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ABSTRACT In this article, we introduce a positioning system developed for two- and three-dimensional
motion tracking. The system is based on a recursive Bayesian estimator with a dynamic naive Bayesian
classifier map matching scheme. The states of the dynamic naive Bayesian classifier are created by using
the map information and partitioning the region of interest into grids. The developed positioning system
considers three types of measurements of the platform at each time instant: the heading measurement
to determine the prior probability distribution; the single-anchor distance and altitude measurements to
determine the observation likelihood. A recursive Bayesian estimator takes advantage of these measurements
to obtain the posterior probability distribution. Ultimately, via the obtained posterior probability distribution,
the most probable projection of these measurements onto the states of the dynamic naive Bayesian classifier
is estimated as the current position of the platform. To avoid the potential ambiguities in the estimation
process, the estimator exploits a design parameter that characterizes the platform’s maximum attainable
speed. Simulations and real-time application results are given to illustrate the effectiveness of the developed
system for positioning applications in two- and three-dimensional indoor and outdoor environments with
constraints, such as corridors, roads, or flight paths.

INDEX TERMS Bayesian estimation, dynamic naive Bayesian classifier, map matching, maximum a
posteriori, single-anchor positioning.

I. INTRODUCTION
Accurate and reliable two- or three-dimensional (2D or 3D)
positioning of mobile platforms (e.g., pedestrians, unmanned
ground vehicles, robots, drones, and autonomous underwater
vehicles) is a very crucial task for a diverse set of
applications emerging in both civilian and military areas [1].
Over the last three decades, Global Navigation Satellite
Systems (GNSS) including GPS, Galileo, GLONASS, and
Beidou have become the main technology for positioning
purposes [2]. However, equipping mobile platforms with
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GNSS receivers provides an accurate and reliable positioning
solution solely in outdoor environments where there is a clear
and unobstructed view of the sky [3]. Therefore, research
to develop alternative positioning systems that can be used
in environments where GNSS signals are degraded or not
accessible has gained a great deal of attention in both
industry and academia [4], [5], [6], [7]. These environments
include densely populated urban areas with skyscrapers and
tall buildings, outdoor military operation areas affected by
GNSS jamming or spoofing, indoor spaces, underground
locations, etc. Each alternative positioning system suitable
for these environments has its own set of advantages and
drawbacks.
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On one side, there are infrastructureless positioning
systems, which rely solely on standalone sensing units,
such as inertial accelerometers and gyroscopes, without
any dependence on external preinstalled infrastructure
in the environment. Their positioning strategy typically
employs the dead reckoning approach, wherein the esti-
mation of the platform’s position relative to a starting
point is derived from the motion data captured by iner-
tial sensors. Despite achieving high precision over short
durations, the dead reckoning positioning strategy expe-
riences an unavoidable increase in drifting error as time
elapses [8].

On the other side, there are infrastructure-based position-
ing systems that generally employ technologies such as radio
frequency identification (RFID) [9], bluetooth low energy
(BLE) [10], wireless fidelity (Wi-Fi) [11], ultra-wideband
(UWB) [12], [13], and long range (LoRa) [14], offering
distance measurements to obtain a positioning solution.
These infrastructure-based positioning systems depend on
preinstalled devices or facilities within the environment and
vary in terms of accuracy, coverage, expenses related to
deploying and maintaining, complexity of the system, and
other factors. For example, RFID and BLE offer restricted
range and positioning accuracies [15]. Wi-Fi positioning is
cost-effective due to its utilization of existing infrastructures
like public and private access points, yet it yields relatively
low accuracy [16]. In contrast, UWB can attain accuracy
at the centimeter level for distances of up to 290 m under
line-of-sight (LoS) conditions [17], but the deployment of
numerous UWB transceivers for extensive coverage incurs
high costs. In scenarios requiring extended ranges and a
broader coverage, LoRa offers distance estimations reaching
up to 15 km [18].
To address the drawbacks briefly outlined for each system

above and enhance positioning accuracy, integration of sen-
sors and fusion of data become imperative [19]. For instance,
to improve the long-term precision of dead reckoning, inertial
sensors can be combined with additional sensors like mag-
netometers [20], barometers [21], and infrastructure-based
systems including Wi-Fi [22] or UWB [23] technologies for
the corrections of heading, altitude, and absolute position,
respectively. Alongside sensor integration, fusing sensor
data with available spatial information offers a favorable
and cost efficient positioning solution, without the need
for extra hardware. In practical applications, spatial data is
presented usingmaps and floor plans.Mapmatchingmethods
leverage spatial information to incorporate constraints within
the navigational space, consequently enhancing positioning
accuracy [24], [25]. Although numerousmapmatching-based
methods have emerged recently, particle filter (PF)-based
approaches remain dominant in map fusion research [26],
[27], [28]. Nevertheless, PF-based methods face significant
computational burdens and are susceptible to failure [29].
To alleviate the computational load of PF-based methods,
a nonrecursive Bayesian map matching method is introduced
in [30].

In our previous work [31], we developed a positioning
system referred to as 2D-HASAP (two-dimensional heading-
aided single-anchor positioning) which was utilizing the
single-anchor distance and heading measurements of the
mobile platform to obtain its 2D positioning estimate.
The methodology of 2D-HASAP was solely demonstrated
through simulations in [31].

The positioning system devised in this article is founded
on the established research and methodology of 2D-HASAP,
with the goal of attaining a more advanced and com-
prehensive positioning solution. To accomplish this goal,
the following extensions and enhancements have been
implemented:

• This article extends 2D-HASAP into 3D positioning,
incorporating altitude measurements of the platform.

• This article introduces a dynamic naive Bayesian
classifier (DNBC) [32] map matching scheme to handle
multiple observed variables effectively, in contrast to
the hidden Markov model (HMM) [33] map matching
scheme employed by 2D-HASAP, which accounts for
only a single observed variable.

• Alongside simulation studies, a real-time application
was carried out to validate the performance of the
developed positioning system in this article, and its
results are presented.

• The developed positioning system in this article employs
a recursive Bayesian estimator and encompasses two
stages: motion and measurement updates. By taking
into account the temporal relationship between the plat-
form’s current and previous positions through DNBC,
maximum a posteriori inference is utilized to estimate
the platform’s current position.

• The developed positioning system in this article makes
use of the heading measurement of the platform to
compute the prior probability distribution. As a result,
there is a notable decrease in the number of candidate
states during DNBC map matching. This approach
improves the computational efficiency of the developed
positioning system.

• To compute the observation likelihood, the developed
system in this article utilizes two measurements:
the single-anchor distance (by the transmission of
a limited number of messages between just two
infrastructure-based transceivers, namely, one for the
single anchor and one for the platform) and altitude
measurements.

• All the measurements utilized by the developed posi-
tioning system in this article can be obtained from
sensors that are highly efficient and cost-effective,
resulting in a system with comparatively low cost and
complexity.

• To address potential ambiguities arising during the
probability projection of the measurements onto the
states of DNBC, the developed positioning system in this
article incorporates a design parameter characterizing
the maximum speed that can be reached by the platform.
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FIGURE 1. The measurements and the local coordinate system exploited
by the developed positioning system.

The remaining sections of the article are structured as
follows: Section II offers the detailed methodology of the
developed positioning system. Simulations demonstrating
the effectiveness of the developed positioning system are
provided in Section III. The real-time application results are
presented in Section IV. Finally, the article is concluded, and
future research directions are given in Section V.

II. METHODOLOGY
In this section, a detailed description of themethodology used
by the developed positioning system is presented. To pro-
vide an inclusive methodology description, the developed
positioning system assumes that the platform moves in a
3D environment and the map information is complied with
or converted to the local coordinate system as illustrated
in Fig. 1. It is also assumed that the X-, Y-, and Z-axis of
the coordinate system are aligned with the local east, north,
and up directions, respectively. In addition, the developed
positioning system has a preinstalled single anchor with
specified position coordinates (xanchor , yanchor , zanchor ).

Furthermore, the developed system inherently offers a
positioning solution for applications that rely on 2D maps by
incorporating only two types of measurements: the heading
and the projection of the single-anchor distance onto the XY
plane as shown in Fig. 1.

A. MEASUREMENTS
The developed positioning system employs the platform’s
heading, single-anchor distance, and altitude measurements
to determine its current position within a DNBC map
matching scheme.

1) HEADING
The heading measurement of the platform represents the
rotation from the local north direction within the range
of [−π , π ) radian, with positive angles increasing eastward
as depicted in Fig. 1. This measurement can be acquired using
a digital compass, a gyroscope, or a combination of both. It is
assumed that the orientation of these sensors is aligned with
the platform’s heading.

2) SINGLE-ANCHOR DISTANCE
The platform is presumed to have a transceiver such as UWB
or LoRa for acquiring the measurement of its distance from a
preinstalled single anchor with specified position coordinates
(xanchor , yanchor , zanchor ) as shown in Fig. 1. The measured
distance between the single-anchor and platform transceivers
encompasses all measurement errors, including nonline-of-
sight (NLoS) and multipath fading.

3) ALTITUDE
The altitude measurement provides information about the
vertical distance of the platform above/below a fixed level.
The platform altitude measurement can be obtained by using
barometric altimeters, depth sensors, radar altimeters, etc.

B. DYNAMIC NAIVE BAYESIAN CLASSIFIER
DNBCs are a specialized form of Bayesian network, and can
be considered as an extension of HMMs. DNBCs and HMMs
vary in the number of observed variables; HMM defines
only a single observed variable, while DNBC supports
multiple observed variables. DNBCs are dynamic, because
they classify sequences with variables at every time instant tk .
They are called naive, because the observed variables are
assumed to be conditionally independent of each other.
A DNBC is built upon the following assumptions:

• It has discrete hidden states.
• At time instant tk , the hidden state is determined solely
by the hidden state at time instant tk−1, regardless of any
states prior to tk−1.

• At time instant tk , multiple observations are produced by
the hidden state which cannot be directly observed but
can only be inferred through a probabilistic function.

• Observations at time instant tk are unrelated to the
hidden states and observations at any other time instants.

• Observations at time instant tk are conditionally inde-
pendent of each other.

Under these assumptions, the developed positioning system
is founded on a DNBC featuring N hidden states, denoted
as {c1, c2, . . . , cN }. These states correspond to potential
discrete coordinates, indicating the platform’s position as a
grid cell on the map. The size of each grid cell, whether
in 2D or 3D, impacts the quantity of hidden states N
thereby influencing both the computational demands and
accuracy of the positioning system. Larger cell sizes can
lower computational costs but may compromise accuracy,
while smaller sizes can enhance accuracy at the expense of
increased computational load.

VOLUME 12, 2024 84539



S. Zobar et al.: Design of a 2D/3D Positioning System and Its Real-Time Application With Low-Cost Sensors

FIGURE 2. The developed positioning system utilizes a dynamic naive
Bayesian classifier, an extension of hidden Markov models, to represent
probability distributions across sequences of multivariate observations.

The DNBC utilized by the developed positioning sys-
tem has three measurement sequences, each comprising
k measurements:

{
ht1 , ht2 , . . . , htk

}
,

{
dt1 , dt2 , . . . , dtk

}
and{

at1 , at2 , . . . , atk
}
which are the platform’s heading, single-

anchor distance, and altitude measurements, respectively,
as shown in Fig. 2. The developed positioning system
operates under the assumption that all measurements are
acquired precisely as the platform arrives at the new position
to be estimated during time instances tl , l = 1, 2, . . . , k .
The developed positioning system aims to update the

posterior probability distribution p(Ctk = cj|htk , dtk , atk ) to
be in hidden state cj at time instant tk knowing the heading htk ,
single-anchor distance dtk , and altitude atk measurements
at each time instant for each hidden state Ctk . Utilizing
this posterior probability distribution at time instant tk , the
position of the platform can be estimated using the maximum
a posteriori inference scheme.

The posterior probability distribution, p(Ctk = cj|htk ,
dtk , atk ), can be computed as given below:

p(Ctk = cj|htk , dtk , atk ) = p(dtk , atk |Ctk = cj)

· p(Ctk = cj|htk , dtk−1 , atk−1). (1)

As can be seen from (1), the posterior probability distribution
p(Ctk = cj|htk , dtk , atk ) can be recursively acquired through
two sequential stages:

• Motion update providing the prior probability distribu-
tion p(Ctk = cj|htk , dtk−1 , atk−1) and

• Measurement update providing the observation likeli-
hood p(dtk , atk |Ctk = cj), also known as emission
probability.

The iterative loop of the developed recursive Bayesian
estimator above is depicted in Fig. 3.

C. MOTION UPDATE
During the motion update, we compute the prior probability
distribution p(Ctk = cj|htk , dtk−1 , atk−1) under the assumption
that the platform’s position cj at time instant tk is solely
influenced by its previous position ci at time instant tk−1 and
the platform’s heading measurement htk at time instant tk :

p(Ctk = cj|htk , dtk−1 , atk−1 )

=

∑
ci

[p(Ctk = cj|Ctk−1 = ci, htk )

· p(Ctk−1 = ci|htk−1 , dtk−1 , atk−1 )]. (2)

Suppose that the posterior probability distribution
p(Ctk−1 = ci|htk−1 , dtk−1 , atk−1) for the hidden state ci has

FIGURE 3. The iterative loop of the recursive Bayesian estimator used by
the developed positioning system. The estimator comprises motion
update via heading measurement and measurement update via
single-anchor distance and altitude measurements.

been previously computed at time instant tk−1, incorporating
all measurements up to and including the time instant tk−1.

The initial probability distribution, p(Ct0 |ht0 , dt0 , at0 ),
is assumed to be known and serves as the initial point for
the recursive Bayesian estimation cycle, as depicted in Fig. 3.
p(Ct0 |ht0 , dt0 , at0 ) can be derived from a map-based starting
point information. For instance, the platform can start to
navigate from an exactly known position with pinpointed
coordinates, i.e., p(Ct0 |ht0 , dt0 , at0 ) is equal to 1 for the
pinpointed coordinates, and 0 for all other coordinates.
Alternatively, p(Ct0 |ht0 , dt0 , at0 ) can be described in such a
way that the uncertainties in the determination of the starting
point are taken into account by the developed positioning
system to initialize the recursive Bayesian estimation.

Provided the heading measurement htk of the platform, the
transition probability p(Ctk = cj|Ctk−1 = ci, htk ) can be exp-
ressed as:

p(Ctk = cj|Ctk−1 = ci, htk )

=
p(htk |Ctk = cj,Ctk−1 = ci) · p(Ctk = cj|Ctk−1 = ci)

p(htk |Ctk−1 = ci)
. (3)

The probability distribution representing the heading mea-
surement of the platform p(htk |Ctk = cj,Ctk−1 = ci) in (3)
is assumed to follow a wrapped normal distribution bounded
within the range of [−π , π ) radian as described below:

p(htk |Ctk = cj,Ctk−1 = ci)

=
1

σh
√
2π

∞∑
n=−∞

exp (−
(π
2 − φci,cj − htk + 2πn)2

2σh2
). (4)

Here, φci,cj represents the angle formed by the projection of
the line connecting ci to cj onto the XY plane with the positive
direction of the X-axis within the [−π , π ) radian range, and
is measured counterclockwise from the positive direction of
theX-axis; σh denotes the standard deviation of the platform’s
heading measurements.
p(Ctk = cj|Ctk−1 = ci) represents the probability distribu-

tion of transitioning from state ci at time instant tk−1 to cj at
time instant tk . This transition can be modeled by considering
constraints such as door/wall limitations or the maximum
permissible position change during a single time step as
discussed in [34]. Alternatively, it can be treated as constant
for all pairs ci and cj as proposed in [35]. To address
ambiguities that may arise when two possible positions
have the same posterior probability and are equidistant from
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the single anchor, the developed positioning system models
p(Ctk = cj|Ctk−1 = ci) as follows:

p(Ctk = cj|Ctk−1 = ci) ∝

{
1, if |cj − ci| ≤ smax · 1tk ,
0, otherwise.

(5)

Here, |cj − ci| denotes the Euclidean distance between the
hidden states cj and ci; smax represents the platform’s maxi-
mum achievable speed in m/s; 1tk signifies the time interval
between the instants tk and tk−1 in s, i.e., 1tk = tk − tk−1.
The denominator term p(htk |Ctk−1 = ci) in (3) simplifies

to p(htk ) as the platform’s heading measurement htk at time
instant tk is not dependent on ci at time instant tk−1.

D. MEASUREMENT UPDATE
During the measurement update, we compute the observation
likelihood p(dtk , atk |Ctk = cj), representing the probability of
observing dtk and atk given the state cj at time instant tk . In the
developed positioning system, the observation likelihood
reflects the proximity between the platform and a particular
grid cell on the map, considering the observed single-anchor
distance and altitude measurements of the platform at time
instant tk . Given the single-anchor distance and altitude
measurements of the platform are always independent of each
other, we obtain

p(dtk , atk |Ctk = cj) = p(dtk |Ctk = cj)p(atk |Ctk = cj). (6)

As the platform’s distance from the single anchor cannot be
negative, the observation likelihood for the platform’s single-
anchor distance measurement, denoted as p(dtk |Ctk = cj),
is computed using a truncated normal distribution as
described below:

p(dtk |Ctk = cj)

=
1

σd
√
2π

× exp (−
(|cj − (xanchor , yanchor , zanchor )| − dtk )

2

2σd 2
)

·
2

1 − erf (
−dtk
σd

√
2
)

(7)

where |cj−(xanchor , yanchor , zanchor )| represents the Euclidean
distance from the hidden state cj to the known position
coordinates of the single anchor (xanchor , yanchor , zanchor );
σd represents the standard deviation of the distance mea-
surements between the platform and the single anchor; erf ()
denotes the error function and defined as:

erf (ξ ) =
2

√
π

∫ ξ

0
exp (−τ 2)dτ. (8)

Furthermore, the observation likelihood for the altitude
measurement of the platform, p(atk |Ctk = cj), is computed
using a normal distribution as described below:

p(atk |Ctk = cj) =
1

σa
√
2π

exp (−
(czj − atk )

2

2σa2
) (9)

where czj denotes the Z-axis coordinate of the hidden state cj;
σa represents the standard deviation of the platform’s altitude
measurements.

E. MAP MATCHING
After motion andmeasurement updates have been performed,
the ensuing posterior probability distribution p(Ctk = cj|htk ,
dtk , atk ) is obtained as follows:

p(Ctk = cj|htk , dtk , atk ) = p(dtk |Ctk = cj) · p(atk |Ctk = cj)

·

∑
ci

[
p(htk |Ctk = cj,Ctk−1 = ci) · p(Ctk = cj|Ctk−1 = ci)

p(htk )

· p(Ctk−1 = ci|htk−1 , dtk−1 , atk−1 )]. (10)

In (10), the probability p(htk ) can be treated as a constant
term denoted by η. Given that p(Ctk = cj|htk , dtk , atk )
is a probability distribution, η can be established through
normalization at each recursion’s conclusion. This ensures
that the sum over the N possible positions Ctk = cj, where
j = 1, 2, . . . ,N , results in 1. Consequently, the ensuing
posterior probability distribution p(Ctk = cj|htk , dtk , atk ) can
be expressed as:

p(Ctk = cj|htk , dtk , atk ) = (1/η) · p(dtk |Ctk = cj)

· p(atk |Ctk = cj) ·

∑
ci

[p(htk |Ctk = cj,Ctk−1 = ci)

· p(Ctk = cj|Ctk−1 = ci) · p(Ctk−1 = ci|htk−1 , dtk−1 , atk−1)].

(11)

Finally, the platform’s current position at time instant tk can
be inferred by assessing the most probable projection of the
motion and measurement updates from (11) as:

Ĉtk = argmax
cj∈{c1,c2,...,cN }

p(Ctk = cj|htk , dtk , atk ) (12)

where Ĉtk represents the estimated coordinates of the
platform’s position at the current time instant tk .

III. SIMULATIONS
A. ILLUSTRATION OF THE BAYESIAN ESTIMATION
STEPS IN 3D
The estimation steps of the recursive Bayesian estimator
exploited by the developed positioning system are illustrated
for one cycle in Fig. 4. Since the probability distributions
described in the previous section assign 3D coordinate values
to a real number (i.e., they are a function of three variables),
there is no direct way to visualize them. Therefore, in this
article, colors are used to represent the calculated probability
values. Furthermore, slice surfaces within 3D are considered
to depict the characteristics of the calculated probability
distributions.

In this illustrative one cycle simulation, the single anchor
is positioned at coordinates (xanchor , yanchor , zanchor ) =

(0, 0, 5). To aid visualization, we assume that the platform’s
initial position is precisely known to be (−5,−5, 2).
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FIGURE 4. The steps involved in the recursive Bayesian estimator utilized by the developed positioning system for one cycle.

Thus, the initial posterior probability distribution is pro-
vided as:

p(Ct0 |ht0 , dt0 , at0 ) =

{
1, if Ct0 = (−5, −5, 2),
0, otherwise.

(13)

In the stage of motion update, a heading measurement
ht1 = π/5 radian with a standard deviation σh = π/9
radian is taken. This headingmeasurement and the initial pos-
terior probability distribution in (13) give us the probability
distribution p(ht1 |Ct1 ,Ct0 ) · p(Ct0 |ht0 , dt0 , at0 ) as illustrated
in Fig. 4a. Then, the time difference 1t1 = 1 s between the
instants t1 and t0, and the speed limit smax = 6 m/s for the rec-
tilinear motion of the platform are applied. Consequently, the
prior probability distribution p(Ct1 |ht1 , dt0 , at0 ) is obtained as

illustrated in Fig. 4b. Note that the platform’s initial position
is denoted as a green circle in Fig. 4a and Fig. 4b.

In the stage of measurement update, the single-anchor
distance and altitude measurements of the platform are
taken as dt1 = 5 m and at1 = 3 m with standard deviations
σd = 0.5 m and σa = 0.3 m, respectively. Following this, the
probability distributions p(dt1 |Ct1 ) and p(at1 |Ct1 ) are obtained
as illustrated in Fig. 4c and Fig. 4d, respectively. Note that the
single anchor is denoted as a red point in Fig. 4c.

Ultimately, combining both the motion and measurement
updates yields the resulting posterior probability distribution
p(Ct1 |ht1 , dt1 , at1 ). The platform’s position estimate Ĉt1 at the
current time instant t1 is obtained by maximum a posteriori
inference as illustrated in Fig. 4e. Note that the estimated
position is denoted as a green point in Fig. 4e.
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FIGURE 5. In the simulated scenario, a drone is assumed to be flying
within a predescribed flying path with grid cells which are used as the
hidden states of the dynamic naive Bayesian classifier.

B. SIMULATED SCENARIO FOR 3D POSITIONING
A scenario for a 3D positioning application in a structured
environment is simulated to evaluate the performance of
the developed positioning system. In the scenario, highly
accurate 3D trajectory ground truth data recorded by a precise
real-time kinematic (RTK) positioning system are borrowed
from another research work (data from the folder ‘‘dataset1’’
between 30th and 60th seconds in [36]) where a flying drone
is tracked by multiple cameras [37].

In the simulated scenario, the 3D environment of interest
has 50 m x 50 m x 12 m volume. The drone is assumed to be
flying within a predescribed flight path shown in Fig. 5, and
the grids on this flight path are used as the hidden states of
the DNBC.

Furthermore, it is assumed that the flying drone is outfitted
with two distinct sets of sensors that take measurements at
the same time instants tk . The first sensor set on the drone
includes ideal sensors providing noiseless measurements.
On the other hand, the second sensor set on the drone
includes nonideal sensors providing noisy heading, single-
anchor distance, and altitude measurements with standard
deviations σh = π/36 radian, σd = 0.1 m, and σa = 0.1 m,
respectively. The drone flies with changing speeds on its
trajectory, and the design parameter defining the maximum
speed that the drone can reach is chosen as smax = 4 m/s.
It is assumed that the measurements are taken in every 0.03 s
interval (that is, 1tk = 0.03 s) for all k , and the single anchor
is positioned at coordinates (xanchor , yanchor , zanchor ) =

(10, 10, 5).
The actual trajectory on which the drone flies (ground

truth data from [36]) and the positions estimated by the
developed positioning system via measurements acquired
from two different sensor sets are shown in Fig. 6. As antic-
ipated, position estimates based on ideal measurements
perfectly correspond to the actual trajectory. Conversely,
despite the sensors’ relatively high error rates, position
estimates derived from noisy measurements achieve errors

FIGURE 6. Simulation results in a 3D structured environment. It is
assumed that the drone is outfitted with two distinct sets of sensors that
provide ideal and noisy measurements at the same time instants.

FIGURE 7. Cumulative error distribution for simulation results in a 3D
structured environment.

lower than 3.16 m for 95% of the time with a mean
of 0.98 m. The function of cumulative error distribution of
simulation results in 3D structured environment is shown
in Fig. 7.

IV. REAL-TIME APPLICATION RESULTS
A 2D real-time outdoor application was conducted to verify
the effectiveness of the developed positioning system. The
real-time application took place in a constrained area on
The Ohio State University’s campus, as depicted in Fig.8.
To apply the developed system, first, a 2D map of the
area of interest was created as shown in Fig. 9 using a
local coordinate system and grid cells (10 cm distance
between each other). Then, a UWB module [38] was placed
in a position with known local coordinates (0.8,-21.5) as
the single anchor, and a pedestrian carried out a walking
experiment as shown in Fig. 10. The pedestrian was holding
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FIGURE 8. Real-time application took place in a constrained area on
The Ohio State University’s campus.

FIGURE 9. A 2D map of the area of interest was created using grid cells
and a local coordinate system.

a set of sensors shown in Fig. 11, including a UWB
module [38] and a triple-axismagnetometer [39] to collect the
measurements of the single-anchor distance and the heading,
respectively.

In the real-time application, the pedestrian started walking
from the starting point and went along the numbered green
lines from 1 to 7, respectively, in order to finish the walking
where it was started and to have an 8-shaped trajectory as
depicted in Fig. 12. The numbered green lines on the 8-
shaped trajectory were used as ground truth in the real-time
application.

FIGURE 10. The single anchor was placed in a position with known local
coordinates in the area of interest, and a pedestrian holding a sensor set
carried out walking experiment for the real-time application.

FIGURE 11. A sensor set containing a magnetometer and a UWB module
was held by the pedestrian.

The standard deviations for the measurements of
the heading and single-anchor distance were taken as
σh = π/12 radian and σd = 0.3 m, respectively. The
pedestrian walked on the 8-shaped trajectory featuring speed
changes, and the design parameter describing the maximum
speed of the pedestrian was chosen as smax = 1.5 m/s.
Real-time heading and single-anchor distance measurements
were synchronized and taken in every 0.5 s interval (that is,
1tk = 0.5 s) for all k .
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FIGURE 12. Real-time application results.

FIGURE 13. Cumulative error distribution for real-time application results.

Fig. 12 shows the positions estimated by the developed
positioning system via measurements coming from the
sensor set held by the pedestrian. The performance of the
developed positioning system was evaluated by calculating
the positioning errors which are the distances from the
position estimates to the related green line on the 8-
shaped trajectory. Since the sensor set was handheld, there
were several factors that introduced noise into sensor
measurements and thus had negative effect on the posi-
tioning performance (e.g., sensor orientation changes in
unpredictable ways due to pedestrian’s motion). Despite
these challenges, the real-time performance of the developed

system was with positioning errors lower than 0.7 m for 95%
of the time with a mean of 0.52 m, which could be
acceptable for the most real-time application scenarios in
civilian and military areas. The function of cumulative
error distribution of real-time application results is shown
in Fig. 13.

V. CONCLUSION AND FUTURE WORK
In this article, a positioning system that can be used
for 2D and 3D motion tracking has been developed.
The methodology of the developed positioning system has
been presented for 3D positioning using three types of
measurements: heading, single-anchor distance, and altitude.
However, for positioning applications that utilize 2D maps,
the presented methodology can be easily adapted to provide
a positioning solution using only two types of measurements:
heading and projected single-anchor distance onto 2D plane.
The developed system has originated from a dynamic naive
Bayesian classifier, which is an extension of hidden Markov
models, specifically designed for map matching.

The operational effectiveness of the developed position-
ing system has been demonstrated, showing promise for
reliable and cost-efficient positioning solutions in both
indoor and outdoor scenarios, particularly within constrained
2D or 3D environments. The potential benefits of apply-
ing the developed positioning system can be outlined as
follows:

• The developed positioning system employs joint prob-
ability distributions, making it highly adaptable for the
integration of diverse data types originating from various
sensor technologies.

• The developed positioning system is scalable, allowing
its utilization across multiple platforms simultaneously.

• The developed positioning system is extendable and
applicable in vast areas of interest by incorporating
multiple anchors.

• The developed positioning system leverages the head-
ing, single-anchor distance, and altitude measurements
of the platform that can be obtained from power- and
cost-effective sensors to estimate the platform’s current
position through a dynamic naive Bayesian classifier
map matching scheme. As a result, it is a size, weight,
and power-cost (SWaP-C) oriented positioning system.

Future research will focus on performance comparison
studies of the developed system with other SWaP-C oriented
positioning systems. Moreover, we plan to carry out addi-
tional real-time applications of the developed positioning
system in diverse usage scenarios within both 2D and 3D
environments, utilizing various sensor sets with differing
qualities.
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