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ABSTRACT Maximum-likelihood multiuser detection incurs a large computational complexity, and its
low-complexity detection scheme suffers from a performance loss, where this tradeoff is inevitable and
inherent in a classical computer. In this paper, we use the Grover adaptive search (GAS) to break the
tradeoff, which is a quantum exhaustive search algorithm guaranteed to obtain the optimal solution, achieving
a quadratic speedup. Specifically, we design two specific parameters of GAS to achieve the optimal
performance with a reduced complexity: the initial threshold and the number of Grover rotations. The initial
threshold of GAS can be optimized using a solution of semi-definite programming, and it is possible to
calculate the distribution of the number of solutions smaller than the initial threshold in advance, which
depends on instantaneous channel coefficients. In addition, we analyze the number of quantum gates required
for GAS and show that the gate count can be reduced by bypassing the higher-order terms in the objective
function, leading to a reduced circuit runtime. Our analysis and simulation results demonstrate that the
proposed approach achieves the same performance as the optimal maximum-likelihood detection while
reducing the query complexity of GAS, implying that the large constant overhead of quadratic speedup
can be further reduced.

INDEX TERMS Grover adaptive search, multiple-input multiple-output, multiuser detection, quadratic
speedup, semi-definite programming.

I. INTRODUCTION
Efficient multiuser detection schemes have been proposed in
the context of both multiple-input multiple-output (MIMO)
and non-orthogonal multiple access (NOMA) systems [1],
[2], [3]. The optimal one is the maximum-likelihood
detection (MLD), and the suboptimal ones are classified
into linear and nonlinear detectors. Specifically, linear
detectors include zero-forcing (ZF) and minimum mean
square error (MMSE) detectors, and nonlinear detectors
include successive interference cancellation, semidefinite
programming (SDP) [4], lattice reduction, metaheuristics,

The associate editor coordinating the review of this manuscript and

approving it for publication was Pietro Savazzi .

machine learning, etc. In any case, the optimal detectors
incur a large computational complexity, and the suboptimal
ones suffer from a performance loss. This fundamental
tradeoff cannot be overcome as long as relying on classical
computation.

After the eventual end of Moore’s law,1 the performance of
classical computation is expected to be saturated as theminia-
turization of transistors reaches its physical limit, and the
development of quantum computation is crucial to overcome
this limitation. Assuming fault-tolerant quantum computation

1Note that the international roadmap for devices and systems has stated
in 2022 that it is not surprising that Moore’s law will continue for the next
10 years [5].
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(FTQC), quantum algorithms with the promise of quantum
speedup include Shor’s algorithm for factoring [6], Grover’s
algorithm for searching an unsorted database [7], and the
Harrow-Hassidim-Lloyd algorithm for solving linear systems
of equations [8]. Grover’s algorithm can find a single solution
from a database of size N in O(

√
N ) queries, while the

classical exhaustive search requires O(N ) time, which is
referred to as a quadratic speedup. Note that the well-known
quantum approximate optimization algorithm (QAOA) [9] is
a heuristic algorithm that assumes a noisy intermediate-scale
quantum (NISQ) device and coarsely approximates a unitary
time evolution operator corresponding to a time-dependent
Hamiltonian by a product of unitary operators. Unfortunately,
it has been proven that QAOA is unlikely to outperform
classical computation as long as noise exists [10]. Another
well-known approach, quantum annealing (QA) [11], is an
analog counterpart of QAOA that tries to find the ground
state of the time-dependent Hamiltonian similar to QAOA,
but it also suffers from the same limitation [10]. In contrast
to QAOA [9] and QA [11], Grover adaptive search (GAS)
[12] is a quantum exhaustive algorithm that guarantees the
optimality of an obtained solution with a quadratic speedup,
because it can randomly sample solutions smaller than a
certain threshold with a certain probability, where the tricky
part is how to design the threshold and the number of Grover
rotations depending on the number of solutions.

To break the fundamental tradeoff between complexity
and performance, pioneering researchers have attempted
to apply the quantum computing techniques to wireless
communications [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22]. This is also because there are fundamental
mathematical similarities between quantum computation and
wireless communication. For example, the Hadamard gate
creating an equal superposition state in quantum computation
is equivalent to the spreading code in code-division multiple
access (CDMA) systems, where multiuser symbols are
superimposed with an equal weight. Another example is
a design of noncoherent space-time codes [13] extending
the quantum error correction. In the application of QAOA
to MLD [14], [15], it has been confirmed that the angle
parameters of QAOA depend on the statistical behavior
of wireless channel coefficients and signal-to-noise ratio
(SNR). In addition, the applications of QA to MLD have
been studied in large-scale or massive MIMO [16], [17]
and NOMA [18] systems. In the context of GAS, an early-
stopping strategy [19] for CDMA is proposed to reduce
the number of Grover rotations. In the authors’ previous
studies [20], [21], the initial threshold of GAS is designed
using the statistical property of objective function fluctuating
depending on noise and channel coefficients.

Against this background, we apply GAS to multiuser
detection, aiming to break the fundamental tradeoff between
complexity and performance. The major contributions of this
paper are threefold.

1) We analyze the number of quantum gates required
for GAS, where two approaches are considered: one

is to map the detection problem to a higher-order
unconstrained binary optimization (HUBO) problem
directly, and the other is to map the problem to a
quadratic unconstrained binary optimization (QUBO)
problem with postprocessing.

2) We design the initial threshold by a rough estimate
of SDP, and the number of Grover rotations is then
designed using the distribution of the number of
solutions smaller than the threshold. The distribution
is obtained by Monte Carlo simulations in advance,
offline, and can be used for arbitrary channel coeffi-
cients and SNR, assuming perfect channel estimation.

3) We verify that a quadratic speedup can be achieved
even if the minimum number of Grover rotations is
increased, which is supported by our analysis and
simulations. The proposed approach is shown to be
effective even if the transmit power from each user
terminal (UT) is different and it achieves the same
performance as the optimal MLD while reducing the
query complexity of GAS to the minimum in all the
considered approaches.

The idea of limiting the number of solutions with a strict
initial threshold is similar to the classic sphere decoding [23].
In the sphere decoding, the detection complexity is reduced
at the sacrifice of a slight performance loss. This is inevitable
as long as classical computation is used, however, if we rely
on quantum computation as in this paper, we can achieve the
optimal performance while reducing the complexity, which
may be a breakthrough in wireless communications.

The remainder of this paper is organized as follows.
Section II reviews the GAS algorithm, and Section III
describes the system model assumed in this paper. Section IV
describes the conventional quantum-assisted multiuser detec-
tion, and Section V analyzes the number of quantum gates
required for GAS. Section VI designs the initial threshold
and the number of Grover rotations with an analysis of
quadratic speedup. Section VII presents simulation results,
and Section VIII concludes the paper.

II. GROVER ADAPTIVE SEARCH
Grover’s algorithm [7] is a general framework for searching
for a solution from an unsorted database, and it has been
extended to the case where the number of solutions is
unknown [24], to the case where the minimum value is
searched [25], and to global optimization [26]. In these
conventional studies [7], [19], [24], [25], [26], the Grover
oracle that marks the solutions of interest has been regarded
as a black box, and the studies have been conducted on the
premise that the oracle can be constructed efficiently in the
long term. This issue was solved by Gilliam et al. in [12],
which is based on the idea of the quantum adder [27], and it
constructs a quantum circuit that corresponds to a QUBO or
HUBO problem of

min E(b)

s.t. b ∈ Bn, (1)

VOLUME 12, 2024 83811
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FIGURE 1. A quantum circuit of GAS corresponding to b1 − 2 b1b2b3.

where b = [b1 · · · bn]T ∈ Bn is a binary vector, and
E(b) is an objective function that may contain higher-order
terms such as E(b) = b1 − 2 b1b2b3. In the original
GAS [12], the objective function E(b) is assumed to have
integer coefficients, and in the case of real coefficients, it is
mentioned that the probability distribution follows the Fejér
distribution, a superposition of approximated integers close
to the original real value. In this state, the algorithm will
not work correctly and the solution cannot be obtained.
Then, a modification [20] of the algorithm was proposed to
deal with real coefficients while causing a slight complexity
overhead in classical computation.

The quantum circuit of GAS [12] is composed of a state
preparation operator Ayi and a Grover operatorG

Li as shown
in Fig. 1. Here, n = 3 qubits are used to represent the binary
vector b ∈ Bn, and m = 3 qubits are used for output
register |z⟩ to represent the objective function value E(b).
The variable yi is a threshold for ith trial and it is a constant
term subtracted from the objective function E(b), which is
adjusted for each trial in an adaptive manner, limiting the
number of solutions corresponding to E(b) − yi < 0. The
Grover operator G is applied Li times, and the design of Li
depends on the number of solutions, which is unknown in
advance.

The preparation operator Ayi corresponds to a quantum
circuit that calculates the objective function value E(b) [12],
where a technique similar to the quantum adder relying on
the inverse quantum Fourier transform (IQFT) [27] is used.
As shown in Fig. 1, each term having a coefficient a ∈ R
corresponds to [12]

UG(θ ) = R(2m−1θ ) ⊗ R(2m−2θ ) ⊗ · · · ⊗ R(20θ) (2)

with a coefficient θ = 2πa/2m, a phase gate R(θ ) =

diag(1, ejθ ), and the imaginary number j. A coefficient
multiplied by a binary variable is represented as a controlled-
R (CR) gate, where the phase gate is controlled by the
corresponding qubit. Similarly, a coefficient multiplied by
k binary variables is represented as a CkR gate, which is
controlled by k qubits.
The Grover operator G is composed of an oracle operator

O and a Grover diffusion operator D as G = AyiDA
H
yiO

[12]. The oracle O is an operator that flips the phase
of states of interest that correspond to solutions. Given a
threshold yi, since GAS performs global minimization, the

Algorithm 1 Original GAS [12], [20]
Input: E : Bn

→ R, λ = 8/7
Output: bi
1: Uniformly sample b0 ∈ Bn and set y0 = ẏ = E(b0).
2: Set k = 1 and i = 0.
3: repeat
4: Randomly select the rotation count Li from the set

{0, . . . , ⌈k − 1⌉}.
5: Evaluate GLiAyi |0⟩n+m, and obtain b and y.
6: Calculate y = E(b) on a classical computer to obtain

an exact value.
7: if y < yi then
8: bi+1 = b, yi+1 = y, and k = 1.
9: else

10: bi+1 = bi, yi+1 = yi, and k = min(λk,
√
2n).

11: end if
12: i = i+ 1.
13: until a termination condition is met.

states of interest are those that satisfy E(b) < yi. That is,
the oracle is constructed so that only the states satisfying
E(b) − yi < 0 are flipped. The objective function value
is encoded in the two’s complement, and the first qubit
represents the sign. Then, the oracle O can be implemented
by applying a Z gate to the first qubit. The Grover diffusion
operator D is given by [7]

Di,j =


0 (i ̸= j)
1 (i = j = 0)
−1 (i = j ̸= 0).

(3)

In summary, the oracle O flips the phase of the states
of interest after the state preparation operator Ayi , and
the operator AyiDA

H
yi amplifies only the states of interest,

which correspond to a set of binary vectors b satisfying
E(b) − yi < 0.

How should we design the number of Grover rota-
tions Li? The probability of success in obtaining states
E(b) − yi < 0 is [19]

Psuccess = sin2
(
(2Li + 1) arcsin

√
Ns
N

)
, (4)

which depends on the size of the search space N = 2n and
the number of solutions Ns smaller than the threshold yi.
Maximizing the success probability (4) yields the optimal
number of Grover rotations [19]

Lopt =

⌊
π

4

√
N
Ns

⌋
, (5)

which promises a quadratic speedup for obtaining the optimal
solution.

The original GAS [12], [20] is summarized in Algorithm 1.
Generally, the number of solutionsNs is unknown in advance,
and the number of Grover rotations Li is randomly selected
from a set {0, . . . , ⌈k − 1⌉}, where k is a parameter that
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FIGURE 2. System model with J UTs and K receive antennas.

increases with the number of iterations i [24]. Specifically,
once the algorithm fails to update the minimum value, the
parameter k is multiplied by λ > 1. The parameter λ can be
set to any value in the range of 1 < λ < 4/3 [19], [24], and
the IBM quantum computing simulator Qiskit [28] used in
this paper sets λ = 8/7.

III. SYSTEM MODEL
We consider a narrowband system model with J UTs, each of
which has a single transmit antenna, and a base station with
K receive antennas, as shown in Fig. 2. A set of amplitude
and phase shift keying (APSK) symbols is denoted by C with
the constellation size Lc = |C|. The transmitted symbol from
jth user is denoted by sj ∈ C, and the power allocation ratio
is denoted by ρj, which subsumes both multiuser MIMO and
power-domain NOMA systems. Overall, the received symbol
vector r ∈ CK is expressed as

r =

J∑
j=1

hj
√

ρjsj + σvv, (6)

where hj ∈ CK×1 is a channel vector with CN (0, 1), and
v ∈ CK×1 is the additive white Gaussian noise (AWGN) with
CN (0, 1). The average received signal-to-noise ratio (SNR)
is defined as SNR = 10 · log10 (

∑
j ρj/(Jσ

2
v )). The optimal

performance is achieved by the MLD and is defined as a
minimization problem of

ŝ = argmin
s

∥∥∥∥∥∥r −

J∑
j=1

hj
√

ρjsj

∥∥∥∥∥∥
2

F

= argmin
s

∥r − Hcs∥2F ,

(7)

where we have a symbol vector s = [s1 · · · sJ ]T and a
channel matrix Hc = [

√
ρ1h1 · · ·

√
ρJhJ ] ∈ CK×J .

In general, ρj is assumed to be constant in multiuser
MIMO scenarios. This is different in power-domain NOMA
scenarios, and the successive interference cancellation is
typically used. But, this detection technique induces an error
floor in the bit error rate (BER) performance in uplink
scenarios, and MLD has been considered to overcome the
error floor [2], [3], [29].

IV. CONVENTIONAL QUANTUM-ASSISTED MLD
In quantum-assisted MLD, various techniques have been
proposed, where they have a common approach: the detection

problem is formulated as a binary optimization problem. This
section briefly reviews such conventional quantum-assisted
MLD techniques. Both GAS and QAOA support QUBO and
HUBO problems, while QA supports only QUBO problems.
This difference yields different approaches to MLD.

A. GAS FOR MLD
MLD can be formulated as a HUBO problem [20]. Let b =

[bT1 · · · bTJ ]
T

∈ BJ log2(Lc) be a bit sequence to transmit. The
problem can be formulated as [20]

min E(b)

s.t. bj ∈ Blog2 Lc , ∀ j = {1, · · · , J} (8)

Here, we have the objective function of MLD [20]

E(b) =

∥∥∥∥∥∥r −

J∑
j=1

hj
√

ρjs
(Lc)
j (bj)

∥∥∥∥∥∥
2

F

, (9)

where s(Lc)j (bj) ∈ C is a function of binary variables that
maps a bit sequence bj to a standard APSK symbol in C.
The mapping is specified in the 5G NR standard [30]. For
example, in the QPSK case (Lc = 4), we have [30]

s(4)j (bj) =
1

√
2
[(1 − 2bj,1) + j(1 − 2bj,2)]. (10)

Similarly, we have [30]

s(16)j (bj) =
1

√
10

(1 − 2bj,1)[2 − (1 − 2bj,3)]

+
j

√
10

(1 − 2bj,2)[2 − (1 − 2bj,4)] (11)

in the 16-QAM case (Lc = 16), and [30]

s(64)j (bj) =
1

√
42

(1 − 2bj,1)[4 − (1 − 2bj,3)[2 − (1 − 2bj,5)]]

+
j

√
42

(1−2bj,2)[4−(1−2bj,4)[2−(1−2bj,6)]]

(12)

in the 64-QAM case (Lc = 64). Later, the notation (·)(Lc) is
omitted for simplicity if the constellation size Lc is clear from
the context.

The original GAS is initiated by a random solution, and the
corresponding objective function value is used as an initial
threshold [12]

ẏ = E(ḃ) (13)

and ḃ ∈ BJ log2(Lc) is a random bit sequence. In the pioneering
study [19], the output of classic linear detectors, such as ZF
and MMSE, is used as an initial solution. The ZF weight
matrix is given by

W =

{
(HH

c Hc)−1HH
c (J ≤ K )

HH
c (HcHH

c )
−1 (J > K )

(14)
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and the MMSE weight matrix is given by

W =

{
(HH

c Hc + σ 2
v I)

−1HH
c (J ≤ K )

HH
c (HcHH

c + σ 2
v I)

−1 (J > K )
. (15)

Here, the initial threshold by MMSE is given by

ȳ = E(M−1(Wr)), (16)

whereM−1(·) is a mapping from J symbols to a sequence of
J log2(Lc) bits.
In the conventional study [20], [21], the initial threshold

is designed by the distribution of the minimum of objective
function (9), Emin. If the symbol detection is correct, the only
remaining term is the AWGN coefficients, and the minimum
objective function value Emin is given by [20] and [21]

Emin = σ 2
v︸︷︷︸

known

K∑
u=1

|vu|2︸︷︷︸
unknown

, (17)

where the noise variance σ 2
v is known and the noise

coefficients vu for u = 1, · · · ,K are unknown in advance.
Since the noise coefficients vu are assumed to follow a
complex Gaussian distribution, Emin follows the Erlang
distribution [20], [21]

f (ỹ) =
γ K ỹK−1e−γ ỹ

(K − 1)!
(18)

with γ = 1/σ 2
v . The corresponding cumulative distribution

function (CDF) is given by [20] and [21]

F(ỹ) = Pr[Emin ≤ ỹ] = 1 − e−γ ỹ
K−1∑
u=0

(γ ỹ)u

u!
. (19)

Then, the probability that the initial threshold becomes
smaller than the minimum objective function value Emin is
given by [20], [21]

P = Pr[Emin > ỹ] = e−γ ỹ
K−1∑
u=0

(γ ỹ)u

u!
, (20)

and the improved initial threshold ỹ can be calculated by (20)
for a certain small probability P.

B. QA FOR MLD
GAS supports HUBO problems, while QA supports only
QUBO problems. Since the objective function of MLD is
a quadratic function of symbols, the mapping from a bit
sequence to a symbol sj(bj) must be linear in QA. However,
the mapping (11) is quadratic and (12) is cubic, and they
cannot be formulated as QUBO problems. Even if the
objective function is cubic or higher, it can be converted to
a quadratic function by adding auxiliary binary variables.
In this case, the search space size is doubled for each auxiliary
variable, which is unrealistic in terms of complexity.

To circumvent this escalating complexity, the authors
in [16] invented a novel transformation that yields a linear

mapping in the context of QA, termed QuAMax transfor-
mation. This transformation consists of three steps. First,
the standard Gray-coded symbols are transmitted. Second,
the receiver uses a linear mapping to obtain non-Gray-coded
symbols. For example, in the 16-QAM case, we have [16]

s(16)
′

j (bj) = (4bj,1 + 2bj,2 − 3)/
√
10

+ (4bj,3 + 2bj,4 − 3)j/
√
10 (21)

and in the 64-QAM case, we have [17]

s(64)
′

j (bj) = (8bj,1 + 4bj,2 + 2bj,3 − 7)/
√
42

+ (8bj,4 + 4bj,5 + 2bj,6 − 7)j/
√
42. (22)

Finally, the receiver performs a simple bit conversion to
obtain a bit sequence that corresponds to the Gray-coded
symbols. For example, in the 16-QAM case, we have b̂0 =

b0, b̂1 = b0 ⊕ b1, b̂2 = b1 ⊕ b2, and b̂3 = b2 ⊕ b3 [16].
This postprocessing requires polynomial complexity, which
is negligible against the detection complexity.

V. ANALYSIS OF QUANTUM GATE COUNT
In the conventional studies using Grover-based algorithms,
the construction of a quantum oracle is assumed to be solved
in the long term, and the specific complexity in terms of
the number of gates has not been analyzed in detail. This
section analyzes the impact of Gray coding on the number
of quantum gates. Here, we focus on the number of T gates,
which is an important metric when assuming surface-code-
based quantum computation. We analyze the number of
quantum gates required in the state preparation operator Ayi
of GAS, which dominates the total number of quantum gates.

The number of gates can be calculated by counting the
number of terms in the objective function E(b) of (9), where
the mapping s(Lc)j (bj) or s(Lc)

′

j (bj) is directly substituted.
Expanding the objective function (9) yields (23), as shown
at the bottom of the next page, and the terms can be classified
into four groups, as indicated in (23). The first group is a
collection of constant terms that represent the amplitudes
of received symbols. The second group is also a collection
of terms that represent the amplitudes of original symbols,
and they are constant in the BPSK and QPSK cases. The
third group consists of independent symbols, while the fourth
group consists of the interactions between different symbols.

By substituting the mapping s(Lc)j (bj) or s
(Lc)′

j (bj) into (23),
one can calculate the number of terms corresponding to each
order, where the terms |sj(bj)|2, sj(bj), and s∗j (bj)sk (bk ) are
considered. Then, the number of H, R, controlled R (CR),
and CkR for k ≥ 2 gates can be calculated accordingly. In the
following, we show the number of gates in the Gray-coded
and non-Gray-coded 16-QAM cases as examples.

a: GRAY-CODED 16-QAM
We consider the Gray-coded 16-QAM case leading to a
HUBO formulation, where the number of bits is n and the
number of users is J = n/ log2(16) = n/4. Out of J symbols,
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the number of interactions between different two symbols
s∗j (bj)sk (bk ) is

(J
2

)
. From (11), since we have

sj(bj) = (1 − 2bj,1 + 2bj,3 − 4bj,1bj,3)/
√
10

+ (1 − 2bj,2 + 2bj,4 − 4bj,2bj,4)j/
√
10 (24)

and s∗j (bj)sk (bk ) yields four 4th-order terms, the total number
of 4th-order terms is simply calculated as

4
(
J
2

)
= 4

J (J − 1)
2

=
n(n− 4)

8
. (25)

Similarly, s∗j (bj)sk (bk ) yields 16 3rd-order terms, and the total
number of 3rd-order terms is calculated as n(n− 4)/2. The
number of 2nd-order terms is 16 for each pair of symbols and
two for each symbol, and the total number of 2nd-order terms
is n(n− 4)/2 + n/2 = n(n− 3)/2. The number of 1st-order
terms is nm. Then, the number of corresponding C4R, C3R,
C2R, and CR gates are n(n − 4)/8, n(n− 4)/2, n(n − 3)/2,
and nm, respectively.

b: NON-GRAY-CODED 16-QAM
Next, in the non-Gray-coded 16-QAM case leading to a
QUBO formulation, we can analyze the number of gates
in the same manner as the previous Gray-coded case.
Using (21), the maximum order of the objective function
is suppressed to two, and it can be formulated as a QUBO
problem. The number of 2nd-order terms is 16 for each pair
of symbols, and |sj(bj)|2 is simply expressed as

|sj(bj)|2 =
1
10

(4bj,1 + 2bj,2 − 3)2

+
1
10

(4bj,3 + 2bj,4 − 3)2, (26)

which yields n(n− 4)/2+n/2 = n(n− 3)/2 2nd-order terms
in total. The number of 1st-order terms is the same as the
Gray-coded case, nm.
Similarly, we analyzed the number of gates required for

the Gray-coded and non-Gray-coded 64-QAM cases. The
results are summarized in Table 1. Since m phase gates
R(θ ) are required to represent a coefficient, the number
of phase gates is m times the number of terms. In the
Gray-coded case, 16-QAM and 64-QAM require C4R and

FIGURE 3. Estimated number of T gates required by each formulation
with J = n/ log2 Lc .

C6R, and 256-QAM and 1024-QAM require C8R and C10R,
respectively. By contrast, in the non-Gray-coded case, C2R is
sufficient for supporting all constellation sizes, and the total
number of gates can be reduced significantly.

In surface-code-based quantum computation, the number
of T gates determines the complexity of a quantum circuit.
Fig. 3 shows the number of T gates required by each
formulation, where the number of qubits required for
encoding E(b) is m = 16 and the number of binary variables
is increased from n = 6 to 30. The number of T gates
does not depend on the number of receive antennas K at
the base station. Here, we assume that the phase gate R(θ )
can be directly implemented in quantum hardware and is not
decomposed further. A CR gate is decomposed into CNOT
and single-qubit unitary gates including R(θ). For k ≤ 2,
a CkR gate is decomposed into CR gates, which yields
14(n − 1) T gates using n − 1 auxiliary qubits initialized
by zero [31]. Note that, for n = 1, no auxiliary qubits
are required. As shown in Fig. 3, in the BPSK and QPSK
cases, the number of T gates is constant regardless of the use
of Gray coding. In the Gray-coded 16-QAM and 64-QAM
cases, the number of T gates increased significantly due to the

E(b) =

K∑
u=1

|ru −
√

ρ1hu1s1(b1) −
√

ρ2hu2s2(b2) − · · · −
√

ρJhuJ sJ (bJ )|2

=

K∑
u=1

{
|ru|2︸︷︷︸

1. Constant terms

+

J∑
j=1

ρj|huj|2|sj(bj)|2︸ ︷︷ ︸
2. Amplitudes of symbols

−

J∑
j=1

2ρjℜ(ruh∗
uj)ℜ(sj(bj)) −

J∑
j=1

2ρjℑ(ruh∗
uj)ℑ(sj(bj))

}
︸ ︷︷ ︸

3. Independent symbols

+

J∑
j=1

J∑
k=j+1

2
√

ρj
√

ρkℜ(hujh∗
uk )ℜ(s∗j (bj)sk (bk )) +

J∑
j=1

J∑
k=j+1

2
√

ρj
√

ρkℑ(hujh∗
uk )ℑ(s

∗
j (bj)sk (bk ))︸ ︷︷ ︸

4. Interactions between different symbols

(23)
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TABLE 1. Summary of quantum gate analysis, where n is the number of bits in b and m is the number of qubits for encoding E(b).

TABLE 2. Summary of initial thresholds.

higher-order terms. By contrast, in the non-Gray-coded case,
the number of T gateswas reduced compared to the BPSK and
QPSK cases. This is because the number of users J decreases
as the constellation size Lc increases given the same number
of qubits n.

VI. PROPOSED PARAMETER OPTIMIZATION IN GAS
This section proposes techniques for optimizing the initial
threshold and the number of Grover rotations to reduce the
query complexity of GAS.

A. DESIGN OF INITIAL THRESHOLD
SDP-based symbol detection for MIMO systems is widely
recognized to outperform linear detectors [4], and it can be
used as an initial threshold for GAS. SDP can be solved
efficiently, and the worst-case complexity is polynomial [4]

O(max {m̄, n}4n1/2 log (1/ϵ)) (27)

with respect to the number of binary variables n and the
number of constraints m̄, where ϵ is the precision of solution.
Although various efficient methods have been proposed to
obtain data symbols from the obtained positive semidefinite
matrix, we use the simple quantization method [32] to obtain
the initial threshold ŷ. At low SNRs, the SDP-based detection
may fail, and the threshold ŷmay become too large. To avoid
this, we consider combining the initial threshold ŷ with the
threshold ỹ of (20), which is obtained from the minimum
value distribution, and using min(ỹ, ŷ) as the initial threshold.

Themajor drawback of this approach is that the complexity
of solving SDP is not negligible. Specifically, the complexity
of the conventional random initial threshold is O(1), the
MMSE-based threshold is O(J2.376) = O((n/Lc)2.376),2 and
the analytical threshold of (20) is O(1), while that of the
SDP-based threshold is O(n4.5 log (ϵ−1)). This complexity
overhead is much smaller than the original complexity

2In general, the complexity of MMSE is recognized as O(J3), but it can
be reduced to O(J2.376) using the Coppersmith-Winograd algorithm [33].

O(Ln/Lcc ). Moreover, the SDP solver itself is also shown to be
accelerated by quantum computation [34], which may reduce
the complexity overhead. Table 2 summarizes the complexity
of each initial threshold where Lc is regarded as a constant for
simplicity.

B. DESIGN OF GROVER ROTATIONS
When using the proposed initial threshold ŷ or min(ỹ, ŷ),
the number of solutions Ns to be amplified is likely to be
smaller than that of the random initial threshold ẏ. That is,
the optimal number of Grover rotations Lopt is also likely
to become larger than that of ẏ according to the inverse
relationship of (5). In such a case, where the statistical
information ofNs is known in advance, how should we design
the number of Grover rotations? This case is considered
to be an intermediate between the totally unknown random
case [24] and the case with the full knowledge of Ns where
the quantum counting algorithm [35], [36] is applied.3

We are interested in the states where the objective
function (9) is smaller than a certain threshold y0

E(b) =

∥∥∥∥∥∥r −

J∑
j=1

hj
√

ρjsj(bj)

∥∥∥∥∥∥
2

F

< y0, (28)

which indicates that the detection problem is to find a symbol
that is within the radius

√
y0 from the received symbol as

shown in Fig. 4. In Fig. 4, we show the case of J =

2 and QPSK, where the black circles represent the candidate
superimposed symbols. From this relationship, the number of
states smaller than the initial threshold y0 can be determined
by the transmit symbols, channel coefficients, the power ratio
of UTs, and noise. From this complex relationship, it is
difficult to derive the theoretical expression of the probability
distribution of the number of solutions p(Ns) for a given
threshold y0.
Instead, we investigate the number of solutions Ns through

Monte Carlo simulations. In the detection problem, since
the random variables hj and v are included in the objective
function, p(Ns) is expected to follow a certain probability
distribution. For example, Fig. 5 shows the CDF of the
number of solutions Ns smaller than the threshold min(ỹ, ŷ),
where the constellation size is Lc = 16 and power ratio of

3The quantum counting algorithm [35], [36] requires O(
√
N ) queries.
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FIGURE 4. A relationship between the number of states smaller than the
initial threshold y0 and a received symbol r in multiuser detection.

FIGURE 5. CDF of the number of solutions Ns that are smaller than the
proposed initial threshold upon changing SNR.

J = 2 UTs is ρ1 = 2ρ2. The blue circles represent the
simulation results, and the CDF has a continuous and certain
trend as shown in Fig. 5. Then, we fit the CDF with the
following heuristic function of six parameters.

P(Ns) = c1 + (1 − c−c3·Ns2 )(1 − c1) + c4 · SNR2
· c−c6·Ns5 ,

(29)

which satisfies P(Ns) → 1 as Ns → ∞. In the case of
Fig. 5, the obtained parameters were c1 = 0.7747, c2 =

1.3339, c3 = 1.3203, c4 = 0.0005, c5 = 1.0051, c6 =

70.592. The black grid shows the fitted function, which can
be used to obtain complementary values of the CDF of Ns at
any SNR with sufficient accuracy.

The conventional analytical threshold ỹ of (20) is derived
for a given average received SNR. In practical communi-
cation scenarios, coherent detection is assumed in general,
and the instantaneous channel coefficients are estimated and
tracked periodically, which can be used to determine the
number of Grover rotations in a more appropriate manner.
The reliability of multiuser detection is mainly determined

FIGURE 6. CDF of the optimal number of Grover rotations corresponding
to the Frobenius norm of the channel matrix (ρ1 = 2ρ2).

by R = rank(Hc) ≤ min(J ,K ) singular values σ1, · · · , σR
of the channel matrix Hc ∈ CJ×K , and we use its Frobenius
norm

C ≡
1

J · K
∥Hc∥

2
F =

1
J · K

R∑
i=1

σ 2
i (30)

as a key indicator for the Grover rotations. Note that C
obviously follows the Erlang distribution as with the analysis
of (17) if the power allocations ratios are identical.

Figs. 6(a) and (b) show the CDF of the optimal Grover
rotations Lopt for the proposed initial threshold min(ỹ, ŷ).
For simple visualization, we divided the Frobenius norm
∥Hc∥

2 into multiple intervals and show the average value
in each interval. As shown in Fig. 6, the probability of the
optimal number of Grover rotations Lopt being 1 to 3 was
negligible regardless of SNR and the Frobenius norm. When
SNR = 20dB, the probability of Lopt being large increased
as the Frobenius norm increased. By contrast, when SNR =

15dB, the Frobenius norm did not affect Lopt significantly.
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FIGURE 7. Impact of power allocation on the optimal number of Grover
rotations with SNR = 20dB.

This is because the SDP-based threshold ŷ was smaller than
the analytical threshold ỹ in most cases.

Additionally, Fig. 7 investigates the impact of power
allocation on the optimal number of Grover rotations. Even
if the power allocation ratio for each UT is different, the CDF
of the optimal number of Grover rotations is not significantly
different. That is, the parameter optimization of GAS will
not be significantly affected by the specific power allocation
method.

As discussed in Figs. 6 and 7, the number of solutions
Ns and the optimal number of Grover rotations Lopt have
a certain bias when using the proposed initial threshold
min(ỹ, ŷ). In the original GAS, as summarized inAlgorithm 1,
the number of Grover rotations Li is drawn from a uniform
distribution [0, ⌈k − 1⌉]. Here, we propose to ignore the
unlikely values of L = 0 to Lmin − 1 and to narrow the range
of the uniform distribution to [Lmin, ⌈k − 1⌉]. As the Grover
iterations proceed, the optimal value of Lmin is expected
to increase, but it is clear that the value becomes larger
than Lmin. We present the proof that the query complexity
is not worsened even if Lmin > 0 in Appendix A, which
indicates that this modification does not affect the optimality
of the obtained solution. For example, in the case of Fig. 6,
we divide C ≡ ∥Hc∥

2
F/(J · K ) into multiple intervals and set

Lmin as

Lmin =


4 C < 0.25
5 0.25 ≤ C < 0.50
6 0.50 ≤ C < 1.00
7 1.00 ≤ C

. (31)

It can be expected that the rough boundaries here will absorb
the negative effects of channel estimation errors typically
encountered in practical communication scenarios.

The modified GAS is summarized in Algorithm 2, where
the initial threshold is set to min(ỹ, ŷ) and the number of
Grover rotations is drawn from the uniform distribution
[Lmin, ⌈k − 1⌉].

Algorithm 2 Proposed GAS
Input: E : Bn

→ R, λ = 8/7,Lmin,min(ỹ, ŷ)
Output: b
1: Set y0 = min(ỹ, ŷ).
2: Set k = Lmin + 1 and i = 0.
3: repeat
4: Randomly select the rotation count Li from the set

{Lmin, . . . , ⌈k − 1⌉}.
5: Evaluate GLiAyi |0⟩n+m, and obtain b and y.
6: Calculate y = E(b) on a classical computer to obtain

an exact value.
7: if y < yi then
8: bi+1 = b, yi+1 = y,and k = Lmin + 1.
9: else

10: bi+1 = bi, yi+1 = yi, and k = min(λk,
√
2n).

11: end if
12: i = i+ 1.
13: until a termination condition is met.

VII. PERFORMANCE COMPARISONS
In our performance comparisons, we consider the multiuser
detection problem of the uplink PD-NOMA system with
J = 2 UTs, K = 2 antennas at the base station, and
Lc = 16-QAM [2], [3], [29]. Here, it is not necessary to
consider a case where the number of antennas at the base
station is sufficiently larger than the number of UTs because
in such case efficient linear equalizers such as ZF and
MMSE are available, indicating that quantum computing is
not required. The SNR is fixed to 20dB, and the power
allocation ratio for each UT is set to ρ1 = 2ρ2. We assumed
a sufficiently large number of qubits m and ignored the effect
of approximation errors induced by real-valued coefficients.
The probability P used in the threshold ỹ of (20) was fixed to
10−4. To solve SDP and obtain ŷ, we used the modeling tool
CVXPY [37] and the solver MOSEK [38].

As performance metrics, we use the standard query
complexity as well as the number of total iterations i in
Algorithms 1 and 2 until the optimal solution is obtained.
The former is referred to as query complexity in the quantum
domain (QD), and the latter is referred to as query complexity
in the classical domain (CD) [19]. The CDFs of the query
complexities in the QD and CD are compared, and the curve
in the upper left indicates that the optimal solution is obtained
earlier. Note that all the considered schemes can obtain the
optimal solution and the achievable bit error ratios are exactly
the same.

First, we compared the convergence performance of
GAS with different initial thresholds. Specifically, we con-
sidered the conventional initial thresholds (1) random ẏ
[12], (2) MMSE-based ȳ [19], and (3) analytical ỹ [20],
as well as the proposed (4) SDP-based ŷ and (5) min(ỹ, ŷ).
As shown in Fig. 8, the convergence performance of the
random initial threshold ẏ was the worst, and the analytical
threshold ỹ outperformed it in both the CD and QD. The
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FIGURE 8. Comparison of different initial thresholds in GAS.

MMSE-based threshold ȳ exhibited a large value from the
first iteration, which indicates that good solutions were
obtained from the beginning. The proposed SDP-based
threshold ŷ outperformed the MMSE-based one, and the
combination of ỹ and ŷ achieved the best performance among
all the considered thresholds. This is because the SDP-based
threshold ŷ sometimes fails to obtain a good solution, and the
use of the analytical threshold ỹworks as a backup to improve
the convergence performance.

Next, Fig. 9 shows the performance comparison when the
minimum number of Grover rotations Lmin was changed,
where the proposed initial threshold min(ỹ, ŷ) was considered
since it achieved the best performance in Fig. 8. Setting
Lmin to an appropriate value significantly improved the query
complexity in CD and also yielded a slight improvement in
QD. The Lmin = 5 exhibited good performances in both CD
and QD. In addition, the proposed adaptive setting of Lmin
(31) according to the Frobenius norm C achieved a good
balance in both CD and QD. This suggests that the heuristic

FIGURE 9. Comparison of different Lmin values and the adaptive Lmin
of (31) using the proposed initial threshold.

setting of (31) can be considered sufficient in practice in the
specific scenario.

VIII. CONCLUSION
In this paper, we addressed the multiuser detection problem
in the uplink PD-NOMA system. To mitigate the escalating
complexity when using MLD, we used GAS to solve the
problem. Here, the mapping of the objective function to a
quantum circuit of GAS is crucial for the feasibility on a
quantum computer. Then, we analyzed the T gate count of
different mapping methods and clarified that the one with
quadratic formulation is the most efficient. We also proposed
two optimized parameters for GAS: the initial threshold
min(ỹ, ŷ) and the minimum number of Grover rotations Lmin.
The former is a combination of the analytical threshold ỹ
and the SDP-based threshold ŷ, and the latter is set to a
heuristic adaptive value depending on the Frobenius norm
of an instantaneous channel matrix. The introduction of
Lmin > 0 was proven not to affect the achievement of
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quadratic speedup. Our simulation results indicate that the
proposed optimized GAS can achieve a good balance in both
CD and QD when assuming perfect channel estimation. The
calculation of ŷ requires the preprocessing of SDP, which is a
potential drawback of the proposed approach. However, it is
negligible when compared to the overall complexity.

APPENDIX
ANALYSIS OF QUERY COMPLEXITY
We analyze the query complexity of GAS using the optimized
parameter, Lmin > 0, based on [24]. The probability of
obtaining the desired state when choosing the number of
Grover rotations Li from a uniform distribution [Lmin, k − 1]
is given as

Pk =

k−1∑
Li=Lmin

1
k − Lmin

sin2((2Li + 1)θ ))

=
1

2(k − Lmin)

k−1∑
Li=Lmin

{1 − cos((2Li + 1)2θ )}

=
1
2

−
sin(2kθ − 2Lminθ ) · cos(2kθ + 2Lminθ)

2(k − Lmin) sin(2θ)

=
1
2

−
sin(4kθ ) + sin(−4Lminθ )

4(k − Lmin) sin(2θ)
(32)

with angle θ such that sin2 θ = Ns/N . For an integer k ≥

Lmin + 2/ sin(2θ), the relationship

sin(4kθ ) + sin(−4Lminθ )
4(k − Lmin) sin(2θ)

≤
1

2(k − Lmin) sin(2θ)
≤

1
4
(33)

yields a lower-bound of the probability Pk ≥ 1/2 − 1/4 =

1/4. The value of k0 at which Pk0 = 1/4 is

k0 = Lmin +
N

√
(N − Ns)Ns

< Lmin +

√
N
Ns

. (34)

As described in Algorithms 1 and 2, k is updated at each
iteration as k = min(λk,

√
2n). The average total number of

Grover rotations, until k exceeds k0, is the same as [24], i.e.,

1
2

⌈logλ k0⌉∑
i=1

λs−1 <
1
2

λ

λ − 1
k0. (35)

After k exceeds k0, the desired state can be found with at least
1/4 probability per iteration, and the average total number of
Grover rotations can be calculated as

1
2

∞∑
u=0

3u

4u+1λu+⌈logλ k̃0⌉(Lmin + 1) <
λ(Lmin + 1)
8 − 6λ

k̃0

=
λ

8 − 6λ
k0 (36)

using k̃0 = k0/(Lmin + 1). Since λ is constant, the overall
query complexity is upper bounded by λ/(λ − 1)/2 k0 +

λ/(8 − 6λ)k0 = O(k0) = O(
√
N/Ns). That is, if Lmin is

sufficiently small compared to
√
N/Ns, the query complexity

is of the same order as that of the conventional algorithmwith
Lmin = 0. Therefore, the introduction of Lmin > 0 was proven
not to affect the achievement of quadratic speedup.
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