentage improvement (% I) and percentage best
improvement (% B I) columns.
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TABLE 7. Set B and C Instances Results of SA and TS using MT heuristic.

Instance | MT MT+SA-500 MT+TS-500

Name | Myr M STDEV | best %1 | %BI ET M STDEV | best %1 | %BI ET
B.1 287 | 287 0.1 28.6 0.0 0.3 51.5 28.7 0.0 28.7 0.0 0.0 46.1
B.2 356.7 | 275.0 48.5 199.0 | 29.7 79.2 111.3 | 228.6 28.1 203.5 | 56.0 75.3 97.1
B.3 30.8 | 239 1.2 21.7 | 289 | 419 195.1 15.8 1.5 14.0 | 949 | 120.0 | 199.8
B4 127.2 | 30.6 0.0 30.6 | 315.7 | 315.7 | 2715 | 373 0.0 37.3 | 241.0 | 241.0 | 190.1
B.5 809.5 | 333.7 43.0 262.1 | 142.6 | 208.9 | 489.4 | 552.3 171.5 2725 | 46.6 | 197.1 | 3859
B.6 1303 | 129.5 1.1 127.8 | 0.6 2.0 650.8 | 106.2 6.0 103.1 | 22.7 | 264 | 513.0
B.7 343.0 | 298.8 334 256.2 | 14.8 | 339 | 889.1 | 2245 24.5 200.2 | 52.8 | 71.3 | 7374
B.8 122.6 | 122.6 0.0 1226 | 0.0 0.0 | 1366.0 | 95.8 222 333 | 28.0 | 2682 | 9873
C.1 25.2 25.2 0.0 25.2 0.0 0.0 50.4 25.2 0.0 252 0.0 0.0 42.1
C2 578.2 | 270.3 21.7 2324 | 1139 | 148.8 | 113.5 | 4253 0.0 4253 | 36.0 | 36.0 | 117.3
C3 286 | 272 1.6 24.5 5.1 16.7 | 3919 | 209 2.2 18.8 | 36.8 | 52.1 | 355.1
C4 135.8 | 135.8 0.0 135.8 0.0 0.0 281.8 | 127.0 4.3 120.5 6.9 12.7 181.8
C5 808.1 | 366.3 29.8 3254 | 120.6 | 1483 | 497.8 | 420.8 150.5 | 269.3 | 92.0 | 200.1 | 452.7
C.6 30.7 30.5 0.0 30.5 0.7 0.7 7432 | 30.7 0.0 30.7 0.0 0.0 634.7
C.7 449.3 | 2333 24.5 2124 | 92.6 | 111.5 | 1435.0 | 267.8 34.5 2445 | 67.8 83.8 856.8
C.8 122.2 | 1222 0.0 1222 | 0.0 0.0 | 1349.2 | 104.1 7.8 92.5 174 | 32.1 | 10432
Average % 541 | 69.2 499 | 885

Improvement

TABLE 8. Set B and C Instances Results of SA, TS and GA using randomly generated initial solutions. For GA, the results of the instances containing * are

the best results obtained within 3600 seconds.

Instance | MT SA-500 TS-500 GA
Name | My | M | STDEV | best | %I | %BI| ET M | STDEV | best | %I | %B1| ET M STDEV | best %1 %B 1 ET
B.1 287 | 1278 53 1212 | 775 | -763 | 547 | 1722 | 312 | 1098 | -833 | -73.9 | 82.8 268.6 36.8 2425 893 882 523
B.2 3567 | 3102 | 290 | 267.6| 150 | 333 | 121.0 | 4223 | 794 |3266 | -155 | 92 | 1427 | 623.8 1104 | 5255 -42.8 321 69.7
B.3 30.8 47.8 36.8 279 | -35.6 10.4 186.5 | 149.2 35.0 109.8 | -79.4 | -71.9 | 220.7 273.7% 42.1* 243 .4% -788.6* -690.7* 3600
B.4 127.2 | 253.8 6.2 244.1 | 499 | 479 | 347.0 | 456.9 47.7 3779 | -72.2 | -66.3 | 536.2 388.8 42.0 361.5 -67.3 -64.8 2810.0
B.S5 809.5 | 338.6 345 292.8 | 139.1 | 176.5 | 487.0 | 394.7 58.9 3243 | 105.1 | 149.6 | 579.1 615.0 93.4 550.5 31.6 47.0 158.5
B.6 1303 | 201.1 | 40.6 | 1492 | -352 | -12.7 | 840.7 | 474.6 | 224 | 456.0 | -72.5 | -71.4 | 1103.5 | 743.4% | 119.9% | 590.6* | -470.5% -353.3*% | 3600
B.7 343.0 | 5264 17.2 490.5 | -34.8 | -30.1 | 1112.0 | 802.7 31.2 7739 | -57.3 | -55.7 | 14409 748.2 151.6 643.9 -54.2 -46.7 2144.0
B.8 122.6 | 383.0 7.6 3732 | -68.0 | -67.1 | 2204.3 | 575.5 4.1 565.2 | -78.7 | -78.3 | 2888.8 | 1056.9* 84.4* 944.7+ -762.1%* -670.6* 3600
C.1 252 | 1345 10.3 128.0 | -81.3 | -80.3 62.6 155.0 40.9 121.3 | -83.7 | -79.2 65.4 250.0 215 2325 -89.9 -89.2 48.1
Cc2 5782 | 3449 | 356 | 3324 | 676 | 739 | 117.5 | 469.7 | 1041 | 2743 | 23.1 | 110.8 | 153.0 | 593.2 453 519.6 2.5 1.3 92.0
C3 28.6 31.0 35 29.6 =17 34 178.6 | 179.1 21.6 1155 | -84.0 | -752 | 7732 349.9% 60.1* 251.3* | -1123.43* -778.7* 3600
C4 135.8 | 266.7 27.2 2457 | -49.1 | -44.7 | 3324 | 5338 489 447.6 | -74.6 | -69.7 | 542.6 434.8 383 374.0 -68.8 -63.7 3358.6
C5 808.1 | 478.9 74.5 4419 | 68.7 82.9 535.3 | 480.6 133.5 343.6 | 68.1 1352 | 610.2 646.6 50.7 564.5 25.0 432 257.9
C.6 30.7 | 251.7 239 2399 | -87.8 | -87.2 | 916.2 | 347.2 22.3 288.7 | -91.2 | -89.4 | 1398.9 849% 153.1*% | 702.8% | -2665.8*% | -2189.25* | 3600
c7 4493 | 531.5 | 446 | 517.8 | -155 | -13.2 | 11124 | 6789 | 56.8 | 6357 | -33.8 | -29.3 | 1567.4 | 876.5% | 34.6* | 776.9% | -95.1% -73% 3600
C8 122.2 | 354.1 23.7 344.0 | -65.5 | -64.5 | 2220.3 | 809.5 59.6 736.7 | -84.9 | -83.4 | 3054.5 | 1129.7* | 100.9*% | 980.8* -824.5% -702.6* 3600
Average % 198 | 94 447 | 274 443 -358.9
Improvement
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FIGURE 4. (a) Convergence plot of TS and (b) MT+TS for 1000 iterations, 125
for instance, A.13.
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Generations

GA encounters additional challenges, failing to solve
some instances altogether. To address this, a time limit of
3600 seconds was set for GA, representing the upper bound
of computational time for all other metaheuristics. Instances
where GA reached this time limit without converging are
marked with an asterisk. The computational complexity of
GA in a large practical real-world set B and set C instances is
due to the generation of a unique initial population (P = 25),
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FIGURE 5. (a) Convergence plot of GA for 50 generations, for instance,
A.13.

which is equivalent to solving the instances 25 separate times.
On average, SA, TS, and GA demonstrate improvements
in the solution quality for 4/16, 3/16, and 3/16 instances,
respectively. This shows, for bigger instances, a limitation
of metaheuristics in the form of dependence on a heuristic
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FIGURE 6. Box plot of average percentage gap (Gap) of metaheuristics for
Set A instances.

to give a good initial starting point to converge to a better
solution.

4) ALGORITHM BEHAVIOR ANALYSIS
This section provides insights into the convergent behaviors
of the proposed metaheuristics.

Figures 3a and 3b present the convergence graph with the
averages of the temperature curves, the objective function for
the current iteration (Local Best), and the objective function
(maximum trip time) till the current iteration (Global Best)
for 10 executions of set A instance A.13 SA starting with
random initial and MT (MT+HSA) solutions, respectively.
From both these graphs, during initial iterations, there’s a
significant variation in the objective function value for the
best local solution. This variation is mainly because of the
higher temperature, which allows for the acceptance of poorer
solutions (diversity), promoting exploration across the search
space. As the temperature decreases, there’s a decline in the
acceptance of poorer solutions, indicating that optimization
is narrowing down to a specific region and converging to the
optimal solution.

Figures 4a and 4b present the convergence graph with the
averages of the tabu list lengths and the objective function
till current iteration (Global Best) for 10 executions of an
example instance (A.13) for tabu search starting with random
initial (TS) and MT solutions (MT+TS), respectively.

Initially, the length of the tabu list increases, indicating
exploration of the search space for new solutions. Eventually,
this growth subsides, signaling convergence, where no new
solution is found, and the best solution obtained is returned.
An important distinction arises in figure (4a), where the
starting objective function value of the random initial solution
is 401, significantly distant from the optimal value of
141. This underscores the importance of using a heuristic
solution (MT) as the starting point of the metaheuristic,
as depicted in figure (4b), where the heuristic solution yields
an objective function value of 162 as the starting point of tabu
search.
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FIGURE 7. Box plot of best percentage gap (B Gap) of metaheuristics for
Set A instances.

Figures 5 present the convergence graph with averages
of the objective function for the current generation (Local
Best), and the objective function (maximum trip time) till the
current generation (Global Best) for 10 executions of set A
instance A.13 for GA. The mutation (p,,), reproduction (p,)
and crossover (p.) rate (Table 2) are specifically chosen after
trial and error in a way to aggressively explore the search
space to converge to a better solution with 50 generations.
While the convergence graph shares similarities with those
of other metaheuristics, GA’s distinctive characteristic lies
in its modification of 25 solutions (population) in each
generation. The local best corresponds to the minimum
objective function value among these 25 solutions in each
generation. Consequently, the fluctuations observed in the
local best reflect the continuous exploration of the solution
space by GA’s diverse population.

For numerous instances across sets A, B, and C, the solu-
tions generated by all metaheuristics showed no improvement
after 500 iterations. Consequently, we set the number of
iterations (M;) to 500 and the number of generations for
GA to 50 (Ng). This decision was guided by the aim to
strike a balance between achieving effective optimization
and minimizing computational effort, particularly for larger
instances within Sets B and C.

5) DISCUSSION
This section discusses some important observations noticed
during the experimentation and provides insights.

In set A, finding high-quality solutions for instance A.12
was a challenge for many of the metaheuristics (except
GA and MT+SA), which had a best gap of over 200%
for this instance. Their poor performance on this instance
significantly affected their average performance, as shown
in Figures 6 and 7, which show the average (Gap) and best
percentage (B Gap) gaps for set A instances for all the
metaheuristics, respectively.

We can see the effect of instance A.12, which resulted
in the maximum average and best percentage gaps for all
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FIGURE 9. Box plot of best percentage improvement (%B I) of
metaheuristics for Set B and C instances.

metaheuristics, causing variability in the results by increasing
the average standard deviation. The highest standard devia-
tion in the average percentage gap for the set A instance was
found in TS, which was 11.3 on average for each instance.
On the other hand, SA+MT produced the best results in
terms of solution quality, second only to the GA, requiring
significantly less computational effort than GA. The results
also showed the metaheuristics converged to a better solution
if started from a solution with the MT heuristics rather than
starting with a random solution.

This observation becomes even more pronounced for larger
Set B and C instances. Figures 8 and 9 show the average
and best percentage improvement in maximum trip time of
metaheuristics with respect to the MT algorithm for set B and
set C instances, respectively, and the MT solution is shown as
a dotted line at 0 % on the y-axis. In both these graphs, we can
see that, on average, only MT+SA and MT+TS converge to
a better solution than the MT heuristic. For SA, TS, and GA,
which started from an initial random solution, converged to
a worse solution than the MT heuristic, which is apparent as
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the box for these metaheuristics in both graphs lies below the
dotted line.

Furthermore, the graphs highlight the substantial variabil-
ity in the performance of these metaheuristics for larger
instances, as evident from the wide ranges of the boxes and
whiskers. For instance, the box plot for SA-500 in Figure 9
shows a wide range, with a maximum improvement of around
176.5% and a minimum of around -87.2% with a mean
of -9.4% and a standard deviation of 69.5%. This variability
can be attributed to the stochastic nature of these algorithms
and their sensitivity to initial solutions (random in this case)
and parameter settings.

VI. CONCLUSION

In summary, this paper introduced the MD-RPP-RRV prob-
lem, a variant of the arc routing problem, and formulated
it as a MILP. It presented SA, TS, and GA metaheuristics
designed to solve MR-RPP-RRV by improving the solution
quality obtained by the MT heuristic. Optimal solutions were
obtained for smaller instances by solving MILP formulation
using Gurobi; for larger real-world instances, memory and
computing limitations prevented finding optimal solutions.
Experimentation revealed that, for smaller instances, SA, TS,
and GA significantly improved solution quality, reducing the
initial optimality gap of MT heuristic from 162% to 0.9%,
16.2% and 0%, with GA converging to optimal solutions
but requiring substantial computational effort. However,
for larger instances, SA and TS improved solution quality
by 54.1% and 49.9%, respectively, relative to MT, when
initialized with MT solutions. Yet, when initialized with
a random solution, SA, TS, and GA failed to enhance
solution quality for large instances, highlighting the depen-
dence of metaheuristics on the initial heuristic solution for
larger instances. Future directions include exploring robust
solutions considering multiple vehicle failures, integrating
temperature effects on batteries, and addressing facility
location and fleet size problems.
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