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ABSTRACT This paper introduces a novel energy management strategy incorporating stochastic elements
designed for off-grid photovoltaic (PV) systems supplying multiple loads in environments marked by
unpredictable power usage. In these PV microgrid applications, unpredictable power consumption can lead
to discrepancies between energy supply and demand, compromising system reliability and efficiency. This
issue is especially pertinent in providing reliable electricity to remote or rural areas where conventional
grid infrastructure is not available or reliable. To overcome this challenge, this paper addresses the random
variability in load consumption by modeling it as a Markov decision process (MDP). The MDP framework
facilitates the development of an effective decision-making process, accounting for the probabilistic nature of
energy consumption patterns. Furthermore, by integrating MDP-based load consumption prediction into the
energy management system, real-time optimization of both PV power and battery charging and discharging
within the microgrid is achieved. This integration balances energy production and consumption, enhancing
overall system efficiency. Three scenarios were examined to evaluate the effectiveness of the suggested
strategy in enhancing the real-time operation of off-grid PV systems: standard test conditions, time-varying
climatic profiles, and real-time weather situations. The findings indicate that the proposed strategy can adapt
to dynamic load profiles, ensuring efficient energy utilization while maintaining microgrid stability.

INDEX TERMS Photovoltaic system, battery storage, state of charge, energy management, stochastic
control, Markov decision process.

NOMENCLATURE
Pbat Battery power [W ].
Pload Load power demand [W ].
Ppv PV power [W ].
vpv Output PV module voltage [V ].
ipv Output PV module current [A].
v Output capacitor voltage [V ].
i Inductor current [A].
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T Cell temperature [◦C].
G Irradiance

[
W/m2

]
.

θt Continuous-time Markov process.
Q Transition matrix.
Cpv Input capacitor [F].
C Output capacitor [F].
RC Output capacitor resistance [�].
L Inductance [H ].
RL Inductance resistance [�].
RM Internal resistance of MOSFET [�].
RD Internal resistance of diode [�].
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Rθt Equivalent DC load activates at instant t [�].
vbat Battery voltage [V ].
ibat Battery current [A].
Cbat Battery capacity [F].

Abbreviation
BES Battery energy storage.
DC Direct-current.
EMS Energy management system.
MPPT Maximum power point tracking.
MDP Markov decision process.
PMC Power management controller.
PV Photovoltaic.
SoC State of charge.

I. INTRODUCTION
Using fossil fuels has led to severe environmental issues, such
as contamination and increased greenhouse gas emissions.
As an attempt to mitigate the impact of these contami-
nants, researchers have developed efficient renewable energy
sources, such as the ones based on wind, hydropower, and
sunlight [1], [2], [3], [4]. One renewable energy source,
in particular, has drawnmuch attention recently: photovoltaic
(PV) energy. PV systems depend only on sunlight, which
is abundant and free. Additionally, sunlight-based facilities
demand relatively low maintenance and can work well for
many years [5], [6], [7], [8].

PV panels and related technology are becoming more
cost-competitive with traditional forms of energy produc-
tion [9], [10]. On-grid and off-grid PV systems are two differ-
ent methods of utilizing solar radiation to produce electricity.
These two systems are crucial for a more sustainable and
decentralized energy future, providing customized solutions
for various energy requirements and situations. On-grid PV
systems are directly linked to the utility grid. Off-grid PV
systems function autonomously, utilizing battery storage to
save surplus energy produced during the day for later use,
especially at night or during low sunlight hours. Off-grid
systems are frequently utilized in remote or rural locations
with limited or intermittent grid access.

As a result, the lower cost has motivated researchers
and practitioners to implement off-grid PV conversion
systems. Such a system is a decentralized PV solution
specially tailored for local communities, supplying energy
to locals, thus reducing transmission losses and increasing
energy efficiency [8], [11], [12], [13], [14]. Off-grid PV
systems within microgrids provide many advantages, such as
enhanced energy resilience, less dependence on fossil fuels,
and improved energy accessibility for isolated regions.

Overall, off-grid PV conversion systems are a cost-effective
and sustainable solution for providing power to remote or
isolated communities where industrial energy services are
unavailable. Some real-world applications of these systems
include remote homes and cabins, telecommunication towers,
remote monitoring stations, farms, rural electrification
projects, and disaster relief operations. The low cost of

implementation of an off-grid PV system makes it an ideal
solution for these remote areas. Note that an off-grid PV
system consists of a few elements: (i) a solar panel array, (ii)
a battery energy storage (BES), and (iii) a circuit that controls
both the power generated by the solar panels and the current
supplied to the load.

Off-grid PV systems in microgrid settings function as the
main energy source, commonly combined with additional
energy storage solutions such as batteries. Integrating batter-
ies in off-grid PV-microgrid systems has become increasingly
necessary as they help ensure reliable and stable access to
electricity. Note that a battery stores energy during sunny
hours and feeds power back into the during other times. This
enhances the overall efficiency and reliability of the off-grid
PV system, extending its working operation and making it an
attractive energy solution for remote communities.

The other part of the circuitry depends on a charge
controller. It regulates the flow of electricity from the solar
panels to the battery bank to prevent overcharging or damage
to the batteries. An energy management system (EMS) must
be considered for optimal utilization of energy generated by
PV systems. EMS monitors and controls the PV systems
in the microgrid. EMS maximizes the self-consumption
of PV-generated power and confirms that energy storage
is used cost-effectively. EMS aids in forecasting energy
demand and guaranteeing sufficient energy supply to match
the demand, thereby diminishing the risk of power failures.
Furthermore, EMS allows real-time monitoring and control,
enabling remote troubleshooting and maintenance, which is
particularly important for remote or off-grid locations for
maximizing the performance and economic benefits of the
system.

DC-DC converters are crucial components in off-grid
PV-microgrid systems, performing various important duties
in addition to batteries. The converters optimize energy
transfer and management in the microgrid by modifying
voltage levels to suit the needs of multiple loads or storage
devices. They are essential for optimizing energy transfer
between the PV panels, batteries, and other microgrid
components to maximize energy usage and system efficiency.
DC-DC converters play a crucial role in off-grid PV-
microgrid systems by facilitating efficient energy conversion,
administration, and system optimization to cater to the varied
energy requirements of remote or isolated communities.

A. LITERATURE REVIEW
Recent literature on energy management strategies for PV
conversion systems has focused on optimizing power gen-
eration and increasing system efficiency through maximum
power point tracking (MPPT) algorithms, energy storage
systems, advanced control and monitoring systems, and dis-
tributed PV systems. A growing body of research on energy
management control strategies for PV-microgrid systems
focuses on optimizing energy generation, consumption, and
storage and reducing energy waste.
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The authors of [15] present an energymanagement strategy
and control power for off-grid PV systems. This control
strategy is designed to improve the system’s efficiency by
drawing the maximum power available from the PV source
while simultaneously regulating the battery’s state of charge
to meet energy needs. A related study presents an energy
management system designed to ensure the stable operation
of a PV-battery microgrid [16]. This system utilizes model
predictive control for an interlinking converter. A charging
scheme oriented towards the state of charge (SOC) is devised
to regulate BES, smoothing out PV output fluctuations.
In [17], an innovative EMS was tailored for an isolated
microgrid. The realization of this advanced EMS hinges on
the adoption of new technology for energy management,
employing FPGA as the central controller. This configuration
greatly enhances system monitoring capabilities, enabling
comprehensive oversight of the entire setup. The proposed
EMS guarantees harmonious power distribution from the
primary sources or backup generators to designated loads,
ensuring optimal energy flow alignment. The paper [18]
introduces an optimal energy management approach tai-
lored specifically for DC microgrids. In grappling with
the multifaceted techno-economic hurdles inherent in such
systems, which range from maintaining power quality and
stability to optimize fuel consumption and efficiency amid
the integration of diverse power sources such as renewables,
the authors present an EMS harnessed through the innovative
Salp swarm algorithm, offering a robust framework to
address the intricate dynamics of DC microgrid operations
effectively.

In [19], an energy management strategy was developed to
delineate the distinct operational modes of both subsystems.
This strategy aims to distinguish different operational modes
of subsystems within the system. The main control objectives
are to regulate output power to meet overall demand and
to extend the battery lifespan by maintaining its SoC, using
the system dynamic model to suit various environmental
conditions and load demands. In this context, the study
in [20] focuses on the control boundaries and effective energy
saturation management within a representative standalone
DC microgrid. This entails precisely allocating variable
power loads across different sources based on their respective
capacities. This includes scenarios such as prioritizing
regenerative braking in instances of minimum battery State
of Charge and fully satisfying power load demands when
batteries are at maximum SOC. An approach to regulate
the output power of a hybrid energy system was proposed
in [21]. This system comprises renewable energy sources
with battery banks and a variable load. Through the
formulation of an energy management strategy, the hybrid
energy system is characterized as a switched nonlinear
system with parameters of unknown values. Subsequently,
an adaptive control methodology is put forward to meet the
varying power demands across different scenarios, even in
instances of arbitrary switching. A related study advocates

for using FPGA to drive energy management within a
hybrid microgrid featuring multiple sources and a backup
system [22]. Functioning as an exceptionally adaptable
and reprogrammable logic device, the FPGA facilitates
the exploration of diverse scenarios tailored to customer
requirements and prevailing weather conditions, thereby
paving the way for future experimentation and optimization.

The authors of [23] propose a nonlinear predictive energy
management approach tailored for PV systems with battery
storage. This strategy relies on load demand predictions
generated by artificial neural networks. Furthermore, it inte-
grates an empirical model for lithium-ion battery capacity
degradation into the optimization framework, enhancing
the accuracy and effectiveness of the management system.
The studies [24], [25] introduce an energy management
strategy based on probabilistic forecast models, anchored in
a state space energy system model operating under various
stochastic loads. Central to these approaches is the utilization
of a state space modeling framework, which integrates
forecasting capabilities to effectively manage diverse random
loads of varying temporal significance and facilitate the
implementation of demand-side response. The author of [26]
presents a pioneering EMS framework designed to address
the complexities arising from multiple uncertainties inherent
in renewable generation and load profiles. Initially, the
authors employ deep learning techniques to generate scenar-
ios reflecting each uncertainty. Subsequently, they introduce
a novel clustered quantile scenario reduction algorithm aimed
at streamlining computational processes while preserving
the stochastic characteristics of the generated scenarios,
offering real-time monitoring and control capabilities for
appliances. A related study delves into the highly stochas-
tic and unpredictable nature of electricity demand within
standalone microgrids [27]. An accurate load model stands
as a crucial input for designing an economically viable
and reliable renewable-based rural electrification system
for rural communities, as well as for demand management
systems. This study introduces a comprehensive methodol-
ogy for delineating the energy consumption load profile of
a rural community, a key factor in determining the most
cost-effective sizing of renewable energy sources for rural
electrification endeavors. The load parameters are generated
randomly, and a bottom-up approach is employed to estimate
the energy usage of the rural community.

The insights from these inquiries indicate a notable
oversight in current research, as they fail to account for
the unpredictable load behavior. This behavior is pivotal
in upholding the stability and efficiency of microgrid
systems. The effectiveness and dependability of microgrid
systems hinge significantly on precise estimations of load
consumption, a task complicated by its inherently random
characteristics.

The paper [28] presents a method for managing the
energy within a microgrid connected to the main power
system, accounting for fluctuations in load demand and
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output powers under both deterministic and probabilistic
conditions. Addressing this energy management challenge,
the study employs an efficient algorithm, namely the equi-
librium optimizer, to solve the multi-objective function. This
function encompasses objectives such as minimizing costs,
enhancing voltage profiles, and improving voltage stability.
A related study introduces a forecast-driven stochastic
scheduling strategy tailored for the optimal operation of
an isolated hydrogen microgrid [29]. Initially, power and
load changes were forecasted using a bidirectional long
short-term memory convolutional neural network, modeled
end-to-end. Subsequently, stochastic optimization of the
energy management system was achieved through deep
reinforcement learning, aiming to minimize the microgrid’s
lifecycle cost. Monte Carlo simulations were employed
to generate stochastic scenarios, enabling an analysis of
uncertainties in the wind and the load, while also con-
sidering the energy capacity degradation of the storage
system. The paper [30] tackles the challenge of uncertainty
stemming from renewable distributed energy sources and
load demand to ensure optimal scheduling within grid-
connected microgrids. This study introduces a multi-time-
scale stochastic optimization model designed to minimize
operational costs while maximizing reliability in the face
of these uncertainties. Utilizing the Monte Carlo method,
stochastic scenarios are generated to simulate the microgrid’s
uncertainty. The stochastic optimization model is formulated
considering various factors, including the energy balance
in expected scenarios, the operational costs of distributed
energy sources, charging and discharging characteristics, and
ensuring stable operation across multiple stochastic scenar-
ios. Further insights on this topic can be found in references
[31], [32], [33], [34], and [35].

Table 1 compares the current study and existing literature,
focusing on power optimization, load behavior forecasting,
and data prerequisites. Analysis of the entries in Table 1
highlights a notable gap in exploring stochastic load behavior
and a prevalent reliance on prior microgrid system data in
previous studies. This paper endeavors to fill this void by
investigating the repercussions of abrupt and unpredictable
load fluctuations on off-grid DC PV-microgrid dynamics.
Specifically, it aims to elucidate the implications for power
optimization and energy management without the need for
pre-existing data on such systems.

Stochastic modeling is an effective tool for forecasting
unpredictable load consumption to improve the performance
of PV microgrids. This type of modeling uses probability
theory and statistical analysis to model random variables that
represent load consumption behavior. Using mathematical
algorithms, stochastic models can predict future load con-
sumption patterns with a certain degree of accuracy, enabling
better planning and management of power generation and
storage. By accurately forecasting the unpredictable load
consumption behavior, the PV microgrid can optimize its
power production and usage more efficiently. This leads to
a more reliable power supply.

TABLE 1. Comparison between this study and related works in the
literature.

The Markov chain process is a powerful mathematical
tool that can be exploited to model and predict real-time
unpredictable events. In a Markov chain, the system’s future
state only depends on the present state and not on any
previous states. This means that a Markov chain can model a
constantly changing and evolving system. The Markov chain
can provide insights into the likely outcomes of different
scenarios by analyzing the probabilities of transitioning from
one state to another [36], [37]. One of the main advantages
of using a Markov chain in modeling real-time events is its
ability to capture the system’s dynamic nature. Real-time
events are often complex and unpredictable, and traditional
models may not be able to capture accurately all of the
variables and factors involved. Another advantage of using
a Markov chain is its simplicity and flexibility. They can also
be adapted to model various systems, from simple processes
to complex systems with multiple interacting variables.
However, by using a Markov chain, we can account for
the randomness and uncertainty inherent in real-time events,
which can be used to inform decision-making and improve
outcomes.

This paper’s main contribution is emerging the Markov
decision process (MDP) as a promising tool for real-time
characterizing load consumption in off-grid PV systems. This
paper highlights the importance and utility of load charac-
terization using the Markov chain process to improve the
energy management control design for off-grid PV-microgrid
systems and its benefits in probabilistic unpredictable load
consumption forecasting and system performance optimiza-
tion.

To the best of the authors’ knowledge, this paper is the first
to suggest an approach for managing energy in PV conversion
systems that accounts for unpredictable load consumption
driven by a Markov process. This configuration embodies
the key novelty of this paper. By considering uncertainties
in the system and energy storage limitations, the proposed
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approach can improve the performance of the off-grid PV
conversion system, increase its efficiency, and reduce its
operating costs. This approach is beneficial for PV systems
subject to unpredictable fluctuations in energy demand, as it
allows the system to adapt to changing conditions and make
optimal decisions in real-time.

The primary contributions of the innovative energy man-
agement strategy in this paper can be outlined as follows:

1) This paper represents a pioneering study that leverages
the MDP to introduce a groundbreaking stochastic
energy management strategy designed for PV micro-
grids operating in the face of unpredictable load
consumption.

2) The MDP exhibits a stochastic real-time response,
distinguishing the proposed energy management and
enhancing efficiency and effectiveness. This feature
facilitates stochastic load consumption predictions,
aiding in managing generated power within the photo-
voltaic microgrid. The system adapts to various scenar-
ios based on customer needs and weather conditions.

3) The proposed energy management excels in establish-
ing power flow management amidst unpredictable load
behavior, ensuring consumer satisfaction across all
operating conditions due to the high accuracy inherent
in the proposed strategy.

4) The proposed energy management strategy controls
the charging and discharging of batteries, thereby
contributing to an extended lifespan for the batteries.

The arrangement of this article is as follows. Section II
presents the architecture of the off-grid DC PV-microgrid
with multiple loads. Section III displays the proposed algo-
rithm for stochastic energy management. In Section IV, the
efficacy of the proposed approach is demonstrated through
simulations under diverse conditions. The paper concludes by
providing some concluding remarks in Section V.

II. OFF-GRID DC PV-MICROGRID WITH MULTIPLE LOADS
The off-grid PV DC microgrid is a self-contained power
system disconnected from the utility grid [38], [39], [40].
As seen in Fig. 1, this system comprises a PV solar array,
a battery bank for energy storage, a charge controller to
regulate the charge/discharge of the batteries, and a DC
distribution system to supply power to multiple loads.

The PV solar array comprises one or more solar panels that
convert sunlight into energy. Energy is then fed to the charge
controller, which regulates the energy supplied to the battery.
The battery stores excess energy generated during the day to
compensate for insufficient energy production by the solar
panels [41], [42], [43].

The DC distribution system supplies power to multiple
loads, such as lighting, appliances, and electronics in general,
through a series of DC circuits. The loads are connected to the
DC distribution system through individual circuit breakers or
fuses [24], [44].

Next, we describe how to model the off-grid PV system
shown in Fig. 1.

A. PV GENERATOR MODEL
The PV array, commonly known as the PV panel, is combined
with other components to create the PV generator system, see
Fig. 2. The PV generator system includes a DC-DC converter
circuit linked to the PV module, a capacitor, an inductor,
resistors, a diode, and a MOSFET. The operational concept
involves a signal u(t) governing the MOSFET, directing the
current flow through the circuit.

The state of the PV generator system can be expressed as:
x(t) = [vpv(t), i(t), v(t)]′ ∈ R3, where vpv(t) denotes the PV
voltage, i(t) denotes the inductor current, and v(t) represents
the voltage in the capacitor. The PV generator dynamics can
be written as follows [45], [46], and [47]:

ẋ(t) = f (x(t))x(t) + g(x(t))u(t), t ≥ 0, x0 ∈ R3, (1)

where the system matrices are

f (x(t)) =


1
Cpv

ipv
vpv

−
1
Cpv

0

1
L −

RL+RD+
RCRθt
RC+Rθt

L −
Rθt

L(RC+Rθt )

0 Rθt
C(RC+Rθt )

−
1

C(RC+Rθt )

 ,

g(x(t)) =


0

−RM+RD+
RCRθt
RC+Rθt

L i(t) +
Rθt

L(RC+Rθt )
v(t)

−
Rθt

C(RC+Rθt )
i(t)

 .

B. BATTERY ENERGY STORAGE
The dynamic model of a battery energy storage system can
be represented by a set of differential equations that describe
the rate of change of various variables, such as the battery
voltage, current, and state of charge. The SoC represents the
amount of energy stored in the battery as a percentage of its
maximum capacity, and it follows the equation [38]:

dSoC
dt

=
ibat
Cbat

, (2)

where ibat is the current flowing through the battery, and Cbat
is the battery capacity.

C. CONTROL SPECIFICATIONS
The control objectives for a standalone DC PV–microgrid
with stochastic load consumption require a sophisticated
energy management system that dynamically balances the
supplied power while optimizing the system’s energy effi-
ciency. The proposed control strategy has multiple objectives.
This involves maximizing the PV power generated, optimiz-
ing the battery system operation, and maintaining a balance
between the PV power generation and the load consumption,
especially in unpredictable and random load variations.

Another control goal is to balance the supply of solar
energy and the demand from the load while guaranteeing the
optimal operation of the battery storage system. To achieve
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FIGURE 1. Scheme of the off-grid DC PV-microgrid system.

FIGURE 2. Schematics of the PV generator system.

this, the energy management system must be capable of real-
time monitoring, forecasting, and decision-making based on
the available information.

The next section emphasizes how the stochastic approach
can be deployed to achieve this goal.

III. ENERGY MANAGEMENT BASED ON MARKOV
DECISION PROCESS
This section introduces an innovative energy management
for an off-grid DC PV–microgrid to supply multiple loads.
The structure of the off-grid PV microgrid with a pioneering
energy management strategy is illustrated in Fig. 3. This
marks a significant advancement in the field, as we are the
first to propose and elucidate this novel scheme for energy
management.

The proposed energy management system offers a fresh
perspective on optimizing energy utilization by leveraging
the MDP. The proposed EMS is responsible for optimizing
the system operation by monitoring and managing the power
flow between the PV source and the load. Furthermore,
controlling the charging and discharging of the batteries.
It contains a power optimization block, which maximizes the
output of the PV panels while minimizing the energy lost.

The power management controller (PMC) receives infor-
mation about the load consumption from the MDP. This

controller considers load consumption and predicts the future
load demand. Furthermore, this controller deals with the
battery storage capacity and the available energy from the
PV panels, confirming the optimal use of energy storage and
corresponding resources.

A. STOCHASTIC FORECASTING OF LOAD CONSUMPTION
The overall power consumption in PV microgrids that supply
various loads with varying power profiles can display unpre-
dictable behavior as a result of user behavior or the specific
characteristics of the appliances being used. For example,
some loads may have intermittent usage patterns or varying
power demand over time. Furthermore, the distribution of
power across the loads can also affect the stochastic behavior
of the global load consumption. If the loads have distinct
power profiles, with one load demanding higher power during
the daytime and another load wanting more power at night,
the overall load consumption will fluctuate throughout the
day. The fluctuations in load consumption, which follow
a random pattern, might significantly affect the overall
stability and reliability of the microgrid. The fluctuation of
energy sources poses a significant challenge in designing a
microgrid that can efficiently meet the energy demands of
all loads, while simultaneously reducing energy wastage and
maintaining system stability. Achieving optimal performance
necessitates meticulous monitoring and management.

The dynamic model of load consumption behavior is a
crucial element in the development of energy management
strategies for standalone PV microgrids. An efficient energy
management strategymust be carefully designed. This design
sought to achieve the balance between power generation
and consumption in real-time and optimize the utilization
of available PV power to fulfill the energy requirements
of the system. By considering the dynamic model of load
consumption behavior, energy managers can accurately
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FIGURE 3. Structure of the DC PV microgrid with the energy management system.

predict the energy demand of the system at any given
time. This enables them to optimize the energy usage to
meet this demand. This allows for the optimal utilization of
energy produced by the PV system, reducing the unnecessary
loss of surplus energy. It also ensures that the system can
meet energy demands without being overloaded and that the
battery bank is charged and discharged in a way that prolongs
its lifespan. Hence, taking into account the dynamic model
of load consumption behavior guarantees that the energy
management approach is tailored to adapt to fluctuations
in energy demand over time, leading to enhanced energy
efficiency and decreased operating expenses.

This enables more efficient exploration of the PV energy
generated, minimizing the excess energy waste and ensuring
that energy demands are met without overloading the system.
Additionally, it ensures that the battery bank is charged and
discharged in a way that extends its lifespan. Therefore, con-
sidering the dynamic model of load consumption behavior
ensures that the energy management strategy is designed
and adapted to the changes in energy demand over time.
This concept will lead to enhanced energy efficiency and
decreased running costs, therefore ensuring a dependable
and sustainable energy supply for the standalone PV system
serving many consumers.

By considering the dynamic model of load consumption
behavior, the energy management process can accurately

predict the energy demand of the system at any given
time. This allows for the efficient utilization of energy
to fulfill the required level of demand. In the context
of estimating sudden, unpredictable changes that occur in
real-time microgrid systems, a continuous–time Markov
process can be employed. This process models the parameter
behavior over time as it transitions between different
states. It also allows for making predictions and guiding
decision-making based on probabilistic estimates of the
load behavior, taking into account abrupt and random
variations [36], [37].

The design of control for PV systems using MDP entails
the development of a mathematical model that represents
the system’s state space, action space, and reward function.
The state space encompasses the complete range of potential
states that the system can occupy, including the current
load demand. The action space includes the complete
range of potential actions that the system can undertake,
including modifying the generated power and adjusting the
battery charge level in response to the load demand. The
reward function represents the system’s objective, which is
typically to manage the produced power by renewable energy
sources.

In the sequence, we present an algorithm for the MDP
aimed at estimating the unpredictable load consumption for
the microgrid system illustrated in Fig. 3.
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FIGURE 4. MDP-based energy management algorithm.

Step 1: Define the state space. The first step in
implementing the Markov process is to define the state
space. The state space might include different energy
consumption levels for a PV–microgrid system with
multiple loads. For instance, a load can be activated
or deactivated at any moment. Therefore, each load
has the potential to be either ‘on’ or ‘off.’ As a result,
we find 2n distinct modes from the Markov chain θt
to represent each scenario. Accordingly, we have the
corresponding consumption levels Pload (θt ), see [48]
and [47] for further details.
Step 2: Define the transition probabilities. Given
a state space as S := {1, . . . , r}, where r is the
total possible load consumption levels, we can consider
probability transition as Pr[θt+h̄ = j|θt = i], where i
and j represent the current and next load consumption
levels Pload (θt ), respectively.
The future power load demands are estimated with
stochastic aspect by the MDP {θt , t ⩾ 0} described
by the following transition probability:

Pr[θt+h̄ = j|θt = i] =

{
πijh̄+ o(h̄), if i ̸= j,
1 + πiih̄+ o(h̄), if i = j,

(3)

where πij ≥ 0, i ̸= j; πii = −
∑

{j:j̸=i} πij, is the switch
rate from state i at instant t to state j for all i, j ∈ S,
while lim

h̄→0
=

o(h̄)
h̄ = 0.

Step 3: Evolution of the power consumption with
updates. We use the Markov chain θt to predict the
power Pload (θt ). However, we update the probability
transition matrix when new data becomes available.
For example, if the load consumes more energy
than expected in a given period, the higher energy
states’ probabilities would increase. In contrast, the
probabilities for the lower energy states would be
decreased.
Step 4: Repeat the process The algorithm continues to
predict and update the state probabilities in a continu-
ous loop, providing real-time probabilistic estimates of
the load consumption. These estimates can be utilized
to make decisions regarding the charging process, such
as modifying the charging power or terminating the
charging process.

By using the MDP-based load forecasting algorithm’s
functionality, the predicted load consumption Pload(θt ) inte-
grates into the real-time operations of the off-grid PV
system’s MPPT control strategy as illustrated in Fig. 4.
This integration empowers the PV system to continually
receive updates from the prediction model, enabling dynamic
adjustments to its output levels.

By leveraging MDP-based predictions, the energy man-
agement process gains the ability to discern optimal actions
for PV-microgrid across various states. These actions extend
beyond mere adjustments to PV output. They encompass
strategic decisions such as battery charging or discharging
and activating backup power reserves stored within the
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batteries. This holistic approach ensures that the PV system
operates harmoniously with the anticipated load dynamics,
optimizing energy utilization.

In the following sequence, we present the proposed
strategies for optimizing PV power and managing power.

B. PV POWER OPTIMIZATION
Unpredictable load behavior plays a pivotal role in determin-
ing the functionality and dependability of DC PVmicrogrids.
Load variations impact the system’s energy balance, altering
the power consumption patterns and thereby affecting the
optimal operation of the MPPT controller. Incorporating
this stochastic load behavior into the system dynamics is
imperative for designing robust MPPT controllers capable of
adapting to unpredictable load variations. By accounting for
stochastic aspects, designers can develop MPPT algorithms
that dynamically adjust the photovoltaic system’s operating
point in response to real-time changes in load conditions,
optimizing energy capture and enhancing system efficiency.

Considering random load variations enables the devel-
opment of more reliable and resilient off-grid photovoltaic
systems that can effectively withstand and accommodate
the uncertainties inherent in standalone applications, thereby
ensuring consistent and stable power supply even under
fluctuating load conditions. The unpredictable load changes
impact the output power supplied by the PV panel according
to the following equation [49]:

Ppv = Pload (θt )
(
ipv
iload

)2

(1 − u(t))2. (4)

In what follows, we introduce a stochastic control strategy
based on the dynamics of the PV generator (1). The PV power
is expressed by [47] and [50]:

Ppv = vpvipv,

= npIphvpv − npIrsvpv

(
exp

(
kpvvpv
ns

)
− 1

)
. (5)

Given that kpv =
q

ηkT represents the inverse of the thermal
voltage.

In designing a dynamic system to ensure the operation of
the PV system around its maximum power point under abrupt
load variations, one crucial approach involves utilizing the
derivative of the PV power Ppv with respect to PV voltage
vpv as the output dynamical system. This derivative serves
as a key indicator of how close the system is to the MPP.
By continuously monitoring and analyzing this derivative, the
system can promptly detect deviations from the MPP caused
by abrupt load changes.

In response, the control system can swiftly adjust the
operating conditions, such as the voltage and current supplied
by the PV panels, to realign the system to the MPP. The PV
system is designed to adapt in real-time, ensuring optimal
efficiency and maximum power generation, even when faced
with abrupt changes in demand. The system’s flexibility to
adjust to different environmental and load situations improves

its resilience, guaranteeing dependable and steady power
generation.

The system output is expressed as follows:

y(t) =
dPpv
dvpv

= ipv −
npkpv
ns

Irsvpv exp
(
kpvvpv
ns

)
,

=

[
ipv
vpv

−
npkpv
ns

Irs exp(
kpvvpv
ns

) 0 0
]
x(t). (6)

The primary objective of this strategy is to achieve maxi-
mum power point tracking despite unpredictable changes in
the load, i.e., lim

t→∞
y(t) = 0.

For this, we define the error signal e(t) ∈ R as

ė(t) = x(t) − xd (t), (7)

where xd (t) represents the desired optimal trajectory of the
system state x(t) when the PV output power reaches its
maximum.

The concept here is to drive the error e(t) to zero over time,
i.e., lim

t→∞
[x(t) − xd (t)] = 0. For this purpose, we define the

control law u(t) as follows:

u(t) = K1(θt )x(t) + K2(θt )e(t). (8)

By using the norm H∞, the PV system achieves the
maximum power point under random load variations by
minimizing the following objective function for the gain
matrices K1(θt ), K2(θt ) and a given scalar δ:

J∞ = E

 ∞∫
0

[e′(t)e(t) − δ2x ′
d (t)xd (t)]dt

 . (9)

The overall structure of the PV power controller is depicted
in Fig. 5. To extract the maximum available power from
the PV module, the MPPT searching block dynamically
generates the trajectory xd (t) for the system state x(t) in
real-time, based on the measured values of irradiance G and
temperature T . Additionally, the predicted load consumption
Pload (θt ) is sent to theMPPT controller block alongwith xd (t)
and x(t), enabling it to compute the optimal duty cycle u(t) for
the DC-DC converter. This ensures that the PV power output
closely follows the maximum power point.

C. ENERGY MANAGEMENT STRATEGY
To ensure a harmonious equilibrium between the power
generated by the PV system and the power consumed,
while considering the battery SoC in the DC PV-microgrid,
as illustrated in Fig. 3, it’s essential to incorporate an energy
management algorithm capable of real-time operation while
considering the battery SoC. As illustrated in Fig. 6, the
proposed algorithm functions by firstly acquiring data on the
optimized PV power output denoted as Ppv. Subsequently,
it utilizes a MDP algorithm to forecast the expected load
consumption, represented by Pload (θt ), where θt indicates the
current load state. By leveraging the MDP algorithm, which
is adept at handling stochastic and dynamic decision-making

VOLUME 12, 2024 84409



M. Aatabe et al.: Stochastic Energy Management Strategy for Autonomous PV–Microgrid

FIGURE 5. Schematics of the controlled DC-DC boost converter.

FIGURE 6. Stochastic energy management strategy.

processes. This predictive capability enables proactive adjust-
ments in the power management strategy, ensuring that the
PV system operates optimally while maintaining the battery
SoC within desirable levels.

The following modes are considered.
Mode 1: The produced photovoltaic power exceeds the

demand of the load (Ppv > Pload (θt )), and the excess power
will be stored in the battery.

Mode 2: The produced photovoltaic power is sufficient
to supply the load, and the battery state of charge achieves
its maximum capacity. It is then necessary to disconnect the
battery.

Mode 3: No PV energy is produced (Ppv = 0). Thus, only
the battery feeds the load.

Mode 4: The PV system does not produce enough power,
i.e., 0 < Ppv < Pload (θt ). If the battery is charged, it will
provide the required power.

Mode 5: No energy from the PV source and no charge in
the battery. Thus, the battery will be disconnected.

Based on the real-time operating modes provided by the
proposed energy management strategy, the system effectively
controls power flow within the DC PV–microgrid by
manipulating the three switches, namely S1, S2, and S3, within
the power management block, as depicted in Fig. 7.

IV. SIMULATION RESULTS AND DISCUSSIONS
This section provides simulation data aimed at showcasing
the efficacy of the proposed energy management strategy,
particularly in addressing stochastic elements. To emulate
real-world conditions, our simulations focus on an off-grid
photovoltaic system comprising components commonly
found in practical applications. Specifically, the system
includes a Siemens SP75 solar module, a DC-DC boost
converter, and a lithium-ion battery. Detailed specifications
of the system components are provided in Table 3, Appendix.

In our simulations, we considered that the PV generator
supplied power to a network of three distinct loads, each
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FIGURE 7. Power management block.

TABLE 2. Levels of the global load consumption.

with its power demand profile. Recognizing the dynamic
nature of energy consumption over time, we identified eight
distinct scenarios corresponding to various levels of global
load consumption, as given in Table 2. These scenarios were
determined by a Markov chain model, denoted by θt , which
captures the probabilistic transitions between different load
consumption states according to the following probability
rate matrix:

Q

=



−16 1 3 5 2 3 2 2
3 − 17 3 2 2 2 2 3
2 5 − 18 2 1 2 4 2
1 1 2 − 14 6 1 2 1
7 5 3 6 − 33 4 3 5
3 5 2 1 4 − 19 2 2
5 5 2 4 2 10 − 31 3
4 5 2 4 2 3 4 − 24


A. RESULTS
The simulations were conducted for three scenarios: (i)
standard test conditions, (ii) time-varying climatic profiles,
and (iii) real-time weather conditions collected at Goiânia,
Goiás, Brazil.

1) FIRST SCENARIO: STANDARD TEST CONDITIONS
In this scenario, we simulated the PV generator assuming
a consistent, typical atmospheric condition. This involved
maintaining a constant irradiance level of λ = 1000W/m2

and fixing the PV cell temperature at 25◦C .
Using the MDP-based energy management algorithm

depicted in Fig. 4, real-time estimations of global load con-
sumption were performed based on the transition matrix Q,
as illustrated in Fig. 8(a). Noteworthy, Fig. 8(b) underscores
the effectiveness of the proposed MDP-based strategy in
proactive decision-making. This is particularly evident in its

FIGURE 8. (a) Estimated load consumption, and (b) Markov chain
evolution.

FIGURE 9. PV panel power under standard test conditions.

ability to respond to unpredictable dynamic load demands by
accurately predicting and adapting to various load patterns.
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FIGURE 10. (a) Tracking error, and (b) control law.

Fig. 9 presents the output power response under the control
scheme illustrated in Fig. 5. The illustration demonstrates the
controlled system’s ability to closely track the optimal power
trajectory (Pref ), swiftly accommodating abrupt changes in
load. This observation highlights the efficacy of the sug-
gested control approach in delivering rapid responses during
system initialization and sustaining stability amidst variable
and unforeseen load conditions. These results validate the
proposed method’s capacity to facilitate a seamless transition
to desired power levels while upholding the system’s overall
stability.

The efficiency of the proposed algorithm in maximizing
PV power to attain ideal operational states is emphasized
in Fig. 10(a), showcasing negligible tracking errors ranging
from 0.01 to 0.026 in absolute value. These outstanding
results are credited to the meticulous tuning of the control
law effort u(t), illustrated in Fig. 10(b). This control
law dynamically adjusts to unpredictable load fluctuations,
ensuring continual and accurate power optimization.

FIGURE 11. (a) State of charge, and (b) Operating modes of the microgrid.

The battery’s state of charge, controlled by the suggested
stochastic energy management approach, is illustrated in
Fig. 11(a). It’s apparent that the system adeptly handles the
battery’s charging and discharging based on surplus or deficit
power, ensuring that the SoC consistently falls within the
predetermined thresholds of SoCmin = 10% and SoCmax =

90%. This practice is crucial for safeguarding the battery’s
health, preserving both its longevity and performance. Such
favorable outcomes directly stem from the implementation
of the stochastic energy management strategy depicted in
Fig. 6, which delineates various operational modes crucial for
achieving these objectives, as further elucidated in Fig. 11(b).

2) SECOND SCENARIO: TIME-VARYING CLIMATIC PROFILES
To demonstrate the effectiveness of the proposed strategy
in optimizing the power generated by the PV generator
and efficiently managing energy within the microgrid
amidst fluctuating climatic conditions and unpredictable load
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FIGURE 12. Time-varying climatic profiles: (a) temperature, and
(b) irradiance.

consumption simultaneously, the DC PV-microgrid system
was simulated under time-varying irradiance and temperature
profiles, as depicted in Fig. 12.

A new scenario of real-time estimations of global load
consumption was conducted, as depicted in Fig. 13(a).
Notably, Fig. 13(b) accentuates the efficacy of the proposed
MDP-based approach in proactive decision-making of the
future load consumption level.

Fig. 14 showcases the response of the output power
with the applied control. It is evident from the illustration
that the controlled system adeptly follows the reference
power trajectory, promptly adjusting to the varying climatic
conditions and sudden load changes. This observation
underscores the effectiveness of the proposed control strategy
in providing swift response during system startup and main-
taining stability even when confronted with unpredictable
loads.

FIGURE 13. (a) Estimated load consumption, and (b) Markov chain
evolution.

FIGURE 14. PV panel power under time-varying climatic profiles.

The effectiveness of the proposed approach in optimiz-
ing PV power to achieve optimal operating conditions is
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FIGURE 15. (a) Tracking error, and (b) control law.

underscored in Fig. 15(a), which demonstrates minimal
tracking errors ranging between 0.01 and 0.08 in absolute
value. These remarkable performances are attributed to
the diligent adjustment of the control law effort u(t) that
dynamically adapts to both random load fluctuations and
varying climatic profiles in tandem, as depicted in Fig. 15(b).
The battery state of charge, regulated by the proposed

stochastic energy management strategy, is depicted in 16(a).
It is evident that the system effectively manages the charging
and discharging of the battery based on the surplus or deficit
power. This practice safeguards the battery, preserving its
longevity and performance. These results stem from the
proposed stochastic energy management strategy depicted in
Fig. 6, with the corresponding operating modes outlined in
Fig. 16(b).

3) THIRD SCENARIO: REAL-TIME WEATHER CONDITIONS
In this case, the efficacy of the multi-objective stochastic con-
trol will be examined under real-time weather circumstances,

FIGURE 16. (a) State of charge, and (b) Operating modes of the microgrid.

which are provided in Fig. 17. These data were collected in
the weather station located at Universidade Federal de Goiás
(UFG)–School of Electrical, Mechanical and Computer
Engineering (EMC), Goiânia, Brazil (data available freely at
sites.google.com/site/sfvemcufg/weather
-station).

In this scenario, the anticipated load profile and the jumps
in the load closely mirrored the trajectories depicted in
Fig. 18.
Fig. 19 depicts the optimized power produced by a PV

generator under real-time weather conditions. The simulated
data provides valuable insights into the dynamic performance
of the solar power system. For example, Fig. 19 shows the
system could adapt to varying weather patterns.

The battery state of charge controlled by the proposed
stochastic energy management strategy is illustrated in
Fig. 20(a). As can be seen, the system could charge and
discharge the battery according to the real-time weather
cycles.
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FIGURE 17. Eight-day real-time data for (a) temperature and
(b) irradiance.

Peaks in the SOC curve signify periods of surplus solar
energy, during which the battery is efficiently charged to
its maximum capacity. Conversely, troughs in the curve
indicate times when the system relies on stored energy,
showcasing the effectiveness of the energy management
strategy in maintaining a consistent power supply. The results
allow us to discern the strategy’s ability to balance energy
generation and consumption, adapting to fluctuations in solar
irradiance and random load demand, with the corresponding
operating modes illustrated in Fig. 20(b). Furthermore, the
smooth transitions andminimal fluctuations in the SOC curve
indicate the robustness and reliability of the proposed energy
management approach.

In summary, the simulation results contribute valuable
insights into the effectiveness of the off-grid PV system’s
energy storage and utilization, showcasing the successful
implementation of a stochastic energy management strategy.

B. DISCUSSION AND IMPLICATIONS
The simulation data illustrates the strategy depicted in Fig. 3.
To the best of the authors’ knowledge, this strategy is new

FIGURE 18. (a) Estimated load consumption, and (b) Markov chain
evolution.

FIGURE 19. PV panel power under real-time weather conditions.

for off-grid PV systems. In addition, the way in which this
approach manages energy seems promising because it can
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FIGURE 20. (a) State of charge, and (b) Operating modes of the microgrid.

handle stochastic-driven loads. MDP is key for stochastic
forecasting of load consumption.

Unlike traditional stochastic approaches, a Markov
chain solely relies on the present state to determine the
future state of the system without consideration for any
prior states. Our findings underscore the critical role
of the Markov chain in effectively modeling dynamic
systems undergoing continuous change and evolution,
exhibiting superior performance and adaptability for han-
dling stochastic forecasting of the load consumption in
real-time.

In this context, the study [47] utilizes Markov chain
modeling to analyze and predict load behavior within
DC off-grid PV systems. The authors introduce a novel
approach to stochasticMPPT control, specifically designed to
accommodate the unpredictable nature of load consumption.
This strategy integrates the H∞ technique to optimize PV
power generation amidst random load fluctuations. The study

proposes a robust solution for optimizing energy production
in off-grid PV systems by leveraging Markov chains and
advanced control techniques. While the proposed strategy
effectively addresses the challenges posed by random load
behavior in off-grid PV systems, it fails to consider the impact
of battery behavior on energy storage management. Conse-
quently, the absence of comprehensive energy management
that encompasses both load forecasting and battery dynamics
significantly hinders the performance and dependability of
the study.

This paper effectively addresses this drawback through
the implementation of MDP-based energy management,
which stands as the primary advantage of the proposed
approach. This technique has the potential to greatly improve
the effectiveness and reliability of off-grid PV system
management strategies by considering the complicated load
behavior, PV power generation, and battery storage dynam-
ics. This approach holds the potential to significantly enhance
the effectiveness and robustness of off-grid PV system
management strategies. Through its consideration of these
factors, the MDP-based energy management approach aims
to improve scalability, and cost-effectiveness in managing
off-grid PV systems.

Stochastic approaches typically excel in scalability com-
pared to deterministic ones due to their capability to model
uncertainty and variability more effectively. MDP stands out
in this regard as they possess the ability to dynamically
adjust energy generation and storage based on future
forecasts. This inherent adaptability makes MDP well-suited
for accommodating varying load demands and environ-
mental conditions, thus enhancing scalability in off-grid
PV systems. Additionally, through precise predictions of
future loads, MDP can mitigate the requirement for surplus
capacity, thereby lowering both capital and operational
expenses.

V. CONCLUSION
This study aimed to address the challenge of managing
energy in a PVmicrogrid characterized by unpredictable load
demand. This methodology utilizes the MDP framework to
optimize energy usage by taking into account intermittent
solar power generation. It also incorporates batteries into
the proposed model to provide continuous energy production
during the operation.

The findings underscore the significance of incorporating
stochastic modeling to represent the variability in energy gen-
eration and consumption accurately. This approach enhances
the adaptability of microgrid systems, which is essential
for assuring consistent operation in the face of changing
conditions.

The simulation results indicate that the proposed method-
ology has promise for implementation in real-time scenarios.
The strategy is innovative and effective in terms of energy
efficiency, positioning it as a promising solution to enhance
the resilience and efficiency of microgrid operation in the
presence of unpredictable load consumption. Specifically,
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numerical findings reveal a power optimization efficiency
was greater than 99.5%.

This study promotes the exploration and use of sophis-
ticated decision-making frameworks within the context of
renewable energy systems. As a perspective, investigating
the scalability and applicability of this approach across
different microgrid configurations and environmental condi-
tions would be valuable for advancing the field, considering
multiple energy sources.

APPENDIX
See Table 3.

TABLE 3. PV microgrid specification.
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