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ABSTRACT Cellular automata (CA) are self-organizing lattices consisting of cell grids, and the state
of each cell can be updated according to the neighboring cell states. The updating rules depend on the
neighbors involved in updating a particular cell. In a two-dimensional CA (2DCA) structure, each cell has
nine neighbors, including the cell itself. The CA characteristics may change depending on the nature of
the operations and the set of neighbors used. Accordingly, researchers have used the 2DCA group rules
as a tool to model complex systems in various applications, including artificial intelligence, genomics,
computer architecture, graphics, image processing, engineering, and physics. However, nongroup 2DCA
rules contain a large number of rules, and the general behavior of all these rules has not yet been studied.
In this study, the behavior of 2DCA nongroup rules with null boundary conditions was investigated, and the
rules were classified into three categories based on their cycle length and depth. In addition, we applied these
classifications to propose a cellular automata-based pseudo-random number generator (PRNG). Statistical
tests were performed to validate the suitability of the nongroup CA rules for PRNGs.

INDEX TERMS Cellular automata, cellular automata classification, nongroup two-dimensional CA, random
number generation.

I. INTRODUCTION
Cellular automata (CA) are discrete, spatially structured
models that evolve over time through a series of discrete
steps, where each cell’s state is determined by a set of local
rules, showcasing emergent and often complex patterns [1].
Cellular refers to the separation of space into separate
portions, called cells, and an automaton is a machine
that conducts calculations. Examples include machines,
computer simulations, and mathematical abstraction. The
rules governing automata define how a system changes over
time. These rules specify how to determine the state of the
CA during the next time step, based on the present state.
Cellular automata (CAs) are composed of homogeneous
cell arrangements. The cell updates its state during several
discrete time steps according to the specific rules and prior
states of the immediate neighboring cells.

At the beginning of cellular automaton, it was simply a
one-dimensional array, and it was introduced in early 1950 by
Von Neumann and Stan Ulam as a model of self-reproducing
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biological systems. In 1966, Neumann presented it as a
formal model of self-replicating biological systems [2]. Von
Neumann’s fundamental goal was to apply axiomatic and
deductive analysis to the study of complex natural systems.

Recently, CAs have become a well-known area of research
and have been widely used by researchers in different
domains. Based on the initial state of a CA, it can be either
a group CA, meaning that the initial given state is restored,
or a nongroup CA, meaning that the initial given state is
not restored. CAs are used to model various systems in
physics, biology, engineering, and sociology because they
provide a simple means for a comprehensive mathematical
analysis [3]. In addition, CAs have been proposed for
complex systems, such as cryptosystems [4], pseudo-random
number generators [5], text compression [6], and image
processing [7].

The focus of the research is to develop the theoretical
concepts of Cellular automata, so that it can be further used as
a tool to simulate various scientific problems and experiments
since simple computational rules of 2D non-Group CA
can produce complex and unpredictable behavior. There
are many natural processes that can be understood through
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computational processes like Chaotic phenomenon, fractals,
and neural networks, rather than traditional mathematical
relations. And therefore, new computational methods are
needed to understand the complexity of the natural world. The
structure of the remaining content in this paper is outlined
as follows. Section II describes earlier studies contributed
by various researchers regarding the characterization and
applications of CAs. Section III presents the fundamentals of
2DCAs and the mathematical model for classifying nongroup
rules. Section IV presents the results of the classification
of the nongroup rules with the proposed 2DCA nongroup
algorithm. Section V discusses the applications of 2DCA
in the area of pseudo-random number generators (PRNGs)
and presents the results of two statistical tests. Section VI.
Conclusion of the paper. Section VII. Acknowledgments

II. LITERATURE REVIEW
Over the last 60 years, researchers have investigated CA rules,
behaviors, and properties to develop applications in various
fields. This section discusses the contributions of researchers
to cellular automata in various fields to CA.

Von Neumann described a two-dimensional automaton
as an endless array of homogeneous cells in which each
cell is linked to its four surrounding neighbors [8]. A two-
dimensional cellular automaton (2DCA) structure containing
nine cells at each step, including the cell itself, is called the
Moore neighborhood [9]. The updating of a cell includes cells
in all the directions. The most commonly used neighborhood
structures are the five-neighborhood and nine-neighborhood
structures. In the nine-neighborhood CA, there are 22

9
rules.

The ‘‘Game of Life’’ was proposed by Conway [10] in
1960 and is the most well-known CA model. The idea
was to study the macroscopic behavior of a population
using a simple set of rules [8]. Conway developed a virtual
mathematical machine featuring a two-dimensional infinite
array of cells, each in either a zero (dead) or a one (alive)
state and the update of the cell states is governed by two local
rules: survival and birth.

The 1980s was a remarkable time for CA, during which
Wolfram conducted many experiments to analyze CA growth
patterns [11]. His approach considers cellular automata as
models of complex systems, meaning that simple cellular
automata rules can lead to very complicated patterns. How-
ever, the most significant advantage is that their mathematical
simplicity can be extremely helpful in modeling systems.
A related phenomenon used in cellular automata evolution
is self-organization, rather than using systems of differential
equations. Using cellular automata helps reduce the entropy
states of random unordered configurations. The structure of
the elementary cellular automata rule space was investigated
in 1990. The total number of rule tables in the elementary
CA rule space is 256 [12]. The authors were concerned with
organizing 256 rules in the rule space and the probability of
two nearby rules having a likelihood behavior, particularly
focusing on the likelihood of neighboring rules exhibiting
analogous dynamical behavior. The structure is represented

by the original eight-dimensional rule space and four-
dimensional mean-field cluster space. They determined the
probabilities of connecting a rule to other intraclass rules
using interclass rules.

1992, an elegant tool was introduced by [13] for analyzing
various properties of hybrid linear cellular automates and
additive cellular automates. The aim of the elegant tool was
to achieve a suitable characterization of CAs for two-valued
logic circuits. For the sake of simplicity, they specified the
type of CA as finite CAs with two states per cell and
considered the 3-neighborhood CAs only.

Khan et al. [14] proposed a fixed positional weight CA
model in 1997 to understand the behavior of a vast number
of rules. It is a mathematical model for representing a 2D
uniformCA using a two-dimensional CAwith nine neighbors
and provides a number called the positional weight for each
cell in a grid. These numbers are 1, 2, 4, 8, 16, 32, 64,
128, and 256 in the clockwise direction, and are called
primary rules. According to Khan, the 2DCA with nine
neighbors has 512 uniform rules, meaning that the same rule
applies to all cells simultaneously. An application-specific
integrated circuit (ASIC) based on cellular automata for
date-authentication was proposed in 2001 [15]. The ASIC
is constructed based on the concepts and state transitions of
nongroup CAs.

In 2007, researchers employed cellular automata to
devise a computational simulation model that elucidated the
progression of Ductal Carcinoma In Situ (DCIS), a prevalent
type of breast cancer. This model harnessed a simplified
genetic regulatory network simulation to govern cell behavior
and anticipate the origins of cancer through mutable genes.
Their study delved into understanding how somatic muta-
tions contribute to the development of DCIS [16]. Using
computational simulations, a genetic model based on cellular
automata (GCA) provided related mutable genes to model
how somatic mutations lead to DCIS.

Researchers are currently focusing on characterizing
2DCA with multiple single-length cycle attractors to obtain
cost-effective solutions in real-life applications. The cycle
length provides an interesting classification for understanding
the behavior of 2DCA uniform group rules with null
boundary conditions based on the characteristic matrix.
Khan [17] classified large 2DCA sets into groups based on
a T matrix. In 2012, Choudhury et al. [18] focused on 2DCA
to model wireless sensor networks (WSNs). They used CA
algorithms with radius-of-2 neighborhoods to enhance the
coverage and lifetime of a WSN.

In 2019, researchers provided a new CA classifica-
tion based on the cycle length [19]. They worked on
two-dimensional CA group rules that employ uniform XOR
rules only and found that the CA cycle lengths rely on
the number of columns and/or rows. Their experiment was
limited to 65 group rules with null boundary conditions,
and they classified 65 2DCA rules as group rules into five
classes. However, no study has examined the classification
of nongroup 2DCA rules, except a couple of rules in [21]
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this study focused on classifying nongroup uniform rules with
periodic boundary conditions only.

III. FUNDAMENTALS OF 2DCA
The 2DCA is a parallel processing machine that com-
prises many cell-holding values (called states) and updating
rules. The cells were arranged in an m×n array (m rows
×ncolumns). The state of CAs can be represented by anm×n
binary matrix. During their evolution, a cell within a CA
modifies its state based on both its present state and the states
of its eight neighboring cells. For precision in state updating,
a cell follows a set of rules known as the next state rules, often
called local rules, whose arguments are the present states of
the cell’s neighbors [20]. The next state, X, of the (i, j)th cell
can be represented mathematically as

Xij (t + 1) = f

X(i−1,j−1) (t) , X(i−1,j) (t) , X(i−1,j+1) (t) ,

X(i,j−1) (t) , X(i,j) (t) , X(i,j+1) (t) ,

X(i+1,j−1) (t) , X(i+1,j) (t) , X(i+1,j+1) (t)


(1)

The Boolean function for the nine variables is represented
as f . To indicate the 2DCA transition rule, Khan [17]
proposed a specific rule convention, as shown in Fig.1.

FIGURE 1. Khan model.

If the central cell is considered to be the current cell, then
all other cells around it are considered to be its eight nearest
neighbors. The numbers in the model signify the rule number
associated with the neighbor of the current cell. For instance,
if the next state of the current cell depends on its present state,
it is called Rule 1. If the next state of the current cell depends
on its right neighbor’s state, it is called Rule 2. Similarly,
if the next state of the current cell depends on the state of
its top–right neighbor, it is called rule 256, and this pattern
continues accordingly. However, if the next state of the cell is
influenced by multiple cells, by convention, the rule number
is determined by summing the numerical representations of
the respective neighbors. For instance, if the subsequent state
relies on the present state of the cell (cell in the center), the
right neighbor, and the left neighbor, the rule is computed as
1+2+32, resulting in 35 rules.

Further, a rule is said to be a group rule if the transition
from one state to another returns to the initial state after ‘L’
steps, called the cycle length. In this case, L can take any
value between 1 m and 2m×n for a 2DCA with m rows and
n columns. However, if no initial state is returned to, the rule
is considered a nongroup rule. Thus, the states are not in a

single cycle. In [21], it was reported that nongroup CA can
exhibit three different behavior types:

First type: Irrespective of the number of rows and columns
of an m×n CA, the final state of the CA containing all zero
elements is called the graveyard state.

Second type: Irrespective of the number of rows and
columns of an m×n CA, certain states lead to a cycle.

Third type: States lie in a cycle for certain rules with a
particular set of rows and columns. This class of nongroup
CAs is very exciting because they behave like group rules for
a certain number of rows and columns.

This type of 2DCA categorization is in vogue because
researchers do not know which rules lead to graveyard states,
which leads to a particular cycle. Accordingly, developingCA
applications becomes difficult without fully understanding
the rule behavior. There are 446 nongroup uniform rules,
and this study aims to categorize the behavior of this vast
number of rules and classify them into common behaviors
or conditions. The classification of these rules is discussed in
the next section.

IV. CLASSIFICATION OF NONGROUP RULES
Experiments were conducted to classify 2DCA nongroup
rules. The 2DCA structures were randomly selected with
seeds having a value of either 0 or 1. The CA sizes,
also known as matrices for the experiments, were selected
with dimensions (m×n) ∈ {1, 2, 3, . . . ..256}. All nongroup
uniform rules [6] were applied to these various 2DCA
structures, leading to the separation of nongroup CAs into
the three classes described above. The experiments were
performed with Anaconda Navigator as a desktop graphical
user interface (GUI) using Python.

A. CLASSIFICATION ALGORITHM OF THE NONGROUP
RULES
The classification algorithm is essentially a cellular automa-
ton, where each cell in the matrix evolves according to
a set of rules. These rules are based on the states of the
neighboring cells. To classify the 2DCA nongroup rules, the
proposed algorithm determines whether the cycle exists or
not and determines the index of the cycle with which matrix
it exists. First, the algorithm begins by taking the number
of the rows (n) and the columns (m), The values should be
integers and in the range of 1 to 256. Next, an empty list
for the matrix is initialized to store the generated matrix.
A nested loop populates the matrix with random values (0s
and 1s). Next, define the cell positions for the eight neighbors
surrounding a cell in the matrix. Each input as a nongroup
rule is subsequently converted to binary representation. A list
is created to store each iteration of the matrix.

The main loop is executed until a termination condition
is met. A new matrix is initialized within each iteration to
represent the next matrix state. A bitwise XOR operation is
performed between the current cell and its relative neighbor,
and all the boundaries of the matrix are treated as 0s.

The algorithm checks: if the new matrix is entirely
composed of 0s, it declares that the matrix has no cycle, and
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Algorithm 1 2DCA Nongroup Rules Algorith
Input: m, n, r
Output: It forms a cycle, or it does not form a cycle
Initialize: matrix0← 0s and 1s
Print (matrix0)
cell pos← [(0, 0), (0, 1), (1, 1), (1, 0), (1, −1), (0, −1),
(−1, −1), (−1, 0), (−1, +1)]
rule←

⌊
log2(r)

⌋
← r
rules← [
while True do

rule←
⌊
log2(R)

⌋
, Calculate next rule r

rules.append (rule)
R← R− 2rule

if R = 0 then
end if

end while
all matrix← [Copy_Matrix(matrix)]
matrix count← 1
while True do

new matrix← Initialize empty matrix
for k in Range (Length(rules)) do

Nrule← rules[k]
for i in Range(n) do

for j in Range(m) do
if is valid cell position (i, j, n, m, cell pos
[Nrule]) then

if k > 0 then
new mat[i][j]← new mat[i][j] ⊕
matrix [i + cell pos [Nrule][0]][j
+ cell pos[Nrule][1]

else
new mat[i][j]← matrix [i + cell
pos [Nrule][0]][j + cell
pos[Nrule][1]

end if
else

if k = 0 then
new matrix[i][j]← 0

end if
end if

end for
end for

end for
flag0← Check zero matrix (new matrix)
if flag0 then

Print (No cycle)
end if
flagC , cycle num← Check Cycle (all matrix, new
matrix)
if flagC then

Print (Cycle found in matrix No.)
end if
all matrix.append(Copy_Matrix(new matrix))
matrix← Copy_Matrix (new matrix)

end while

ends the loop. If a match is found with the previous matrices,
it declares that the matrix has a cycle and the index of the
occurrence of the cycle then ends the loop.

If neither all the values are 0s nor the cycle is detected, the
new matrix is added to the list of the matrices, replacing the
old matrix, and proceeds to the next iteration. The process
continues until the termination condition is met.

The 2DCA Nongroup Rules algorithm process is shown
in Algorithm 1. The list of symbols used in Algorithm 1 are
summarized in Table 1.

TABLE 1. Reference table.

B. NONGROUP RULES CLASS 1
Definition: Irrespective of the number of rows and columns
(m×n) of an initial 2DCA, the final state of the CA with all
zero elements is called the graveyard state, as depicted in
Fig.2.

FIGURE 2. Nongroup class one.

Proposition 1: The following rule numbers are class
1 nongroup 2DCA rules with null boundary conditions: 2, 4,
6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 36, 40, 44,
48, 52, 56, 60, 64, 66, 72, 80, 88, 96, 104, 112, 120, 128, 130,
132, 134, 144, 160, 176, 192, 194, 208, 224, 240, 256, 258,
260, 262, 264, 266, 268, 270, 288, 320, 322, 352, 384, 386,
388, 390, 416, 448, 450, 480.

For example, Rule 4, in which the next cell state
depends on the present state of the right lower corner cell,
is mathematically represented as[

Xi,j
]
t+1 =

[
Xi+1,j+1

]
t (2)

This result leads to a zero-graveyard state for a matrix size
3× 3, as shown in Fig.3.

Rule 6 = Rule 2 + Rule 4, in which the next cell state
depends on the present states of the right cell and the right
lower corner cell, is mathematically represented as[

Xi,j
]
t+1 =

[
Xi,j+1 ⊕ Xi+1,j+1

]
t (3)

This result also leads to a zero graveyard for a matrix size
3× 3, as shown in Fig.4.
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FIGURE 3. Nongroup class one: rule 4 leads to a zero graveyard.

FIGURE 4. Nongroup class one: rule 6 leads to a zero graveyard.

C. NONGROUP RULES CLASS 2
Definition:Given a particular set of rows and columns (m×n)
of an initial 2DCA, the states lie on a cycle, as shown in Fig.5.
Proposition 2: The following rule numbers are class

2 nongroup 2DCA rules with null boundary conditions: 34,
35, 38, 39, 42, 43, 47, 50, 51, 54, 55, 58, 59, 62, 63, 69, 71,
74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95,
98, 99, 101, 102, 103, 106, 107, 109, 110, 111, 114, 115, 117,
118, 119, 122, 123, 125, 126, 127, 136, 137, 138, 139, 140,
141, 142, 143, 146, 147, 148, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 168,
169, 170, 171, 172, 173, 174, 175, 178, 179, 180, 181, 182,
183, 184, 185, 186, 187, 188, 189, 190, 191, 197, 199, 200,
201, 202, 203, 204, 205, 206, 207, 210, 211, 212, 213, 214,
215, 216, 217, 218, 219, 220, 221, 222, 223, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 242,
243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
255, 273, 275, 276, 277, 279, 281, 283, 284, 285, 287, 290,
291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301,302,
303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315,
316, 317, 318, 319, 325, 327, 328, 329, 330, 331, 332, 333,
334, 335, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346,
347, 348, 349, 350, 351, 354, 355, 356, 357, 358, 359, 360,
361, 362, 363, 364, 365, 366, 367, 369, 370, 371, 372, 373,
374, 375, 376, 377, 378,379, 380, 381, 382, 383, 392, 393,
394, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 406,
407, 408, 409, 410, 411, 412, 413, 414, 415, 418, 419, 420,
421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 433,
434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445,
446, 447, 452, 455, 456, 457, 458, 459, 460, 461, 462, 463,
464, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477,
478, 479, 482, 483, 484, 486, 485, 487, 488, 489, 490, 491,
492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504,
505, 506, 507, 508, 509, 510, 511.

For example, for Rule 98 = Rule 2 + Rule 32 + Rule 64,
is mathematically represented as

[
Xi,j

]
t+1 =

[
Xi,j+1⊕X i,j−1 ⊕ Xi−1,j−1

]
t (4)

FIGURE 5. Nongroup class two.

The result leads to the initial matrix for a matrix size of 2× 4,
as shown in Fig.6.

FIGURE 6. Nongroup class two: rule 98 leads to the initial matrix.

Another example is rule 141 = Rule 1 + Rule 4 + Rule 8
+ Rule 128, is mathematically represented as[

Xi,j
]
t+1 =

[
Xi,j⊕X i+1,j+1 ⊕ Xi+1,j⊕X i−1,j

]
t (5)

in which the result leads to the initial matrix for a matrix
size 3× 6, as shown in Fig.7.

FIGURE 7. Nongroup class two: rule 141 leads to the initial matrix.

D. NONGROUP RULES CLASS 3
Definition: Irrespective of the number of rows and columns
(m×n) of 2DCA, some states lead to a cycle. This implies that
some states have two predecessors, as shown in Fig.8.
Proposition 3: The following rule numbers are class

3 nongroup 2DCA rules with null boundary conditions: 68,
70, 76, 100, 108, 116, 124, 196, 198, 272, 274, 278, 280, 282,
286, 304, 324, 326, 336, 368, 400, 432, 453, 454, 465, 466,
496.

For example, for class three is Rule 465 = Rule 1 +
Rule 4 + Rule 64 + Rule 128 + Rule 256, mathematically
represented as:[
Xi,j

]
t+1 =

[
Xi,j

]
t ⊕

[
Xi+1,j+1

]
t ⊕

[
Xi−1,j−1

]
t ⊕

[
Xi−1,j

]
t

⊕
[
Xi−1,j+1

]
t (6)
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FIGURE 8. Nongroup class three.

When the result leads into zero graveyard for matrix size
2× 4, as shown in Fig.9.

FIGURE 9. Nongroup class three: rule 465 leads to a zero graveyard.

When the result leads to a cycle with a matrix size greater
than 0 for a matrix size 3× 4, as shown in Fig.10.

FIGURE 10. Nongroup class three: rule 465 leads to a cycle found with a
matrix greater than 0.

The following two lemmas prove class 2 rules namely
34 and 136 (as an example). These rules can either form a
cycle or lead to a state with all zero elements. To prove the
lemmas T Matrices as mentioned in [20].
Lemma 1: In a 2D CA, with rule 34 = Rule 2 + Rule 32,

the next state transition can be represented as

[
Xi,j

]
t+1 =

[
Xi,j+1

]
t ⊕

[
XXi,j−1

]
t

(7)

If the number of columns are even, the CA remains in a
cycle, and if number of columns are odd, the CA leads to all
zero state.

Proof: The characterization matrix [20] of Rule 34 is given
by

[T 34] =


Sn×n 0 0
0 Sn×n 0
0 0 Sn×n

· · ·

0
0
0

...
. . .

...

0 0 0 · · · Sn×n

 (8)

or in Kronecker product form can be written as

T34 = (Im)⊗(Sn) (9)

Therefore,

rank of T34 = rank of (Im) .rank of (Sn)

or ρT34 = ρ (Im) .ρ (Sn)

= m× ρ(Sn)

sinceρ (Sn) =
{
n if n is even
n−1 if n is odd

orρ (T34) =
{
mn if n is even
m (n− 1) if n is odd

hence, dimension of kernel of (T34)

=

{
0 if n is even
m if n is odd

(10)

This result implies that if n is taken even, the number of
predecessors of a state is 2d = 20 = 1 (where d is the
dimension of the kernel), hence lies on a cycle.
Lemma 2: In a 2D CA, with rule 136= Rule 8+Rule 128,

the next state transition can be represented as[
Xi,j

]
t+1 =

[
Xi+1,j

]
t ⊕

[
Xi−1,j

]
t (11)

If the number of rows are even, the CA remains in a cycle,
and if number of rows are odd, the CA leads to all zero state.

Proof: The characterization matrix [20] of Rule 136 is
given by

[T 136] =


0 (I )n×n 0

(I )n×n 0 (I )n×n
0 (I )n×n 0

· · ·

0
0
0

...
. . .

...

0 0 0 · · · 0

 (12)

or in Kronecker product form

T136 = (Sm)⊗ (In) (13)

Therefore,

rank of T136 = rank of (Sm) .rank of (In)

or ρT136 = ρ (Sm) .ρ (In)

= ρ (Sm)× n

since ρ (Sm) =

{
m if m is even
m− 1 if m is odd

or ρ (T136) =
{
mnifmiseven
(m− 1) nifmisodd

hence, dimension of kernel of (T136)
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=

{
0 if m is even
n if m is odd

(14)

This result implies that if m is taken even, the number of
predecessors of a state is 2d = 20 = 1 (where d is the
dimension of the kernel), hence lies on a cycle.

V. PSEUDO-RANDOM NUMBER GENERATOR BASED ON
TWO-DIMENSIONAL CELLULAR AUTOMATA
This section highlights the application of 2DCAs to
pseudo-random number generators (PRNGs). Because 2DCA
has more neighboring cells than 1DCA, there are more
possible states, and therefore, better randomness properties.
PRNGs are algorithms that use statistical methods to generate
random numbers [22]. The randomness properties include the
prediction of bits in a random number. PRNGs are primarily
used in cryptography, such as key generation in encryption
and decryption algorithms [23]. Based on the characterization
of the nongroup CA, a sequence of random numbers (0s
and 1s) could be generated. However, it is obvious from the
classification of non-group rules, that Class 1, cannot be used
to generate Pseudorandom number, since the final state of the
CA will be all zero’s and accordingly, the patterns cannot
be repeated. The following rules 34, 35, 188, 191, 290, 70,
108, 124, 198, 286, 69, 85, 117, 125, and 197, from Class
2 and Class 3 were used to generate Pseudorandom Numbers
with different matrix sizes. The nongroup rules were selected
randomly and tested for random number generation.

Several properties have been proposed to validate random-
ness. Two basic statistical tests were conducted in this study.
These tests are commonly used to determine whether a binary
sequence has certain features that characterize a truly random
sequence.

A. FREQUENCY TEST
A frequency test is a statistical test that can assess the
randomness and security of stream ciphers based on 2D
cellular automata [24]. The frequency test for 2DCAs
involves analyzing the density of 1s or 0s in the matrix
over time. The idea is that a random distribution of values
should have roughly equal densities of 1s and 0s, whereas
non-random behavior (such as predictable repeating patterns)
can skew the densities. The statistic used is

x1 =
(n0 − n1)2

n
(15)

Let n0 and n1 denote the number of 1s and 0s in sequence
s. This statistic follows ax2 distribution with one degree of
freedom [24].

B. POKER TEST
The poker test is a statistical test used to analyze the
randomness of a 2DCA [24]. In this test, a grid of cells was
randomly initialized with two possible states: 0s and 1s. The
automaton is then executed for a specified number of steps,
and the state of each cell is observed at the end of each step.
The poker test involves obtaining a sample of cells from the

grid and converting their states into binary numbers. These
binary numbers are then grouped into sets. Each set was
compared with a reference table of possible poker hands,
and the frequency of each poker hand was recorded. This
process was repeated for multiple samples, and the results
were tabulated.

TABLE 2. Frequency and poker test results.

The poker test aims to determine whether the distribution
of poker hands in the sample is statistically consistent with a
random distribution. If so, the automaton is said to produce
‘‘random-like’’ behavior. The poker test counts the number
of times each potential subsequence of length m occurs
approximately the same number of times in sequence s such
that ⌊n/m⌋≥ 5.(2m). Defining k = ⌊n/m⌋, sequence s is
divided into k non-overlapping parts of lengthm. Let ni be the
number of occurrences of the ith type of sequence of length
m,where 1 ≤i≤ 2m. The statistic used is

x3 =
2m

k

(∑2m

i=1
n2i

)
− k (16)

and roughly follows a x2 distribution with (2m−1) degrees of
freedom [25].

Table 2 presents the results of both tests against various
2DCA nongroup rules. A sequence of random numbers (0s
and 1s) was generated with different matrix sizes using rules
34, 35, 188, 191, 290, 70, 108, 124, 198, 286, 69, 85, 117,
125, and 197.

VI. CONCLUSION
This paper presents experimental results investigating
two-dimensional cellular automata (2DCA) nongroup rules
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leading to the discovery of new usages and developments in
CA. In addition, 2DCA nongroup rules with null boundary
conditions have been classified into three types with distinct
behaviors. This classification is expected to be important
for understanding and developing new 2DCA application
areas for nongroup rules. This paper also demonstrates
and validates the applicability of nongroup 2DCAs to
pseudo-random number generators (PRNGs).

Throughout our studies and experiments of 2DCA non-
group rules we found that it generates behaviors that are
difficult to interpret which limit their effectiveness in pattern
recognition applications compared to group CA rules. Also,
some of 2DCA non-group rules may lead to computationally
complex behavior, making it challenging to analyze or
simulate their dynamics efficiently.

The future works will include developing a general
mathematical framework to calculate the cycle lengths of all
the non-group CA rules and explore new application areas in
the fields of artificial intelligence and reinforcement learning.
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