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ABSTRACT This paper focuses on investigating fuzzy complex-valued neural networks with inertial item.
By utilizing fixed-time stability theory and inequality techniques, we designed two types of feedback
controllers and obtained some new criteria to ensure that the system achieves fixed-time complex projective
lag synchronization(CPLS). Compared with previous works, we study the complex-value system as a whole,
and compared to ordinary synchronization, CPLS has a broader range of applications. Finally, we provide
numerical simulations to verify the effectiveness of the theoretical results.

INDEX TERMS Fixed-time complex projective lag synchronization (FXCPLS), fuzzy neural networks,
complex-valued neural networks, inertial item.

I. INTRODUCTION
In practical applications, uncertainty, approximation, and
fuzziness are inevitably encountered. In order to deal with
fuzzy or uncertain situations, Yang et al. [1], [2] first
introduced fuzzy AND operators and OR operators for
research based on traditional cellular neural networks(NNs),
and proposed the concept of fuzzy neural networks(FNNs).
Compared with general NNs, FNNs have better robustness
and adaptability, and can be applied to complex practical
application scenarios, such as pattern classification, associa-
tive memory and parallel processing [3], [4], [5]. In addition,
some researchers have demonstrated that fuzzy logic can
be used to approximate any nonlinear function. Thus,
it has broad application prospects and research value, and
many scholars studied FNNs and achieved many excellent
results [6], [7], [8].

NNs are generally described by first-order differential
equations, such as the FNNs mentioned above. In real
systems, there are a large number of second-order dynamical
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phenomena, such as variable-speed operation of information
vectors constructed from network topologies. Babcock and
Westervelt [9] introduced the concept of inertial neural
networks(INNs) in 1986 by introducing inductors in neural
circuits to display inertial features. INNs are described by
for second order differential equations. This feature can be
well applied in generating pseudo random sequences and
image information processing. In addition, the equivalent
circuit of inductance can simulate the synapses of squid
and the membrane semicircular canals of animal hair
cells [10], [11]. When we combine the INNs with the
FNNs, we get the fuzzy inertial neural networks(FINNs).
In recent years, many scholars studied FINNs and achieved
some meaningful results. Yang and Zhang [12] constructed
a novel controller using maximum analysis method and
studied the global asymptotic synchronization problem
of FINNs.

We note that the NNs discussed above is a real val-
ued NNs. With the continuous development of computer
hardware and software technology, the problem of complex
signals has been involved in many industrial production
engineering processes. There is an increasing interest among
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researchers in the application and study of complex-valued
neural networks (CVNNs). The state variables, connection
weight matrices, and activation functions of CVNNs are
all complex valued, therefore, CVNNs have more diverse
dynamic behaviors. Currently, CVNNs is utilized in various
fields, like language recognition, signal processing and
pattern recognition. Reference [13] generalized the universal
approximation theorem of NNs to CVNNs. Cheng et al. [14]
investigated the fixed-time problem for fractional-order
CVNNs and obtained corresponding sufficient conditions.
There are many literatures [15], [16], [17], and [18] studies
on CVNNs by separating systems into real and imagi-
nary systems. However, the approach increases system’s
dimensionality and complicates the calculation process,
resulting in conservative outcomes. Moreover, the separation
method may pose practical challenges in implementing it
in real-world applications. Therefore, it is more practical to
analyse the dynamic behavior for fuzzy inertial complex-
valued neural networks (FICVNNs) using a non-separation
method.

Synchronization refers to adjusting the response system
through a controller, ultimately achieving consistent dynamic
behavior between the response system and the driving
system. In recent years, synchronization has become an
important research direction in NNs due to its widespread
application in secure communication, associative memory,
image processing and information science [19], [20]. The
synchronization of NNs attract the attention of scholars in
various fields, and there have many excellent achievements
in this field to date [21], [22], [23], [24]. Complex projective
synchronization can reflect the proportional relationship
between synchronization states by introducing a scaling
factor. When our scaling factors are 0, −1, and 1,
they correspond to stabilization, anti-synchronization, and
complete synchronization. Therefore, complex projective
synchronization more general.

We generalize complex projective synchronization to
obtain complex projective lag synchronization(CPLS) [25].
CPLS is a special synchronization method that introduces a
lag term on the basis of complex projective synchronization,
which can better handle the delay problems in actual
systems. The significance of CPLS lies in the fact that in
some practical applications, such as control systems and
communication systems, there is a common occurrence of
time delay between systems. If synchronization is required
between these systems, traditional complex projective syn-
chronization methods may cause instability and errors in
the synchronization state due to delay. CPLS can solve
this problem by introducing a lag term, thereby making
the synchronization state between systems more accurate
and stable.

Settling-time(ST) is an important evaluation indicator for
the speed of system synchronization, and existing research
mainly focuses on finite-time stability [26], [27], [28].
The ST of finite-time stability is contingent upon the
initial condition, and if the initial condition is unknown

TABLE 1. The meaning of symbols in the article.

or cannot be provided, it becomes impossible to accu-
rately estimate the ST. Therefore, finite-time stability has
limitations.

Polyakov [29] introduced the concept of fixed-time
stability, which ensures that the ST of a system is unrelated
to its initial value. He also estimated the upper limit of the
system stability time. Currently, there are numerous studies
exploring the theory of fixed-time stability. In order to save
control costs, Zhang et al. [30] designed an event triggered
control scheme for fixed-time synchronization(FXS) and
stabilization of discontinuous NNs. Liu and Zhang [31]
designed two control strategies and obtained sufficient
conditions to ensure that FICVNNs achieve fixed-time lag
synchronization(FXLS).

Inspired by the above content, this paper explores the
fixed-time complex projective lag synchronization(FXCPLS)
for FICVNNs using a non-separation approach. The key
contributions of this paper can be summarized as follows:

1. Our model is more versatile than previous models
in [12] and [23] as it integrates fuzzy logic, inertial item, and
complex numbers into the NNs.

2. On the base of the Lyapunov stability theory, we obtain
sufficient conditions to ensure that FICVNNs achieve
FXCPLS. Meanwhile, by selecting different lag constants
and projective parameters, our conclusion can be extended
to fixed-time complex projective synchronization(FXCPS),
FXCL along with fixed-time anti-synchronization(FXAS).

3. By designing a complex-valued feedback controller,
we implemented FXCPLS for FICVNNs and calculated the
upper limit of ST.

The remaining sections of this paper are arranged as
shown below. Section II provides some preliminaries,
including model description, etc. Section III introduces
novel findings on FXCPLS of FICVNNs. In section IV,
we validate the effectiveness of our results through numerical
simulations. Finally, section V provides a comprehensive
summary of the entire article and provides future research
directions.
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II. PRELIMINARIES
The FICVNNs is:

λ̈ι(t) = −αιλι(t) − ℓιλ̇ι(t) +

η∑
ρ=1

∂ιρ fρ(λρ(t)) +

η∑
ρ=1

h̄ιρ

× gρ(λρ(t − τρ)) +

η∑
ρ=1

dιρHρ(t) +

η∧
ρ=1

rιρHρ(t)

+

η∨
ρ=1

διρHρ(t) +

η∧
ρ=1

ςιρgρ(λρ(t − τρ))

+

η∨
ρ=1

ϖιρgρ(λρ(t − τρ)), t ≥ 0, ι ∈ S, (1)

where ι ∈ S, λι(t) ∈ C means the ιth state at time t , Hρ(t) is
the input of the ιth neuron. The initial conditions of FICVNNs
(1) are given as λι(φ) = ′ι(φ), λ̇ι(φ) = ¶ι(φ), φ ∈ [−♯, 0].
The meanings of other symbols are shown in Table 1.
To simplify the analysis of FICVNNs (1), an intermediate

variable vι(t) = λ̇ι(t) + λι(t) is introduced. FICVNNs (1) is
expressed as follows:

λ̇ι(t) = −λι(t) + vι(t),

v̇ι(t) = −ξιvι(t) − hιλι(t) +

η∑
ρ=1

∂ιρ fρ(λρ(t)) +

η∑
ρ=1

h̄ιρ

× gρ(λρ(t − τρ)) +

η∑
ρ=1

dιρHρ(t) +

η∧
ρ=1

rιρHρ(t)

+

η∨
ρ=1

διρHρ(t) +

η∧
ρ=1

ςιρgρ(λρ(t − τρ))

+

η∨
ρ=1

ϖιρgρ(λρ(t − τρ)), t ≥ 0, ι ∈ S, (2)

where ξι = ℓι − 1, and hι = αι − ξι. The drive FICVNNs
are represented by Eq. (1), and the response FICVNNs can
be translated as shown below:

κ̇ι(t) = −κι(t) + wι(t),

ẇι(t) = −ξιwι(t) − hικι(t) +

η∑
ρ=1

∂ιρ fρ(κρ(t)) +

η∑
ρ=1

h̄ιρ

× gρ(κρ(t − τρ)) +

η∑
ρ=1

dιρHρ(t) +

η∧
ρ=1

rιρHρ(t)

+

η∨
ρ=1

διρHρ(t) +

η∧
ρ=1

ςιρgρ(κρ(t − τρ))

+

η∨
ρ=1

ϖιρgρ(κρ(t − τρ)) + υ̃ι(t), t ≥ 0, ι ∈ S, (3)

with initial state κι(φ) = ′̃ι(φ),wι(φ) = ¶̃ι(φ), where υ̃ι(t)
denote controllers. To obtain the error system from Eqs. (2)
and (3),4ι(t) = κι(t)−mλι(t−γ ), 2ι(t) = wι(t)−mvι(t−γ ),

where γ ≥ 0 is lag-constant,m ∈ C is projective factor. Next,
the error system as follows:

4̇ι(t) = −4ι(t) + 2ι(t),

2̇ι(t) = −ξι2ι(t) − hι4ι(t) +

η∑
ρ=1

(
∂ιρ fρ

(
κρ(t)

)
− m∂ιρ

× fρ
(
λρ(t − γ )

))
+

η∑
ρ=1

(
h̄ιρgρ(κρ(t − τρ)) − m

h̄ιρgρ(λρ(t − τρ − γ ))
)

+

η∧
ρ=1

ςιρgρ(κρ(t − τρ))

−

η∧
ρ=1

mςιρgρ(λρ(t − τρ − γ )) +

η∨
ρ=1

ϖιρgρ(κρ(t

− τρ)) −

η∨
ρ=1

mϖιρgρ(λρ(t − τρ − γ )) + υ̃ι(t),

t ≥ 0, ι ∈ S. (4)

Remark 1: Unlike [17], [18], the model (1) we constructed
not only considers inertial item but also introduces fuzzy
logic. Compared to the CVNNs discussed in previous
literature, the model we discussed is more general.
Hypothesis 1: For λ1, λ2 ∈ C, λ1 ̸= λ2, there are constants

Lι, L̃ι, Mι, M̃ι > 0(ι ∈ S), then

|fι(λ1)−fι(λ2)|1 ≤ Lι|λ1 − λ2|1,

|gι(λ1)−gι(λ2)|1 ≤ Mι|λ1 − λ2|1,

|fι(λ1)−fι(λ2)|2 ≤ L̃ι|λ1 − λ2|2,

|gι(λ1)−gι(λ2)|2 ≤ M̃ι|λ1 − λ2|2.

Definition 1 [32]: Systems (2) and (3) can achieve
FXCPLS if there exists a fixed-time Tf and the ST function
T (℘(0)), then: 

lim
t→T (℘(0))

|℘(t)|p = 0,

∀t ≥ T (℘(0)), ℘(t) = 0,
T (℘(0)) ≤ Tf ,

where p = 1or 2, ℘(t) ∈ C2η, ℘(t) =
(
41(t), 42(t), . . . ,

4η(t), 21(t), 22(t), . . . ,2η(t)
)
.

Lemma 1 [30]: Assuming V (·) is a radial unbounded
function, and V (℘(t)) = 0 ⇔ ℘(t) = 0, and the given
relationship holds

D+V (t) ≤

{
−kV (t) − �1V β (t) − ζ, V (t) ∈ (0, 1),
−kV (t) − �2V β (t) − ζ, V (t) ≥ 1,

then, the system (2) and (3) can achieve FXCPLS, in which
k > 0, �1 > 0, �1 > 0, k < min{�1, �2}, β = 8 +

sign
(
V (t) − 1

)
, 1 < 8 < 2. The upper bound of ST is

estimated to be Tf =
1

(k+ζ )(8−2) ln
�1

�1+ζ+k −
1

8k ln
�2

�2+k
.
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Lemma 2 [32]: Let λι ≥ 0, ι = 1, 2, 3 · · · η; 0 < ℧1 ≤

1, ℧2 > 1 one has

η∑
ι=1

λ℧1
ι ≥ (

η∑
ι=1

λι)℧1 ,

η∑
ι=1

λ℧2
ι ≥ η1−℧2 (

η∑
ι=1

λι)℧2 .

Lemma 3 [33]: For any ϑ(t) : R → C , the following
formula holds

(1)[ω(t)]ϑ(t) + [ϑ(t)]ϑ(t) = 2|ϑ(t)|1.

(2)[ϑ(t)][ϑ(t)] = |[ϑ(t)]|1.

(3)D+
|ϑ(t)|1 =

1
2
([ϑ(t)]D+ϑ(t) + ϑ(t)D+ϑ(t)).

Hence, D+ represents the Dini derivative.
Lemma 4 [33]: For any ϑ(t) : R → C and there exists

measurable selection ω(t) ∈ c̄o(ϑ(t)), where

c̄o(ϑ(t)) = c̄o(sign(Re(ϑ(t)))) + ic̄o(sign(Im(ϑ(t)))),

then the following formulas hold:

(1)[ϑ(t)]ω(t) + ω[ϑ(t)] = 2|[ϑ(t)]|1.

(2)ω(t)ϑ(t) + ω(t)ϑ(t) = 2|ϑ(t)|1.

Hence, D+ represents the Dini derivative.

III. MAIN RESULTS
A. DESIGNING A CONTROLLER BASED ON 1-NORM
Construct the controller as follows{

υ̃ι(t) = υ∗
ι (t) + ὺ1ι(t), 2ι(t)2ι(t) ̸= 0,

υ̃ι(t) = 0, 2ι(t)2ι(t) = 0,
(5)

where

υ∗
ι (t) =

η∑
ρ=1

(
m∂ιρ fρ(λρ(t − γ )) − ∂ιρ fρ(mλρ(t − γ ))

)

+

η∑
ρ=1

(
mh̄ιρ fρ(λρ(t − τρ − γ )) − h̄ιρ fρ(mλρ(t − τρ

− γ ))
)

+

η∧
ρ=1

mςιρgρ(λρ(t − τρ − γ )) −

η∧
ρ=1

ςιρgρ

× (mλρ(t−τρ −γ ))+
η∨

ρ=1

mϖιρgρ(λρ(t − τρ − γ ))

−

η∨
ρ=1

ϖιρgρ(mλρ(t − τρ − γ )),

ὺ1ι(t) = −[2ι(t)]
(
ζ1ι|4ι(t)|1 + ζ2ι|2ι(t)|1 + |4ι(t)|

β

1

+ |2ι(t)|
β

1 + ζ3ι +

η∑
ρ=1

ϕιρ |4(t − τρ)|1
)
.

Noting that ὺ1ι(t) is discontinuous, one has

ὺ1ι(t) = −co([2ι(t)])
(
ζ1ι|4ι(t)|1 + ζ2ι|2ι(t)|1 + |4ι(t)|

β

1

+ |2ι(t)|
β

1 + ζ3ι +

η∑
ρ=1

ϕιρ |4(t − τρ)|1
)
.

By the measurable selcetion theorem, there exists a function
ωι(t) ∈ co([2ι(t)]) such that

ὺ1ι(t) = −ωι(t)
(
ζ1ι|4ι(t)|1 + ζ2ι|2ι(t)|1 + |4ι(t)|

β

1

+ |2ι(t)|
β

1 + ζ3ι +

η∑
ρ=1

ϕιρ |4(t − τρ)|1
)
.

Theorem 1: Under Hypothesis 1, the FICVNNs (2)-(3)
can achieve FXCPLS under Eq. (5) if the following condition
holds

−ϕιρ +
(
|h̄ιρ |1 + |ςιρ |1 + |ϖιρ |1

)
Mρ ≤ 0, (6)

and T1f =
1

(k+ζ )(φ−2) ln
�1

�1+ζ+k −
1
φk ln

�2
�2+k

.
Proof: Define the Lyapunov function as:

V1(t) =

η∑
ι=1

(
|4ι(t)|1 + |2ι(t)|1

)
. (7)

Take the derivative of V1(t) along the trajectory of Eq.(4),

D+V1(t)

=
1
2

η∑
ι=1

(
[4ι(t)]4̇ι(t) + [4ι(t)]4̇ι(t) + [2ι(t)]2̇ι(t)

+ [2ι(t)]2̇ι(t)
)

≤

η∑
ι=1

(
− |4ι(t)|1 +

1
2

(
[4ι(t)]2ι(t) + [4ι(t)]2ι(t)

)
− ξι|2ι(t)|1 −

1
2
hι

(
[2ι(t)]4ι(t) + [2ι(t)]4ι(t)

))
+

1
2

η∑
ι=1

η∑
ρ=1

(
[2ι(t)]

(
∂ιρ fρ(κρ(t)) − ∂ιρ

× fρ(mλρ(t − γ ))
)
+ [2ι(t)]∂ιρ fρ(κρ(t)) − ∂ιρ

×fρ(mλρ(t − γ )) + [2ι(t)]
(
h̄ιρgρ(κρ(t − τρ))

− h̄ιρgρ(mλρ(t − τρ − γ ))
)
+ [2ι(t)]h̄ιρ(κρ(t − τρ))

× −h̄ιρgρ(mλρ(t − τρ − γ ))
)

+
1
2

η∑
ι=1

(
[2ι(t)]

( η∧
ρ=1

ςιρgρ(κρ(t − τρ)) −

η∧
ρ=1

× ςιρgρ(mλρ(t − τρ − γ ))
)
+ [2ι(t)]

η∧
ρ=1

ςιρ

×gρ(κρ(t − τρ)) −

η∧
ρ=1

ςιρgρ(mλρ(t − τρ − γ ))

+ [2ι(t)]
( η∨

ρ=1

ϖιρgρ(κρ(t − τρ)) −

η∨
ρ=1

ϖιρ
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× gρ(mλρ(t − τρ − γ ))
)
+ [2ι(t)]

η∨
ρ=1

ϖιρ

×gρ(κρ(t − τρ)) −

η∨
ρ=1

ϖιρgρ(mλρ(t − τρ − γ ))
)

+
1
2

η∑
ι=1

(
[2ι(t)]ὺ1ι(t) + [2ι(t)]ὺ1ι(t)

)
. (8)

According to the definition of [4ι(t)], we get

1
2

(
[4ι(t)]2ι(t) + [4ι(t)]2ι(t)

)
= sign

(
Re(4ι(t))

)
Re(2ι(t)) + sign

(
Im(4ι(t))

)
Im(2ι(t))

≤ |2ι(t)|1. (9)

Based on the above, similarly, there is

−
1
2
hι

(
[2ι(t)]4ι(t) + [2ι(t)]4ι(t)

)
≤ hι|4ι(t)|1. (10)

Based on Hypothesis 1, We get

1
2

η∑
ι=1

η∑
ρ=1

(
[2ι(t)]

(
∂ιρ fρ(κρ(t)) − ∂ιρ fρ(mλρ(t − γ ))

)
+ [2ι(t)]∂ιρ fρ(κρ(t)) − ∂ιρ fρ(mλρ(t − γ ))

)
≤

η∑
ι=1

η∑
ρ=1

|∂ιρ fρ(κρ(t)) − ∂ιρ fρ(mλρ(t − γ ))|1

≤

η∑
ι=1

η∑
ρ=1

|∂ιρ |1Lρ |κρ(t) − mλρ(t − γ )|1

≤

η∑
ι=1

η∑
ρ=1

|∂ρι|1Lι|4ι(t)|1. (11)

Similarly,

1
2

η∑
ι=1

η∑
ρ=1

(
[2ι(t)]h̄ιρ

(
gρ(κρ(t−τρ))−gρ(mλρ(t−τρ −γ ))

)
+ [2ι(t)]h̄ιρgρ(κρ(t − τρ)) − h̄ιρgρ(mλρ(t − τρ − γ ))

)
≤

η∑
ι=1

η∑
ρ=1

|h̄ιρ |1Mρ |4ρ(t − τρ)|1. (12)

Based on Hypothesis 1 and Lemma 2 in [8], there is

1
2

η∑
ι=1

(
[2ι(t)]

( η∧
ρ=1

ςιρgρ(κρ(t − τρ)) −

η∧
ρ=1

ςιρ

× gρ(mλρ(t − τρ − γ ))
)
+ [2ι(t)]

η∧
ρ=1

ςιρ

×gρ(κρ(t − τρ)) −

η∧
ρ=1

ςιρgρ(mλρ(t − τρ − γ ))
)

≤

η∑
ι=1

|

η∧
ρ=1

ςιρgρ(κρ(t − τρ)) −

η∧
ρ=1

ςιρ

× gρ(mλρ(t − τρ − γ ))|1

≤

η∑
ι=1

η∑
ρ=1

|ςιρ |1|gρ(κρ(t − τρ)) − mλρ(t − τρ − γ )|1

≤

η∑
ι=1

η∑
ρ=1

|ςιρ |1Mρ |4ρ(t − τρ)|1. (13)

Likewise,

1
2

η∑
ι=1

(
[2ι(t)]

( η∨
ρ=1

ϖιρgρ(κρ(t − τρ)) −

η∨
ρ=1

ϖιρ

× gρ(mλρ(t − τρ − γ ))
)
+ [2ι(t)]

η∨
ρ=1

ϖιρ

×gρ(κρ(t − τρ)) −

η∨
ρ=1

ϖιρgρ(mλρ(t − τρ − γ ))
)

≤

η∑
ι=1

η∑
ρ=1

|ϖιρ |1Mρ |4ρ(t − τρ)|1. (14)

Substituting Eqs. (9)-(14) into Eq. (8) yields

D+V1(t) ≤

η∑
ι=1

η∑
ρ=1

(−1 + hι + |∂ρι|1Lι)|4ι(t)|1

+

η∑
ι=1

(−ξι+1)|2ι(t)|1+
η∑

ι=1

η∑
ρ=1

(
|h̄ιρ |1+|ςιρ |1

+ |ϖιρ |1
)
Mρ |4ρ(t−τρ)|1+

1
2

η∑
ι=1

(
[2ι(t)]ὺ1ι(t)

+ [2ι(t)]ὺ1ι(t)
)
. (15)

From Eq. (5) we get

1
2

η∑
ι=1

(
[2ι(t)]ὺ1ι(t) + [2ι(t)]ὺ1ι(t)

)
= −

1
2

η∑
ι=1

ζ1ι
(
[2ι(t)]ωι(t) + [2ι(t)]ωι(t)

)
|4ι(t)|1

−
1
2

η∑
ι=1

ζ2ι
(
[2ι(t)]ωι(t) + [2ι(t)]ωι(t)

)
|2ι(t)|1

−
1
2

η∑
ι=1

(
[2ι(t)]ωι(t) + [2ι(t)]ωι(t)

)
|4ι(t)|

β

1

−
1
2

η∑
ι=1

(
[2ι(t)]ωι(t) + [2ι(t)]ωι(t)

)
|2ι(t)|

β

1

−
1
2

η∑
ι=1

ζ3ι
(
[2ι(t)]ωι(t) + [2ι(t)]ωι(t)

)
−

1
2

η∑
ι=1

η∑
ρ=1

ϕιρ

(
[2ι(t)]ωι(t) + [2ι(t)]ωι(t)

)
|4(t − τρ)|1
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≤ −

η∑
ι=1

ζ1ι|4ι(t)|1 −

η∑
ι=1

ζ2ι|2ι(t)|1 −

η∑
ι=1

|4ι(t)|
β

1

−

η∑
ι=1

|2ι(t)|
β

1 −

η∑
ι=1

ζ3ι −

η∑
ι=1

η∑
ρ=1

ϕιρ |4(t − τρ)|1.

(16)

By substituting Eq. (16) into Eq. (15), we get

D+V1(t) ≤

η∑
ι=1

η∑
ρ=1

(−ζ1ι − 1 + hι + |∂ρι|1Lι)|4ι(t)|1

+

η∑
ι=1

(−ζ2ι − ξι + 1)|2ι(t)|1 +

η∑
ι=1

η∑
ρ=1

(
− ϕιρ

+ |h̄ιρ |1 + |ςιρ |1 + |ϖιρ |1
)
Mρ |4ρ(t − τρ)|1

−

η∑
ι=1

|4ι(t)|
β

1 −

η∑
ι=1

|2ι(t)|
β

1 −

η∑
ι=1

ζ3ι

≤ −

η∑
ι=1

k1ι|4ι(t)|1−
η∑

ι=1

k2ι|2ι(t)|1−
η∑

ι=1

|4ι(t)|
β

1

−

η∑
ι=1

|2ι(t)|
β

1 − ζ. (17)

where k1ι = −(−ζ1ι − 1 + hι + |∂ρι|1Lι), k2ι =

−(−ζ2ι − ξι + 1), ζ =

η∑
ι=1

ζ3ι.

By application of Lemma 2 we have:
(1)If V1(t) ∈ (0, 1)

−

η∑
ι=1

|4ι(t)|
β

1 −

η∑
ι=1

|2ι(t)|
β

1

≤ −
( η∑

ι=1

|4ι(t)|1
)β

−
( η∑

ι=1

|2ι(t)|1
)β

≤ −�1V
β

1 (t). (18)

(1)If V1(t) ≥ 1,

−

η∑
ι=1

|4ι(t)|
β

1 −

η∑
ι=1

|2ι(t)|
β

1

≤ −η1−β
( η∑

ι=1

|4ι(t)|1
)β

− η1−β
( η∑

ι=1

|2ι(t)|1
)β

≤ −�2V
β

1 (t). (19)

From eqs. (18), (19), we obtain

D+V1(t) ≤


−kV1(t) − �1V

β

1 (t) − ζ, V1(t) ∈ (0, 1),

−kV1(t) − �2V
β

1 (t) − ζ, V1(t) ≥ 1,

(20)

where k = min{k1ι, k2ι}, �1 = 1, �2 = −η1−β21−β .

Remark 2: Notice that the controller (5) contains the sign
function sign(·) and therefore the controller (5) is discontinu-
ous. However, in some cases, continuity is necessary and we
can use tanh(·) approximation instead of sign(·).

B. DESIGNING A CONTROLLER BASED ON 2-NORM
Next, the controller will be designed based on the 2-norm
of complex numbers to enable FICVNNs to implement
FXCPLS. In this section, the continuous controller is
designed as follows:{

υ̃ι(t) = υ∗
ι (t) + ὺ2ι(t), 2ι(t)2ι(t) ̸= 0,

υ̃ι(t) = 0, 2ι(t)2ι(t) = 0,
(21)

where

ὺ2ι(t)=−
1

2ι(t)

(
ζ̃1ι|4ι(t)|22+(

1
2
|4ι(t)|22)

β
+ ϕ̃ι|4ι(t − τρ)|22

+ ζ̃3ι
)
− ζ̃2ι|2ι(t)|22 − (

1
2
|2ι(t)|22)

β .

Theorem 2: Under Hypothesis 1 and controller (21), the
FICVNNs (2)-(3) can achieve FXCPLS if the following
condition holds

−ϕι +
1
2

η∑
ρ=1

(
|h̄ιρ |2 + |ςιρ |2 + |ϖιρ |2

)
M̃ρ ≤ 0.

In addition, the upper bound on the ST is estimated to be
T2f =

1
(k̃+ζ̃ )(φ̃−2)

ln �̃1
�̃1+ζ̃+k̃

−
1
φ̃k̃
ln �̃2

�̃2+k̃
.

Proof: Define the Lyapunov function as:

V2(t) =
1
2

η∑
ι=1

(
|4ι(t)|22 + |2ι(t)|22

)
=

1
2

η∑
ι=1

(
4ι(t)4ι(t) + 2ι(t)2ι(t)

)
. (22)

Take the derivative of V2(t) along the trajectory of Eq.(4),

D+V2(t)

=
1
2

η∑
ι=1

(
4̇ι(t)4ι(t) + 4ι(t)4̇ι(t) + 2̇ι(t)2ι(t)

+ 2ι(t)2̇ι(t)
)

=

η∑
ι=1

Re
(
4̇ι(t)4ι(t) + 2̇ι(t)2ι(t)

)
=

η∑
ι=1

(
− Re

(
4ι(t)4ι(t)

)
+ Re

(
2ι(t)4ι(t)

)
− Re

(
ξι2ι(t)2ι(t)

)
− Re

(
hι4ι(t)2ι(t)

)
+

η∑
ρ=1

Re
(
∂ιρ fρ

(
κρ(t)

)
2ι(t)

)
−

η∑
ρ=1

Re
(
∂ιρ fρ

(
mλρ(t

− γ )
)
2ι(t)

)
+

η∑
ρ=1

Re
(
h̄ιρgρ

(
κρ(t − τρ)

)
2ι(t)

)
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−

η∑
ρ=1

Re
(
h̄ιρgρ

(
mλρ(t − τρ − γ )

)
2ι(t)

)

+ Re
( η∧

ρ=1

ςιρgρ

(
κρ(t − τρ)

)
2ι(t)

)

−Re
( η∧

ρ=1

ςιρgρ

(
mλρ(t − τρ − γ )

)
2ι(t)

)

+ Re
( η∨

ρ=1

ϖιρgρ

(
κρ(t − τρ)

)
2ι(t)

)

−Re
( η∨

ρ=1

ϖιρgρ

(
mλρ(t − τρ − γ )

)
2ι(t)

)
+ Re

(
ὺ2ι(t)2ι(t)

))
. (23)

On the basis of Hypothesis 1 and the properties of the
inequality, we get:

η∑
ι=1

η∑
ρ=1

Re
(
∂ιρ fρ

(
κρ(t)

)
2ι(t)

)
−

η∑
ι=1

η∑
ρ=1

Re
(
∂ιρ fρ

(
m

× λρ(t − γ )
)
2ι(t)

)
≤

η∑
ι=1

η∑
ρ=1

∣∣∂ιρ fρ
(
κρ(t)

)
2ι(t) − ∂ιρ fρ

(
mλρ(t − γ )

)
2ι(t)

∣∣
2

≤

η∑
ι=1

η∑
ρ=1

|∂ιρ |2|2ι(t)|2|fρ
(
κρ(t)

)
− fρ

(
mλρ(t − γ )

)
|2

≤

η∑
ι=1

η∑
ρ=1

|∂ιρ |2L̃ρ |2ι(t)|2|4ρ(t)|2

≤
1
2

η∑
ι=1

η∑
ρ=1

(
|∂ιρ |2L̃ρ |2ι(t)|22 + |∂ρι|L̃ι|4ι(t)|22

)
. (24)

η∑
ι=1

η∑
ρ=1

Re
(
h̄ιρgρ

(
κρ(t − τρ)

)
2ι(t)

)
−

η∑
ι=1

η∑
ρ=1

Re
(
h̄ιρ

× gρ

(
mλρ(t − τρ − γ )

)
2ι(t)

)
≤

1
2

η∑
ι=1

η∑
ρ=1

(
|h̄ιρ |2M̃ρ |2ι(t)|22 + |h̄ρι|2M̃ι|4ι(t − τρ)|22

)
.

(25)
η∑

ι=1

Re
( η∧

ρ=1

ςιρgρ

(
κρ(t − τρ)

)
2ι(t)

)
−

η∑
ι=1

Re
( η∧

ρ=1

ςιρ

× gρ

(
mλρ(t − τρ − γ )

)
2ι(t)

)
≤

η∑
ι=1

∣∣∣ η∧
ρ=1

ςιρgρ

(
κρ(t − τρ)

)
2ι(t) −

η∧
ρ=1

ςιρgρ

(
mλρ(t

− τρ − γ )
)
2ι(t)

∣∣∣
2

≤

η∑
ι=1

η∑
ρ=1

|ςιρ |2

∣∣∣gρ

(
κρ(t − τρ)

)
−gρ

(
mλρ(t − τρ − γ )

)∣∣∣
2

× |2ι(t)|2

≤

η∑
ι=1

η∑
ρ=1

|ςιρ |2M̃ρ |24ρ(t − τρ)||2ι(t)|2

≤
1
2

η∑
ι=1

η∑
ρ=1

(
|ςιρ |2M̃ρ |2ι(t)|22 + |ςιρ |2M̃ι|4ι(t − τρ)|22

)
.

(26)
η∑

ι=1

Re
( η∨

ρ=1

ϖιρgρ

(
κρ(t − τρ)

)
2ι(t)

)
−

η∑
ι=1

Re
( η∨

ρ=1

ϖιρ

× gρ

(
mλρ(t − τρ − γ )

)
2ι(t)

)
≤

1
2

η∑
ι=1

η∑
ρ=1

(
|ϖιρ |2M̃ρ |2ι(t)|22 + |ϖιρ |2M̃ι|24ι(t − τρ)|22

)
.

(27)

By adding (24)-(27) to (23), we obtain

D+V2(t)

≤

η∑
ι=1

η∑
ρ=1

((
− 1 +

1
2
|1 − hι|2 +

1
2
|∂ρι|2L̃ι

)
|4ι(t)|22

+
(
− ξι +

1
2
(|1 − hι|2 + |∂ιρ |2L̃ρ + |h̄ιρ |2M̃ρ

+ |ςιρ |2M̃ρ + |ϖιρ |2M̃ρ)
)
|2ι(t)|22 +

1
2

(
|h̄ιρ |2

+ |ςιρ |2 + |ϖιρ |2
)
M̃ρ |4ι(t − τρ)|22

)
+

η∑
ι=1

Re
(
ὺ2ι(t)2ι(t)

)
. (28)

Form Eq. (21), then

D+V2(t)

≤

η∑
ι=1

η∑
ρ=1

((
− ζ̃1ι − 1 +

1
2
|1 − hι|2 +

1
2
|∂ρι|2L̃ι

)
× |4ι(t)|22 +

(
− ζ̃2ι − ξι +

1
2
(|1 − hι|2 + |∂ιρ |2L̃ρ

+ |h̄ιρ |2M̃ρ + |ςιρ |2M̃ρ + |ϖιρ |2M̃ρ)
)
|2ι(t)|22

+
(
− ϕ̃ι +

1
2
(|h̄ιρ |2 + |ςιρ |2 + |ϖιρ |2)M̃ρ

)
× |4ι(t − τρ)|22

)
−

1
2

η∑
ι=1

(|4ι(t)|22)
β

−
1
2

η∑
ι=1

(|2ι(t)|22)
β

−

η∑
ι=1

ζ̃3ι
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≤ −

η∑
ι=1

(
k1ι|4ι(t)|22 + k2ι|2ι(t)|22

)
+

η∑
ι=1

η∑
ρ=1

(
− ϕι

+
1
2
(|h̄ιρ |2 + |ςιρ |2 + |ϖιρ |2)M̃ρ

)
|4ι(t − τρ)|22

−
1
2

η∑
ι=1

(|4ι(t)|22)
β

−
1
2

η∑
ι=1

(|2ι(t)|22)
β

−

η∑
ι=1

ζ̃3ι

≤ −

η∑
ι=1

min{k1ι, k2ι}
(
|4ι(t)|22 + |2ι(t)|22

)
−

1
2

η∑
ι=1

(|4ι(t)|22)
β

−
1
2

η∑
ι=1

(|2ι(t)|22)
β

−

η∑
ι=1

ζ̃3ι

≤ −k̃V2(t) −
1
2

η∑
ι=1

(|4ι(t)|22)
β

−
1
2

η∑
ι=1

(|2ι(t)|22)
β

−

η∑
ι=1

ζ̃3ι, (29)

where k̃1ι = −

η∑
ρ=1

(
− ζ̃1ι − 1 +

1
2 |1 − hι|2 +

1
2 |∂ρι|2L̃ι

)
,

k̃2ι = −

η∑
ρ=1

(
− ζ̃2ι −ξι +

1
2 (|1−hι|2+|∂ιρ |2L̃ρ +|h̄ιρ |2M̃ρ +

|ςιρ |2M̃ρ + |ϖιρ |2M̃ρ)
)
, k̃ = 2min{k̃1ι, k̃2ι}.

By application of Lemma 2 we have:
(1) If V2(t) ∈ (0, 1),

−
1
2

η∑
ι=1

(|4ι(t)|22)
β

−
1
2

η∑
ι=1

(|2ι(t)|22)
β

≤ −(
1
2
)1−β (

1
2

η∑
ι=1

|4ι(t)|22)
β

− (
1
2
)1−β (

1
2

η∑
ι=1

|2ι(t)|22)
β

≤ −(
1
2
)1−βV β

2 (t). (30)

(2) If V2(t) > 1,

−
1
2

η∑
ι=1

(|4ι(t)|22)
β

−
1
2

η∑
ι=1

(|2ι(t)|22)
β

≤ −(
1
2
η)1−β (

1
2

η∑
ι=1

|4ι(t)|22)
β

− (
1
2
η)1−β (

1
2

η∑
ι=1

|2ι(t)|22)
β

≤ −η1−βV β

2 (t). (31)

From eqs. (14), (15), we obtain

D+V2(t) ≤


−k̃V2(t) − �̃1V

β

2 (t) − ζ̃ , V2(t) ∈ (0, 1),

−k̃V2(t) − �̃2V
β

2 (t) − ζ̃ , V2(t) ≥ 1,

(32)

where �̃1 = ( 12 )
1−β , �̃2 = η1−β , ζ̃ =

η∑
ι=1

ζ̃3ι.

TABLE 2. Comparisons between recent works and this article.

Remark 3: In [34], [35], [36], the controllers designed
contain the sign function sign(·), so the controllers are discon-
tinuous. However, in some cases, continuity of the controller
is necessary. Therefore, the controllers in this article does
not include symbol functions, which can effectively avoid
unnecessary oscillations.
Remark 4: This article studies the CPLS problem of

FICVNNs, which combines complex projective syn-
chronization and lag synchronization. Complex projec-
tive synchronization can also improve the level of
secure communication. Due to the time required for
signal transmission, lag synchronization is a reason-
able solution for driving response systems. Therefore,
CPLS can better transmit information and has practical
value.

When the values of m and γ are given, the result of
Theorem 1 can be generalized to the following conclusion.
Corollary 1: Under the conditions of Theorem 1 and

controller (5), the following results hold
(1) if m ̸= 0, γ = 0, drive-response system (2) and (3)

obtain fixed-time CPS;
(2) if m = 1, γ > 0, drive-response system (2) and (3)

satisfy FXLS;
(3) if m = 1, γ = 0, drive-response system (2) and (3)

obtain FXS.
Corollary 2: Under Theorem 1 and control Eq.(5), if fρ(·),

gρ(·), ρ ∈ S are odd functions, there are true that
(1) if m = −1, γ > 0, drive-response system (2) and (3)

get fixed-time lag anti-synchronization(FXLAS) at T1f .
(2) if m = −1, γ = 0, drive-response system (2) and (3)

fulfil FXAS at T1f .
Corollary 3: If fρ(·), gρ(·) satisfy fρ(0) = gρ(0) = 0, m =

γ = 0, Eq. (2) achieves fixed-time stabilization under ὺ1ι(t)
and settling time is T1f .
Remark 5: Similarly, if the conditions of Theorem 2 and

controller (21) are established, results similar to Corollary 1-
3 can also be obtained. Therefore, the results of this article
are generalizable.
Remark 6: Previous research results only considered

fixed-time projective synchronization(FXPS) or FXLS [31],
[37], [38]. But FXPS, FXLS and anti-synchronization
are special cases of our results. It is not difficult to
see that the research results of this article are relatively
comprehensive.
Remark 7: We present the differences between this article

and other literature in Table 2.

VOLUME 12, 2024 86127



Y. Yao et al.: Novel Results on FXCPLS for Fuzzy Complex-Valued Neural Networks With Inertial Item

IV. NUMERICAL EXAMPLES
Example: Let us consider the following FICVNNs:

λ̈ι(t) = −αιλι(t) − ℓιλ̇ι(t) +

η∑
ρ=1

∂ιρ fρ(λρ(t)) +

η∑
ρ=1

h̄ιρ

× gρ(λρ(t − τρ)) +

η∑
ρ=1

dιρHρ(t) +

η∧
ρ=1

rιρHρ(t)

+

η∨
ρ=1

διρHρ(t) +

η∧
ρ=1

ςιρgρ(λρ(t − τρ))

+

η∨
ρ=1

ϖιρgρ(λρ(t − τρ)), t ≥ 0, ι ∈ S, (33)

where ι, ρ = 1, 2, α1 = 1.4, α2 = 2, ℓ1 = 2, ℓ2 = 1.4,
rιρ = διρ = Hρ(t) = 1. τρ = 1, fρ(·) = gρ(·) =

tanh(Re(·)) + tanh
(
Im(·)

)
i, dιρ = 0, ι, ρ = 1, 2, ∂11 =

1.5 + 2.6i, ∂12 = −2.0 + 1.7i, ∂21 = 1.2 + 0.6i, ∂22 =

1.0 − 1.5i, h̄11 = 2.5 + 1.5i, h̄12 = 1.0 − 1.2i, h̄21 =

−1.7 − 2.7i, h̄22 = −2.4 − 1.6i, ς11 = 0.4 − 1.0i, ς12 =

−2 − 0.3i, ς21 = 1.5 − 1.6i, ς22 = 1.1 − 1.6i, ς11 =

0.4−1.0i, ς12 = −2−0.3i, ς21 = 1.5−1.6i, ς22 = 1.1−1.6i,
ϖ11 = 0.2− 2.5i, ϖ12 = 2− 1.4i, ϖ21 = 0.5− 1.6i, ϖ22 =

2.8 + 0.6i. The initial conditions of FICVNNs are chosen as
λ1(φ) = 1.8 + 1.7i, λ̇1(φ) = 2.1 − 1.4i, λ2(φ) = −2.5 −

1.4i, λ̇2(φ) = −1.8+ 1.0i, φ ∈ [−1, 0]. Then, the phase plot
and the state trajectory of variables λ1(t), λ2(t) of FICVNNs
are obtained and shown respectively in Figs. 1 and 2.

FIGURE 1. The phase plot of FICVNNs Eq. (21).

FIGURE 2. The state trajectories λ1(t), λ2(t) for drive system (33).

Furthermore, let vι(t) = λ̇ι(t) + λι(t), then FICVNNs (32)
could be given by the following form

λ̇ι(t) = −λι(t) + vι(t),

v̇ι(t) = −ξιvι(t) − hιλι(t) +

η∑
ρ=1

∂ιρ fρ(λρ(t)) +

η∑
ρ=1

h̄ιρ

× gρ(λρ(t − τρ)) +

η∑
ρ=1

dιρHρ(t) +

η∧
ρ=1

rιρHρ(t)

+

η∨
ρ=1

διρHρ(t) +

η∧
ρ=1

ςιρgρ(λρ(t − τρ))

+

η∨
ρ=1

ϖιρgρ(λρ(t − τρ)), t ≥ 0, ι ∈ S. (34)

Set the system (33) to be drive system and respond system
is:

κ̇ι(t) = −κι(t) + wι(t),

ẇι(t) = −ξιwι(t) − hικι(t) +

η∑
ρ=1

∂ιρ fρ(κρ(t)) +

η∑
ρ=1

h̄ιρ

× gρ(κρ(t − τρ)) +

η∑
ρ=1

dιρHρ(t) +

η∧
ρ=1

rιρHρ(t)

+

η∨
ρ=1

διρHρ(t) +

η∧
ρ=1

ςιρgρ(κρ(t − τρ)) +

η∨
ρ=1

ϖιρ

× gρ(κρ(t − τρ)) + υ̃ι(t), t ≥ 0, ι ∈ S. (35)

Here, the initial values of response system (35) are respec-
tively taken as κ1(φ) = 1.3 + 1.1i, w1(φ) = 3.0 − 1.8i,
κ2(φ) = −2.0 − 1.2i, w2(φ) = −1.0 + 1.3i. Fig.3 depicts
the graph of the error state without a controller.

FIGURE 3. Error states without control.

A. FXCPLS UNDER THE CONTROLLER (5)
The continuous functions fρ(·) and gρ(·) in system (21)
satisfies Hypothesis 1, and Lρ = Mρ = 1. In order to
achieve FXCPLS between systems (33) and (34), we choose
the parameters of the controller (5) as 8 = 1.6, ζ11 = 25.6,
ζ12 = 29.1, ζ21 = 15, ζ22 = 0.7, ζ31 = ζ32 = 0.05,
ϕ11 = 65 >

(
|h̄11|1 + |ς11|1 + |ϖ11|1

)
M1 = 5.8,

ϕ12 = 80 >
(
|h̄12|1 + |ς12|1 + |ϖ12|1

)
M2 = 7.9,
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FIGURE 4. Trajectories of states λι(t), κι(t) under control Eq.(5).

FIGURE 5. (3 + i )λι(t − 2), κι(t) under Eq.(5).

FIGURE 6. The error states and m = 3 + i, γ = 2 with Eq. (5).

ϕ21 = 64.4 >
(
|h̄21|1 + |ς21|1 + |ϖ21|1

)
M1 = 9.6, ϕ22 =

80.5 >
(
|h̄22|1 + |ς22|1 + |ϖ22|1

)
M2 = 10.1. By simple

calculation we get k11 = 20.3, k12 = 22.3, k21 = 15, k22 =

0.1, k = min{k1ι, k2ι} = 0.1, And �1 = 1, �2 = 0.1088,
ζ = 0.1. Therefore, the conditions of Theorem 1 are satisfied.
According to Theorem 1, FICVNNs implements FXCPLS at
T1f = 6.35.

To verify the correctness of our theoretical results in the
future, we set m = 3 + i, γ = 2, under Theorem 1
and Eq.(5), drive-response systems (34) - (35) implement

FIGURE 7. Trajectories of states λι(t), κι(t) under control Eq.(21).

FIGURE 8. (2 + i )λι(t − 2), κι(t) under Eq.(21).

FIGURE 9. The error states and m = 2 + i, γ = 2 with Eq. (21).

FXCPLS. Figs.4 and 5 show the state trajectories. And the
error trajectory is drawn in Fig.6.

B. FXCPLS UNDER THE CONTROLLER (21)
Next, we verify the validity of the controller (21). First,
we assign values to the parameters in the controller (21). Let
8 = 1.7, ζ̃11 = 9.4716, ζ̃12 = 1.52385, ζ̃21 = 14.5762,
ζ̃22 = 18.54715, ζ̃31 = 0.015, ζ̃32 = 0.005,ϕ1 = 6.3 >
1
2

(
|h̄11|2 + |h̄12|2 + |ς11|2 + |ς12|2 + |ϖ11|2 + |ϖ11|2

)
M̃ρ =

6.267, ϕ2 = 7.4 > 1
2

(
|h̄21|2 + |h̄22|2 + |ς21|2 + |ς22|2 +

|ϖ21|2 + |ϖ21|2
)
M̃ρ = 7.37495. After calculation, one
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has k̃11 = 8, k̃12 = 0.01, k̃21 = 6.2, k̃22 = 10, k̃ =

2min{k̃1ι, k̃2ι} = 0.02, �̃1 = 0.813, �̃2 = 0.3078, ζ̃ = 0.02.
Therefore, the conditions of Theorem 2 are satisfied, systems
(34) - (35) implement FXCPLS at T2f = 5.85.
Similarly, let m = 2 + i, γ = 2, the drive-response

system (34)-(35) realise FXCPLS at T̃2f = 5.85, as shown in
Figs. 7 and 8. Fig.9 depicts the trend of the error state under
the controller (21).

V. CONCLUSION
Based on recent articles [25], [26], [49], we studied the
FXCPLS problems of a class of CVNNs with inertial
terms and fuzzy logic through non separation methods.
Utilising fixed-time control theory, we have developed new
criteria to guarantee that the FICVNNs (4) fulfils FXCPLS.
Our conclusion can also be extended to other forms of
synchronization, such as fixed-time LS, fixed-time AS,
FXCPS, etc. At the same time, We conducted numerical
simulations using Matlab to verify the theoretical results of
this paper.

In order to obtain the stability and synchronization of NNs,
most current control methods are time-triggered control, but
the control cost is relatively high. Event-triggered control will
only update when the measurement error exceeds the pre-
designed trigger condition threshold, which not only saves
costs but also The efficiency is improved. Therefore, using
event-triggered control to study complex-valued inertial
neural networks is worthy of further research.
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