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ABSTRACT This article explores the vital role of distributed multi-robot systems (DMRS) in applications
such as search and rescue, surveillance, and military operations. In particular, we focus on developing
a method for multi-agent search using a quadcopter unmanned aerial vehicle (UAV) equipped with a
downward-facing camera. Unlike existing studies, our model includes a unique model for searching for the
best camera and achieving maximum performance in the scene. We introduce an uncertainty distribution that
reflects the lack of information to capture the uncertainty in the search space. Using the concept of the hub
Voronoi configuration, our approach optimizes the deployment of the quadcopter to reduce confusion. The
distribution and detection process continues until the average uncertainty reaches a threshold, which means
the detection target is successful and reliable. We present an in-depth study of the different parameters in
the search for a good camera and propose a test setup for the model’s performance. The multiple quadcopter
search strategy was implemented and simulated using ROS/Gazebo and Matlab allowed its performance on
various parameters to be verified in real experiments. Simulation results demonstrate the effectiveness of this
strategy and provide insight into the impact of the study on aspects such as camera performance and number
of detection quadcopters. The simulation platform we have created is an important tool for further testing and
benchmarking optimization in real life. This research helps to improve the understanding of multi-sensory
search strategies, especially when the sensor search efficiency is unequal.

INDEX TERMS Cooperative search, multi-robot search, quadcopter, unmanned aerial vehicles, Voronoi
partitioning.

I. INTRODUCTION

The exploration of environments to locate targets of interest,
particularly in disaster-stricken areas, presents a challenging
yet crucial problem with practical implications. Early con-
tributions in the literature ([1], [2], [3]) addressing target
search in unknown environments often made assumptions
under certain restrictive conditions. Primarily theoretical
and centred around a single agent searching for static or
moving targets, these seminal works lay the groundwork for
subsequent investigations[4].
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This research aims to enhance the efficiency of target
search tasks by introducing collaboration among multiple
agents. Effective coordination becomes crucial in scenarios
where various searchers operate simultaneously. Incorpo-
rating multiple agents offers advantages beyond expedited
mission times, including resilience to individual robot
failures due to their collaborative nature. Additionally, the
simplified design and lower cost of individual robots make
them valuable assets in challenging conditions, such as
military operations and natural disasters. This study addresses
challenges in disaster response and military applications, con-
centrating on two critical objectives: searching for survivors
in areas affected by natural calamities and detecting mines
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and enemy targets. Unmanned vehicles, notably Unmanned
Aerial Vehicles (UAVs) and Unmanned Ground Vehicles
(UGVs) equipped with advanced sensors, play a pivotal role
in achieving these objectives. Their deployment enhances the
effectiveness of collaborative efforts in disaster-stricken or
hostile environments.

In MAS/MRS, individual agents’ coordinated actions
influence each other over an adjacency graph fostering
emergent collective behaviours. The system’s controller
can adopt centralized, decentralised, or distributed control
architectures. In a centralized model, a central controller
oversees all agents, posing a vulnerability to its failure.
Conversely, a distributed architecture assigns each agent
its controller, ensuring robustness but introducing com-
munication overhead. Decentralized control operates with
independent agent controllers, eliminating communication
dependency but limiting interaction consideration. Central-
ized and distributed architectures require communication at
different levels, susceptible to delays, while decentralized
architecture avoids inter-agent controller communication.

In a series of papers, various novel frameworks and
methodologies for optimizing the performance of unmanned
aerial vehicles (UAVs) in diverse applications are intro-
duced. In [5], a framework for modeling and analyzing
multi-UAV persistent search and retrieval tasks in stochastic
environments is presented, with a case study on park
cleanup demonstrating practical applications. Meanwhile,
[6] proposes a coordinated-search planning method for
UAV-ground vehicle teams, specifically tailored for wilder-
ness search and rescue missions, showcasing improved
target detection rates and reduced search times. Additionally,
[7] addresses optimal coordination of fixed-wing UAVs
for vision-based target tracking, focusing on minimizing
geolocation error covariance using stochastic fourth-order
models. Furthermore, [8] presents a distributed model
predictive control scheme for quadcopter formation con-
trol, integrating collision avoidance and communication
topology maintenance, validated through real quadcopter
experiments. Lastly, [9] introduces an artificial potential
field-A* algorithm for dual-quadrotor cooperative transport
systems’ path planning, significantly enhancing efficiency
and safety compared to traditional methods. A comprehensive
review of reinforcement learning-based control systems for
swarm robotics is provided in [10], offering insights into their
applications, algorithms, challenges, and future directions.
In [11], a novel distributed real-time search path planning
method was introduced for enhancing the efficiency of
multi-UAV cooperative area search operations. By integrating
distributed model predictive control (DMPC) framework
and employing a distributed stochastic algorithm based
on enhanced genetic algorithm (DSA-EGA), the proposed
approach effectively addressed local optima issues and
outperformed state-of-the-art algorithms in solution quality.
This study showcased improvements of 7.7 pec in search
efficiency with the established DCOP model and at least
4.3 percentage efficiency enhancement with DSA-EGA,
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indicating high scalability and promising performance in
cooperative area search scenarios. Similarly, in [12], a novel
approach leveraging Glasius bio-inspired neural network
(GBNN) and distributed model predictive control method was
presented for addressing constraints in multirobot systems
performing region coverage search tasks. Experimental vali-
dation confirmed the effectiveness of the proposed approach,
showcasing superior performance compared to established
algorithms in multi robot region coverage search tasks. Fur-
thermore, [13] addressed limitations in existing algorithms
for Multi-Agent Active Search (MAAS) by proposing a novel
reinforcement learning-based approach. By framing MAAS
as a reinforcement learning problem in the belief space
using a Poisson Point Process formulation, the proposed
method exhibited robustness to test-time miscommunication,
offering promising advancements in MAAS. These studies
collectively contribute to advancing the capabilities of search
and exploration tasks in autonomous systems, addressing
critical challenges and opening new avenues for research and
development in the field. This paper presents a novel method
for multi-agent search utilizing quadcopter unmanned aerial
vehicles (UAVs) equipped with downward-facing cameras,
crucial for applications like search and rescue. The approach
incorporates an uncertainty distribution to capture the
uncertainty in the search space and optimizes quadcopter
deployment using the hub Voronoi configuration to reduce
confusion. Through simulation and real experiments, the
effectiveness of the strategy is demonstrated, providing
insights into improving multi-sensory search strategies,
particularly when sensor search efficiency varies.

The current state of research in multi-agent systems
(MAS) and multi-robot systems (MRS) for target search
and exploration tasks leaves several important gaps that
necessitate further investigation. Firstly, there is a noticeable
absence of comprehensive studies focusing specifically on
disaster response and military applications, despite the signif-
icant advancements made in other domains. While existing
literature has explored theoretical models or applications
in controlled environments, there is limited emphasis on
real-world scenarios such as disaster-stricken areas or hostile
environments. Consequently, there is a pressing need for
research that addresses the unique challenges inherent in
these domains and develops practical solutions for efficient
target search and detection. Moreover, many existing studies
overlook the inherent uncertainty in target search tasks,
particularly in dynamic and unstructured environments.
While some research incorporates uncertainty models, they
often lack sophistication or adequately account for real-
world uncertainties. This gap highlights the necessity for
advanced methodologies that effectively model and address
uncertainty in target search tasks, thereby enhancing the
robustness and reliability of MAS/MRS systems in practical
applications. Furthermore, the potential of downward-facing
cameras for target detection and localization in MAS/MRS
systems remains relatively underexplored. Despite offer-
ing unique advantages such as wide-area coverage and
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real-time monitoring, downward-facing cameras have not
been extensively utilized in multi-agent search scenarios.
Thus, there is an opportunity to investigate their efficacy
and develop optimized strategies for their deployment in
MAS/MRS systems to enhance target search efficiency.
Additionally, while several studies propose novel control
and optimization techniques for MAS/MRS systems, their
integration into practical applications for target search tasks
is often limited. Many existing approaches remain theoretical
or lack validation through real-world experiments, which
hinders their applicability and scalability. Consequently,
there is a need for research that effectively integrates
novel control and optimization techniques into MAS/MRS
systems for target search and exploration tasks, ensuring their
effectiveness and practical utility in diverse environments.

The research described in this paper contributes signifi-
cantly to addressing several key research gaps in the field
of distributed multi-robot systems (DMRS) for target search
and exploration tasks. By focusing on practical applications
such as search and rescue, surveillance, and military
operations, the study targets areas with significant real-
world implications, providing solutions tailored for disaster
response and military applications. Unlike many existing
studies, the research incorporates a unique uncertainty
distribution model to capture the inherent uncertainty in the
search space, enhancing the robustness and reliability of
DMRS systems in dynamic and unstructured environments.
Furthermore, the proposed approach optimizes quadcopter
deployment using the hub Voronoi configuration concept,
reducing confusion and maximizing performance in the
scene, thereby improving search efficiency in DMRS
systems. The study also implements and simulates the
multiple quadcopter search strategy using ROS/Gazebo and
Matlab, enabling real-world validation and performance
analysis. Through simulation results demonstrating the
effectiveness of the proposed strategy and in-depth analysis
of different parameters, such as camera performance and the
number of detection quadcopters, the research enhances the
understanding of multi-sensory search strategies, especially
in scenarios with unequal sensor search efficiency. Overall,
by addressing these research gaps, the described research
advances the capabilities of DMRS systems for target search
and exploration tasks, facilitating their practical application
in various domains and improving their effectiveness,
reliability, and adaptability in real-world environments.

The subsequent sections of the paper are structured as
follows. Section II offers an extensive review of relevant
literature. Section III delineates the problem statement, while
the proposed methodology is expounded upon in Section I'V.
Section V presents the simulation and experimental results,
and Section VI provides the concluding remarks.

Il. RELATED LITERATURE

Researchers from various fields have been drawn to the
intriguing, practically significant, and demanding task of
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exploring disaster-Taskcken areas to locate targets of interest,
such as survivors. Faiyaz et al. [14] have given a thor-
ough literature survey of the past decade’s developments
in commercially available UAVs, covering aspects like
geometric structure, flying mechanisms, sensing capabili-
ties, and applications such as path planning and artificial
intelligence. Another informative review on UAV path plan-
ning, emphasising various optimization techniques, is given
in [15]. Search theory, motion planning, optimisation, sensor
technology, sensor fusion, and unmanned aerial, ground,
and surface vehicle technology are just a few of the fields
that have contributed to this area. Exploring the efficacy
of numerous cooperative agents in search missions has
become increasingly important as technology has evolved,
especially in autonomous vehicles, communication, sensor
technology, and optimisation theory. Additional difficulties
in coordinating many agents go beyond what arises with a
single agent. Scholars have used various methods to tackle the
multi-quadcopter search problem discussed in this research
article. As evidenced by the works of [16], [17], [18], [19],
and [20], some have made use of predefined lanes. This
strategy aims to make path planning for the agents during
the search more efficient. In [21], the authors introduce
MRS Drone, a modular autonomous Unmanned Aerial
Vehicle (UAV) platform designed for seamless real-world
deployment of multiple aerial robots within a Multi-robot
System (MRS), showcasing its unique modularity, ease
of assembly and modification, and practical applicability
through diverse real-world scenarios. Cooperative coverage
control for a multi-UAV system is studied in [22], focusing
on rapid assessment of earthquake-affected areas, where
fixed-wing UAVs conduct an initial general scan followed
by quadcopters for detailed information extraction and
victim localization, demonstrating the effectiveness of col-
laborative distributed control in minimizing environmental
uncertainty and achieving maximum coverage efficiency.
Yuanda et al. [23] study introduces a deep learning-based
visual detection architecture for extracting positional infor-
mation from images captured by a cooperative unmanned
surface vehicle (USV) and unmanned aerial vehicle (UAV)
system in marine search and rescue operations. A rein-
forcement learning-based USV control strategy is proposed,
showcasing improved motion control policies capable of
effectively navigating through wave disturbances, which are
also presented and tested. Yuanda et al. [23] introduced
a deep learning-based visual detection architecture for
extracting positional information from images captured
by a cooperative unmanned surface vehicle (USV) and
unmanned aerial vehicle (UAV) system in marine search
and rescue operations. A reinforcement learning-based multi-
strategy cuckoo search algorithm for UAV path planning
is presented in [24]. It considered the search problem as
an optimization problem. In contrast, this paper implements
centroidal Voronoi partitioning in which each centroidal
configuration can be viewed as an optimal solution to the
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task allocation problem. In [25], the authors presented a
distributed cooperative search method for multi-UAV with
unstable communications based on ant colony optimization.
In [26], the authors addressed the problem of passive target
localization using mobile unmanned aerial vehicles (UAVs),
introducing a novel time-difference-of-arrival (TDOA) model
for target localization and establishing a performance limit
inequality between its Cramer-Rao lower bound (CRLB)
and the mean-squared error (MSE). As already stated, many
bio-inspired algorithms are being developed in UAV motion
planning. In [27], the authors introduced the Motion-Encoded
Genetic Algorithm with Multiple Parents (MEGA-MPC)
using multiple Unmanned Aerial Vehicles (UAVs), employ-
ing Bayesian theory to formulate target tracking as an
optimization task with the detection probability as the objec-
tive function, MEGA-MPC utilizes parallel computations and
enables UAV communication. The UAV constraints, such
as short battery life and moderate computational capability,
are incorporated in developing an edge computing-enabled
multi-UAV cooperative search mechanism in [28]. A multi-
agent deep reinforcement learning (MADRL) method for
collaborative target search by multiple unmanned aerial
vehicles (UAVs) with limited sensing and communication
capabilities in dynamic environments is given in [29]. The
study also proposes a digital twin (DT)-driven training
framework, “centralized training, decentralized execution,
and continuous evolution” (CTDECE), for superior search
and coverage rate. An enhanced image processing tech-
nique in which a Temporal Contextual Saliency (TeCS),
leveraging visual saliency and incorporating a convolutional
Long Short-Term Memory (LSTM) layer to analyze UAV
video automatically is developed in [30] which aims at
detecting anomalies and expedite the search and rescue
response by efficiently processing large amounts of data.
A predictive framework for multi-UAV teams, focusing on
real scenarios of aerial wildfire monitoring, is presented
in [31]. The methodology permits the UAVs to infer latent
fire propagation dynamics and derive analytical temporal and
tracking-error bounds.

In [32], [33], [34], and [35] have all used dynamic pro-
gramming to optimise path planning in gridded landscapes,
guaranteeing methodical exploration for improved search
performance. To enhance cooperative searching, learning
methods—as applied by [36], [37], [38], and [39] involve
modifying strategies in light of prior experiences and
results. Researchers such as [40], [41], [42], [43], and [44]
have addressed the coordination among exploring robots
through activities centred on the game, graph, and team
theory concepts. The goal of search theoretic procedures,
as demonstrated by the works of [44] and [45], is to maximise
search efficiency and strategies. The likelihood of target
identification and sensor fusion are handled by Bayesian
techniques, as demonstrated in works by [46], [47], [48],
[49], and [50]. To further optimise coverage and efficiency
in the search mission, the notion of formation flying, first
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presented by [19], [51], and [52], change the search technique
from a single search agent sweeping strategy to a multi-
agent scenario. In [53], the authors introduce a collaborative
air-ground team of autonomous vehicles for outdoor explo-
ration, employing a custom multi-rotor with stereo cameras
to capture imagery and construct a height map in real time.
The proposed online exploration algorithm, running onboard
the UAV’s Nvidia TX2 GPU, autonomously guides the aerial
vehicle to map unexplored areas and directs a Clearpath
Robotics Jackal ground vehicle towards user-defined goals.

The type of agent determines its mobility; for example,
unmanned aerial vehicles (UAVs) with fixed wings or rotors
or ground vehicles with differential wheels or skid steering.
Conversely, a quadcopter is not limited by a fixed-wing
UAV’s minimum turning radius. Because of this, the path
planning method must consider the particular needs and
limitations related to the selected class of agent or vehicle.
The literature covers various agent kinds, from UAVs to
abstract entities.

The term “agent” is often used to refer to any autonomous
vehicle in practice. Examples of researchers who have used
this term include [36], [37], [40], [41], [42], [43], [54], [55],
[56], [57], and [58]. However, the tactics suggested in these
publications are frequently more useful for UAVs outfitted
with the right sensors to act as search agents. On the other
hand, as evidenced by numerous studies like [54], [59], [60],
[61], [62], and [63], some writers select ground vehicles,
such as Autonomous Ground Vehicles (AGVs), for search
missions. Galceran et al. [64] discuss autonomous underwater
vehicles (AUVs), but [65] use autonomous surface vehicles
(ASVs/USVs). Kolling et al. [66] introduce a novel method
with a human agent directed by the established search
methodology. While heterogeneous vehicles are introduced
in some publications, most literature typically uses homoge-
neous search agents and sensors. Also [67], [68], and [69]
are few studies that use a combination of search and service
unmanned aerial vehicles (UAVs) and UAVs.

Along with agent selection, the choice of sensor is an
essential factor in the formulation of MAS issues. The
nature of the target being sought often dictates the sort of
sensor to be used; for instance, a thermal sensor may be
appropriate for spotting a forest fire. While many studies in
the literature, including those by [58], frequently consider
an abstract target detection mechanism and a generic sensor,
some researchers concentrate on particular search sensors
when formulating MAS problems. While radar is used in [70]
and electro-optical and infrared sensors are investigated
in York, cameras are used in works such as [50], [63],
[71], [72], and [73] According to Sun et al. [74], search
sensors on unmanned aerial vehicles (UAVs) are downward-
facing cameras. The video footage is delivered to a ground
station for post-processing to identify targets. The UAV’s
motion planning, which includes navigation, guidance and
control, is independent of the target detection or search
procedure. Furthermore, as [75] shows, camera-mounted
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UAVs are used for automated fault identification in massive
constructions, including bridges. Variables like orientation
(downward or forward facing), spectrum, clarity of image,
and spatiotemporal variations of image quality significantly
influence how the problem is phrased and how the search
strategy is executed, even in the context of camera-based
sensors in multi-robot search problems. In this paper,
we investigate the use of downward-facing cameras as search
sensors, considering their unique characteristics that impact
the multi-agent search strategy’s target detection capability.
To make it easier to apply MAS techniques in practice,
the search area is frequently partitioned into small cells,
frequently in a gridded manner. Nonetheless, there are two
possible ways to implement the decision-making process: a
continuous space or a gridded space. This is particularly true
when deciding the best course for the search agents. Two
primary subtasks of a thorough search strategy are search
(target identification) and agent path planning.

To minimize search time and maximize a predefined
effectiveness parameter, like the rate of information gain,
the search’s effectiveness must be considered at every stage
of path planning. Many scholars often prefer to represent
the search space with a grid, drawing on techniques from
dynamic computing, graph-based search concepts, strategy
theory, and team theory. This requires making choices for the
agent’s next best cell to move into. Nonetheless, there are few
outliers, such as in the works of [56], [57], and [58] where the
decision-making process is carried out in a continuous area.
The authors use ideas from locational optimisation issues in
continuous spaces in these situations.

The search aspect of the task, which entails target
identification using onboard search sensors, is an essential
component of the MAS strategy. Creating and resolving
MAS problems heavily depends on the sensors’ spatial search
efficiency, also known as the sensor footprint. Figure 1
displays multiple sensor footprints frequently employed in
the MAS literature. Any area covered by the searching
sensor in Figure 1(a) is inspected, indicating that the target
has been recognized, provided it is present and within the
camera’s range. The sensor footprint is typically handled as a
single cell, though occasionally, it may cover several gridded
cells. When the sensor footprint extends over multiple cells,
the path planning problem resembles an exhaustive search
problem ([18]) or an area coverage problem ([76]). Most
MAS literature uses a sensor footprint similar to Figure 1(a),
where target detection requires more than one scan over a cell.
Exponentially decreasing sensor efficacy models have been
utilized in several investigations in the literature, such as those
by [56], [57], [58], and [77]. Continual or discrete (gridded)
space can be used to plan a search agent’s next move based
on each task’s specific problem formulation and solution.

The performance of distributed quadcopter systems in
multi-agent search relies heavily on sensor efficacy [78].
Instead of extending sensor ranges, one study suggests
modeling neighbouring agents’ intentions for better perfor-
mance. Effective coordination and communication among
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FIGURE 1. Sensor footprints adopted generally in the literature sensor
types: (a) straight and (b) non-straight footprint.

quadcopters are crucial, and strategies for merging occupancy
probabilities in multi-UAV cooperative search have been pro-
posed [79]. Optimizing multi-agent search with varying sen-
sor effectiveness in distributed quadcopter systems involves
devising tactics to enhance search performance when sensors
exhibit different detection probabilities. Research in this
domain primarily focuses on decentralized methods, where
each agent autonomously decides actions based on local
data. Critical tactics for improving search performance
include maximizing predicted information gain, consensus-
based coordination, and intermittent information-driven
search strategies [80]. Furthermore, a distributed search-
planning framework allows agents to adapt their deci-
sions dynamically while considering their peers’ plans,
utilizing model predictive control for cooperative search
trajectories [39]. A decentralized approach for multi-target
search employs a modified Particle Swarm Optimization
algorithm, utilizing onboard sensors on a swarm of unmanned
aerial vehicles [45]. Efforts to enhance search efficiency
in scenarios with varying sensor effectiveness emphasize
the necessity of decentralized approaches, where each
agent operates independently based on local data. Tactics
such as consensus-based coordination, optimizing predicted
information gain, and intermittent information-driven search
are crucial for improving search performance. Coordinated
teams of independent agents employing decentralized inter-
mittent information-driven search tactics aim to enhance
information gain while maintaining scalability and resilience
to agent failures by alternating between slow sensing
phases and rapid displacement periods [81]. Consensus-
based coordination facilitates effective group coordination
without relying on a leader-follower hierarchy, enabling
agents to achieve mission objectives by exchanging data
solely with nearby peers. This approach, treating all sensor
platforms equally, enhances the resilience and scalability of
multi-agent search operations. Fundamental to this process
is the maximization of predicted information gain for each
searching agent, enabling more efficient exploration of the
search area and extension of the overall search period [82].
Utilizing a group of UAVs for cooperative search missions
targeting multiple mobile ground targets can significantly
enhance effectiveness, accuracy, collaboration, adaptability,
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and resource efficiency. This vision-based method employs
UAVs equipped with vision-based technologies to collab-
oratively detect and track various mobile ground targets.
By leveraging the combined capabilities of multiple UAVs,
this cooperative search approach aims to improve the
efficacy of target search missions ([73], [83]). Utilizing
multiple UAVs in cooperative search significantly reduces
the time required for target detection through several key
mechanisms. Collaborative efforts enable UAVs to cover
larger areas simultaneously, thereby increasing the likelihood
of promptly identifying targets. UAVs enhance search
efficiency and accelerate target detection by exchanging
data and coordinating search patterns. Real-time information
sharing among UAVs optimizes search paths, enabling
quicker adaptation to shifting target positions. Furthermore,
distributing the workload among multiple UAVs allows for
more targeted and productive search operations, ultimately
reducing the time needed for target detection. In scenarios
such as rapid assessment of earthquake-affected areas,
cooperative coverage control involves a combination of
fixed-wing UAVs for general scanning and quadcopters for
detailed information extraction and victim localization. This
approach demonstrates the effectiveness of collaborative
distributed control in reducing environmental uncertainty and
optimizing coverage efficiency in post-disaster scenarios.
Studies involving simulation and experimental validation
underscore the system’s ability to swiftly and effectively
assess disaster-stricken areas ([22], [46], [73], [84], and [85]).

Using quadcopter swarms for regional reconnaissance and
target monitoring presents challenges in locating and moni-
toring targets in unexplored areas. In uncertain, dynamic, and
partially observable environments, centralised global optimi-
sation techniques are not achievable, leading agents to act
independently based on their own beliefs of the world. Pro-
moting collaboration amongst several decentralized agents
can be challenging because improper coordination might lead
to competitive behaviour. The system’s performance may
need increased sensor ranges, underscoring the difficulty of
maximizing sensor and communication ranges for effective
multi-agent search. The system’s performance may suffer
from extended sensor ranges, underscoring the difficulty of
maximizing sensor and communication ranges for effective
multi-agent search [86]. Effective search and surveillance
missions require decentralized collaboration among several
UAVs in uncertain and dynamic situations. The system’s
performance may need increased sensor ranges, underscoring
the difficulty of maximizing sensor and communication
ranges for effective multi-agent search [87]. The multi-agent
search problem has been approached by several algorithms,
including the Voronoi-based online source searching method,
the distributed cooperative search algorithm, and the dynamic
target surrounding technique. For unmanned aerial vehi-
cles, a distributed cooperative search strategy based on a
Voronoi diagram demonstrated its state-of-the-art nature in
multi-agent search by outperforming greedy and random
search methods in speed and robustness. Based on the particle
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swarm optimization algorithm, a unique search strategy for
a swarm of quadcopter drones was used. Its application
showed its usefulness, accuracy, and resilience, establishing
it as a state-of-the-art approach for multi-agent search with
distributed quadcopter systems ([86], [88], [89]). To verify
search techniques and compare performance based on criteria
such as camera search effectiveness models, sensor range,
and robot count, simulation systems have been built [88].
The coordination of quadcopter systems strongly impacts the
effectiveness of multi-agent search. For example, applying a
behaviour-based algorithm for multi-quadcopter surveillance
jobs showed efficiency and robustness in various tests, such
as positioning errors and broadcast message loss. Due to
their reliability, scalability, and versatility in many settings,
distributed quadcopter systems are an excellent choice for
open-space search and surveillance operations [88].

This paper contributes to the existing body of research in
multi-agent systems (MAS) and multi-robot systems (MRS)
for target search and exploration tasks by addressing several
critical gaps. Unlike many referenced works, this paper
focuses on the practical application of a multi-quadcopter
system equipped with downward-facing cameras specifically
tailored for exploring unknown environments. While previ-
ous studies have explored theoretical models or applications
in controlled environments, this paper emphasizes real-
world scenarios, such as disaster-stricken areas, where
the challenges are more complex and demanding. One
notable contribution of this paper is its consideration of
uncertainty in target search tasks, which is often overlooked
in existing literature. By representing the presence or absence
of targets with a distribution of uncertainty, the paper
acknowledges and addresses the inherent unpredictability
of dynamic and unstructured environments, thus enhancing
the robustness and reliability of MAS/MRS systems in
practical applications. Furthermore, the paper explores the
efficacy of downward-facing cameras for target detection and
localization in MAS/MRS systems, which remains relatively
under-explored in the existing literature. By leveraging the
unique advantages of downward-facing cameras, such as
wide-area coverage and real-time monitoring, the paper
aims to optimize strategies for deployment in multi-agent
search scenarios, thereby enhancing target search efficiency.
Lastly, the paper emphasizes integrating novel control and
optimization techniques into practical applications for target
search tasks, an aspect often lacking in existing studies.
By conducting simulations in realistic environments using
ROS, MATLAB, and Gazebo, the paper seeks to validate
and demonstrate the effectiveness of its proposed approach,
ensuring its applicability and scalability in diverse real-world
settings. Overall, this paper contributes to advancing the field
of MAS/MRS by providing practical solutions for efficient
target search and detection in complex environments.

IIl. PROBLEM STATEMENT
Current research in multi-agent search (MAS) strategies
lacks a cohesive approach, with either generic or fixed-wing
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UAVs dominating the focus. Despite increasing popularity,
Quadcopter UAVs are underrepresented in autonomous
multi-agent search scenarios. Downward-facing cameras,
a cost-effective search sensor, receive limited attention, and
assumptions about uniform search effectiveness across their
frames prevail. Non-uniform sensor footprint models lack
justification, and the predominant use of gridded space
for path planning may result in non-smooth trajectories.
This research article proposes a novel MAS strategy that
uses quadcopters and downward-facing cameras to address
these gaps, formulating the problem in continuous space.
The emphasis is developing a realistic, non-uniform camera
search effectiveness model through experimentation to bridge
the theoretical-practical gap. The simulation platform’s
development further facilitates the proposed strategy’s real-
world applicability.

A multi-quadcopter system equipped with downward-
facing cameras for searching unknown workspaces is
presented in this paper. The challenge here is efficiently
executing the task through proper cooperation and teamwork
between the robots. The scenario is at par with the natural
environment since the camera effectiveness is considered
high at the centre and decreases as we proceed away
from it. Such a system’s primary goal is to locate specific
targets; therefore, whether the targets are present or absent is
represented by a distribution of uncertainty, which is 1 when
the target of interest is absent and O when it is discovered.
Since they provide a comparable physical experience, the
simulations are run in the ROS environment using MATLAB
and Gazebo.

IV. PROPOSED METHODOLOGY
In this section, we elaborate on the methodology employed in
our study.

A. CAMERA
With the use of the current research, this section investigates
specific camera attributes that are pertinent to the retrieval
problem. The damage level that must be assessed or survivors
needing immediate aid are typical examples of visually
visible targets in various settings, including search and rescue
operations in areas devastated by natural disasters. There are
often two types of cameras on drones, including quadcopters:
one that faces ahead and one that faces downward.

The area of interest and the detection probability can
be related in an equation to express the sensor efficiency
measure:

flg) =plg) (D

where, g € Q is point of interest in Q C R2, The search area,
p(q), is the probability of detection of the target of interest
present at g. If we assume that the search sensor is anisotropic,
then we have the following:

pg) =f(r) @
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where, r = ||C — ¢q||, and C € Q is a point directly below
the sensor. Most research on multi-agent search, as seen in
studies like [32], [57], [77], and [90], often adopts a flat
effectiveness function.

This model is valid only for scenarios where high-quality
images are available, which is not true with real-world
applications. An exponential function is used in [57] for a
generic search sensor.

B. SIMULATION SETUP FOR THE PROPOSED SEARCH
STRATEGY

In this section, we present an overview of the realistic sim-
ulation platform developed for the proposed search strategy
in this work. The simulation involves multiple quadcopters
equipped with downward-facing cameras serving as the
search sensors.

1) A CENTRALIZED AND DECENTRALIZED ARCHITECTURE
The multi-quadcopter search strategy outlined in this pro-
posal consists of various key components such as task
sharing, deployment optimization, control and search strategy
with high effectiveness value. In this section, we initiate our
discourse by delving into the spatial distribution character-
istics of these individual components and the overarching
search strategy. Our observations are summarized as follows:

1) Task Sharing: The Voronoi partitiTaskg scheme
divides the search space Q into Voronoi cells V; based
on the positions of search agents. Each quadcopter is
assigned to search within its corresponding Voronoi
cell. This spatial task partitioning is distributed within
Gp as the shape of each cell depends on the positions
of neighbouring quadcopters.

2) Deployment Optimization The centroidal Voronoi
configuration is determined for each quadcopter, where
the solution depends not only on the quadcopter’s
location but also on the positions of its neighbours in
Gp. Therefore, the optimal deployment configuration
is spatially distributed within Gp.

3) Control The control law for achieving the centroidal
Voronoi configuration utilizes a gradient that is also
spatially distributed within Gp.

4) Search Effectiveness The search task involves gather-
ing information within the corresponding Voronoi cells
using downward-facing cameras, leading to uncertainty
reduction. While the search task itself is decentralized
due to spatial task partitioning, communicating updated
uncertainty density distributions during deployment
introduces spatial distribution. This communication
can occur in two ways: centralized architecture with
a central server storing and retrieving information
or distributed communication among quadcopters,
resulting in a spatially distributed system.

The methodology proposed in this work adopts a hybrid
centralized-decentralized approach in which the initial three
components, explained above, employ a distributed archi-
tecture. In contrast, the final one opts for a centralized
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architecture for convenience, although a distributed archi-
tecture is also theoretically feasible. This hybrid nature is
very essential and influential in real-time scenarios. In this
configuration, a central server stores the updated uncer-
tainty density and target detection probability distribution,
furnishing this information to quadcopters upon request for
centroid computation and density updates following search
operations.

Individual controllers can work independently, depend-
ing only on information about the positions of nearby
quadcopters, to compute Voronoi cells and their centroids
using the uncertainty density from the central server and
then derive the control law. Distributed communication
amongst the quadcopters facilitates the capture of locational
information. Nevertheless, when a central server is deployed
to record uncertainty density, leveraging its capabilities to
compute Voronoi cells and their centroids is pragmatic. When
every quadcopter controller knows where the centroid of
its own Voronoi cell is, it can compute the control law on
its own. As such, a centralized architecture can calculate
optimal deployment configurations (centroids) and spatial
partitioning (Voronoi cells). A decentralized architecture for
calculating the control law, guaranteeing optimal deployment
(CVC), and carrying out the search task (updating the target
probability density and uncertainty density) can come after
this.

C. SIMULATION ENVIRONMENT

An environment generated using MATLAB and ROS/Gazebo
platforms simulates the proposed methodology. An illus-
trative block diagram showing the implementation is in
figure 2. The central control algorithm is programmed in
MATLAB, and the later part is in the ROS environment.
In this architecture, the density function updates and the
calculation of centroidal Voronoi values are done by a single
Matlab program. The computation of Voronoi cells is based
on the current configuration of the multi-quadcopter system,
retrieved from the ROS topics /ardrone;/ground,ruth/state.
Data such as position, quadcopter orientations, uncertainty
density updates, etc., is simulated using ROS topics.

1) CONTROLLER IMPLEMENTATION FOR ARDRONE

This paper selects ARDrone since it is one of the most popular
quadcopters. This drone’s properties are available as Unified
Robot Description Format in the Gazebo simulation environ-
ment. In addition, ROS monitors all aspects of the quadcopter
state, such as position, attitude, camera attitude, etc., via a
transformed library [91]. The /ardronejutonomy package,
developed by Mani Monajjemi and other contributors at the
Autonomy Laboratory, Simon Fraser University, is utilized
for simulation control. This will enable the drone control not
only in simulation but also in actual physical implementation.
Motion control of the ARDrone is realized by publishing to
the /cmd, el topic, equivalent to providing the desired velocity
to the quadcopter.
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In the context of the proposed multi-quadcopter search
strategy, the target point for each quadcopter is the centroid
of its corresponding Voronoi cell, as provided by the central
controller (implemented in MATLAB). Using a PID control
law, the quadcopter is navigated towards the Voronoi cell
centroid. The control algorithm is given as a pseudo-code in
Algorithm 1.

Algorithm 1 Control Algorithm for Individual AR Drones
1: procedure ControlAlgorithm

2: Transmit current state.
3: Retrieve Voronoi cell and centroid from a central
controller (MATLAB).

4: Navigate towards the centroid.

5: while not within proximity of the centroid do
6: GOTO Step 1.

7: end while

8:

Update uncertainty density and broadcast the
updated information.

9: while average uncertainty density surpasses a prede-
fined threshold do

10: GOTO Step 1.

11: end while

12: end procedure

2) MULTI-UAV CONTROL

In our implementation, we employ a complex transform
tree structure to accommodate multiple quadcopters with
individual UAVs designated with a namespace(Example:
/ardroney). Distinct ROS topics are created using these
namespaces, which are then used to coordinate the individual
UAV states and controllers. An example can be topics
such as /ardroney/ground;ruth/state, /ardrone;/cmd,el,
and /ardrone; /bottom/image,aw which represents state,
velocity, command input, and raw image data for the
‘ARDrone 1’ UAV. There will be as many topics as the
number of UAVs in the system facilitating their control and
coordination. While a UAV’s state is a 6-dimensional vector,
encompassing position and orientation, our implementation
considers only the x and y positions (P, and Py), maintaining
a constant altitude for horizontal flight. Each quadcopter
adheres to Algorithm 1. This implementation achieves a
genuinely hybrid control paradigm within the simulation
environment.

3) QUADCOPTER CONTROL IN GAZEBO

The Voronoi partitioning and the computation of cell
centroids are done by Matlab node in the form of /centroid;
topics. The controller subscribes to these topic values and
subsequently publishes the requisite velocity to the /cmdvel
topic specific to the corresponding ARDrone, which results
in the drone’s motion towards the Voronoi cell centroid.
The position values the ARDrone quadcopter relays through
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FIGURE 2. Simulation Environment for visualising the multi-quadcopter d

the /groundtruth/state topic is harnessed by the controller,
interpreting the UAV’s velocities as tilt angles.

Remark 1: The described simulation format offers two
primary advantages. Firstly, it achieves a higher realism level
than simulations conducted in environments like Matlab,
where point mass models are often assumed for search agents
(quadcopters). In the ROS/Gazebo simulation, the dynamics
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eployment in MATLAB and ROS environment.

of the quadcopters are considered, providing a more accurate
representation of their behaviour. It’s essential to note that
claims about the successful deployment of search agents into
the CVC, as demonstrated in previous works such as [57]
and [58], hold only when the search agents are assumed to
be point masses. Secondly, the programs developed within
the ROS/Gazebo environment for controlling quadcopters
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FIGURE 3. Experimental set up: Schematic representation.
An experimental setup leveraging object identification to evaluate the
camera’s search effectiveness.

during simulation have the potential for direct application
to physical quadcopters. This compatibility highlights the
practical utility of the simulation, as control strategies
developed and tested in the simulated environment can
be seamlessly transferred to real-world quadcopters. This
contributes to bridging the gap between theoretical concepts
explored in simulation and their implementation in actual
scenarios. We assert that the simulation platform is ‘realistic’
in this sense.

V. RESULTS AND DISCUSSIONS

This section presents the simulation and experimental results,
comprehensively analysing the proposed search strategy.
The simulation outcomes provide insights into the strat-
egy’s performance under controlled conditions, considering
realistic dynamics and environmental factors. Subsequently,
experimental results from real-world implementations further
validate the strategy’s efficacy and practical applicability.
These findings thoroughly evaluate the proposed approach
across simulation and physical experiments.

A. EXPERIMENTAL SETUP: CAMERA
Initial experiments were conducted to validate the search
effectiveness of the down-ward facing camera, as shown
in figure 3. A CMOS web camera is mounted at & above
the floor. The camera featured a maximum resolution of
1600 x 1200 pixels, a frame rate of 30 fps, and a
fixed focal length with a minimum focusing distance of
0.05 m. An isotropic camera is assumed. Markers of various
shapes are positioned below at different distances from the
camera’s centre. A lower resolution of 640 x 480 pixels
was selected for practical scenarios where high-resolution
images are challenging to obtain due to the UAV altitude
and environmental complexities. Once the setup is ready,
various images are captured, and target identification is done
via image processing. Successful detections are recorded to
calculate the target detection probability. Target locations are
denoted as —7,...,0,...,7, with O representing the target
directly below the camera.

ArUco markers and triangular shapes are used as tar-
gets. The ArUco module is based on the ArUco library,
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FIGURE 4. An ArUco marker used as a target in the experimental setup.

a well-accepted and extensively used library for detecting
square fiducial markers [92], [93]. An example of an ArUco
marker used in our experiments is illustrated in Figure 4.
ArUco markers, binary square fiducial markers, are crafted
explicitly for straightforward and distinctive identification,
even amidst noisy conditions. The detection process encom-
passes thresholding, contour filtering, bits extraction, marker
identification, and corner refinement. ArUco markers prove
highly effective in real-world scenarios, ensuring a generally
high detection probability. Additionally, we incorporated
triangular objects for target detection, relying on corner
detection techniques. It’s crucial to acknowledge that the
detection probability for triangular objects is more suscep-
tible to interference from noise.

1) EXPERIMENTS WITH MARKERS

In the experiments, we utilized ArUco markers of dimensions
4 x 4 cmand 5 x 5 cm (figure 5). The captured images,
taken against a plain floor background, were intentionally
kept nearly noiseless. However, we introduced noise into
the image space to simulate real-world scenarios with
a mosaic or noisy background. This approach aimed to
replicate conditions where background complexities might
affect target detection.

The probability of detection of the 4 x4 cm ArUco markers
concerning relative distance from the camera centre is given
in tablel. The table shows the target detection probability
of 4 x 4 ArUco markers based on their position relative to
the central pixel in the image frame. The total number of
detection attempts is 2000. The second column provides the
number of successful target detection, and the third column
provides the target detection probability. Position O represents
a point directly below the camera. Figure 6 shows the best
fit exponential curve and the plot of the target identification
probability with the distance from the central pixel. The
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FIGURE 5. Experimental setup for target detection using 4 x 4 cm ArUco
markers.

TABLE 1. Probability of target detection using 4 x 4 cm ArUco markers
based on their position relative to the central pixel in the image frame.
The second column provides the number of successful target detection,
and the third column provides the target detection probability. Position 0
represents a point directly below the camera.

Location | Number of times target is detected Detection
Probability
0 1487 0.5199
1 1217 0.4255
2 1180 0.4126
3 1045 0.3654
4 233 0.0815
5 152 0.0531
6 131 0.0458
7 47 0.0164

Exponential curve fit over full data
T T T

fon of the shapes (p)
T T
I I

Probability of detceti
T
I

FIGURE 6. Best-fit exponential curve over the entire dataset for 4 x 4 cm
ArUco markers’ target detection probability for the data given in table 1.

exponential function used is:

f(x) = kexp(—ar?) A3)

where, r is the distance from the central pixel, f(-) is the
probability of the target detection, and k and « are the
parameters.

Salt and pepper noise, with salt probability 0.9 and pepper
probability 0.1, has been incorporated to enhance the realism
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FIGURE 7. Experimental setup for target detection using 4 x 4 cm ArUco
markers with added salt-and-pepper noise to simulate a mosaic/noisy
background.

TABLE 2. Table showing the target detection probability of 4 x 4 ArUco
markers with added salt-and-pepper noise based on their position
relative to the central pixel in the image frame. The position 0 represents
a point directly below the camera.

Location | Number of times target is detected Detection
Probability
0 493 0.1724
1 391 0.1367
2 374 0.1308
3 359 0.1255
4 291 0.1017
5 269 0.0941
6 213 0.0745
7 180 0.0629

Exponential curve it over full data
T T T

Probability of detection of markess (p)

7 © ) ) ) 2 1 o 1 2 3 4 5 i 7
Normalized posistions of markers (x)

FIGURE 8. Probability of detection utilizing 4 x 4 ArUco markers with salt
and pepper noise for the data given in table 2. The fitness metrics for this
curve are SSE = 9.7061; R-square = 0.9317; Adj R-Sq = 0.9264 and

RMSE = 0.0086.

of the results. The experimental scenario is depicted in
figure 7. The probability of detection is outlined in table 2,
with the corresponding best-fit curve depicted in figure 8.
The fitness metrics for this curve are as follows: SSE (Sum
of Squares due to Error) = 9.7061; R-square (coefficient of
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FIGURE 9. Schematic of the experimental scenario using
triangular-shaped targets.

determination) = 0.9317; Adj R-Sq (adjusted R-square) =
0.9264; RMSE (Root Mean Square Error) = 0.0086.

2) EXPERIMENTS WITH TRIANGULAR TARGETS

As stated above, we have conducted experiments with
triangular-shaped targets. The experimental scenario is
shown in figure 10. The probability of detection is given
in table 3 and the best-fit curve for the same is given
in figure 10. The corresponding curve fitness metrics are
SSE = 0.0011; R-square = 0.9880; Adj R-Sq = 0.9870 and
RMSE = 0.0095 respectively. It is evident from the results
that the detection probability and the effect of noise in the
case of triangular markers are less than (5 x 5) ArUco markers
since the probability curve is flatter. Compared with the
results obtained with the ArUco markers, we can observe
that the target detection probability distribution curve with the
triangular targets is relatively flatter than that obtained with
ArUco markers. The triangular shape has the least maximum
target detection probability, while a 5 x 5 ArUco marker has
the highest. However, the effect of noise on the fitness of
target detection probability is most prominent with the 5 x 5
ArUco markers. These observations are interesting and can
be generalized with more experiments with different kinds of
targets and noise levels.

The information regarding the target detection probability
and its position relative to the search sensor (camera) is a con-
cern in various surveillance and path-planning applications.
It is the main objective of this research. The efficiency of
a surveillance quadcopter system (single or multi) depends
on various factors such as target characteristics, algorithms
used, camera characteristics, altitude of the quadcopter and so
on. Even though implementing a generalized and universally
implementable surveillance system is impossible, We have
tried our best to accommodate all these constraints in the
experimental setup to obtain a real-world performance. It is
observed that the target detection efficiency is at its maximum
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TABLE 3. Experimental results for the probability of target detection with
triangular targets.

Location | Number of times target is detected Detection
Probability
0 1137 0.3976
1 1063 0.3717
2 1046 0.3657
3 926 0.3238
4 839 0.2934
5 656 0.2294
6 533 0.1864
7 471 0.1647

Exponential curve fit over full data
T T

1 o 1
Normalized positions of shapes (x)

FIGURE 10. Exponential curve fit over the data for triangular target
detection probability. The corresponding curve fitness metrics are SSE =
0.0011; R-square = 0.9880; Adj R-Sq = 0.9870 and RMSE =

0.0095 respectively.

under the camera and decreases uniformly away from it.
Also, it is inferred that the target detection probability or the
confidence level of the sensor efficiency for target detection
inside its field of view can be modelled using a generalized
exponential function given in equation 3

The main goal of the aforementioned experiments is to
determine the typical variation of the probability of target
detection concerning the camera’s center of mass. This
information can then be utilized to plan the deployment and
path and the search tactics for either a single or multiple
quadcopter search utilizing these cameras. The experimental
results do, however, show that the likelihood of detecting a
target is highest when it is right underneath the camera and
falls monotonically as the target moves away from the center
of the image.It was also noted that a curve over the target
detection probability data may be fitted with an exponential
function.

B. SIMULATIONS IN ROS/MATLAB HYBRID PLATFORM
This section showcases the results of simulation experiments
using Parrot AR Drone 2.0 quadcopter in ROS/Matlab hybrid
simulation platform. The Gazebo platform is used since the
drone’s URDF model is available. All these will provide
a close-to-real physical environment. Figure 11 illustrates
the AR Drone 2.0 quadcopter within the Gazebo simulation
platform.
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FIGURE 11. AR Drone model within the Gazebo environment.

The AR Drone 2.0 has robust features contributing to
its versatile functionality. Its propulsion system, driven by
brushless D.C. motors, incorporates a microcontroller that
dynamically adjusts engine controls based on type and
status. The LiPo battery, with a capacity of 1000mAh and
11.1V, undergoes continuous voltage monitoring to estimate
battery life. The drone’s motion sensors, including a 6-DOF
inertial measurement unit, ultrasound telemeter, and pressure
sensor, collectively enable automatic stabilization, altitude
control, and speed measurement. A downward-facing camera
and additional sensors, such as a 3-DOF magnetometer,
enhance its sensing capabilities. Moreover, the AR Drone
establishes its own Wi-Fi network, providing seamless
wireless connectivity. These features make the AR Drone
2.0 well-suited for simulation experiments and real-world
applications.

Multi Robot System: N Drones:

The simulation results illustrate the impact of the number
of drones, denoted as N on search effectiveness («). The
system considers N values ranging from 5 to 45 quadcopters.
Table 4 presents simulation times for a single iteration (#;;),
overall simulation time (t,,), and count of search instances
(Ny) corresponding to varying numbers (V) of quadcopters.
Observations reveal that both (#;;) and () increase with N.
In an ideally distributed scenario, this increment should be
independent of N However, in a centralized architecture,
time tends to increase with N. Moreover, when N > 10,
the number of search iterations converges to 3. This
convergence is attributed to the optimal deployment process,
which involves computing Voronoi cells, their centroids, and
moving quadcopters gradually towards these centroids, thus
consuming time. It is to be summarized that the number of
quadcopters increases t;; and ?,;.

1) EFFECT OF VARYING NUMBER OF DRONES(N) AND
SENSOR RANGE

The search efficiency «, in terms of the number of iterative
steps (deploy and search) required to explore the area of
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FIGURE 12. Variation in target detection uncertainty with « = 0.07 and
varying N.

Average uncertainty density Vs Search steps
T T
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FIGURE 13. Variation in average target detection uncertainty with
o = 0.1 and varying N.

interest is studied. The various values for «(0.07, 0.1, 0.3,
0.5 and 1), and a constant k = 0.6 are considered in
calculating the camera effectiveness model given in the
equation 3. In tables 5 to 9, the total number of search steps
required to complete the search, the number of iterations for
each ‘deployment’ step, and the total simulation time for 3, 5,
15, 20, 30, 40, and 50 quadcopters performing the search with
different « values is presented. A graphical representation of
the same is also given in figures 12 to 16. From the tables and
figures it can be inferred that as the number of quadcopters
increases, the number of search steps decreases, coinciding
with the logical perspective. The uncertainty decreases with
an increase in N since the more drones there are, the more
chance of target detection. The search steps can be lowered
by using more number of quadcopters when performing a
general search. However, as N > 15, there is not much
variation in the computation time since the area of interest
becomes too crowded by the number of quadcopters, which
generally does not occur in practical scenarios.

A consolidated graphical representation of the same is
given in figure 17. The number of search steps initially
reduces and settles to a constant value even though the
number of drones are increasing provided the « value remains
constant. It becomes more prominent above 15 drones. This
is due to the fact that as the number of drones (N) increases,
the search space also grows larger. Initially, increasing the
number of drones may lead to more efficient search as there
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TABLE 4. Simulation times for a single iteration (t;;), overall simulation time (f;,¢), and count of search instances (Ns) are depicted in correlation with
varying numbers (N) of quadcopters. The number of quadcopters increases t; and t,;.

N 5 0 |15 20 25 30 35 40 45
tey |09 | 1T | 13 s 1.7 2.0 23 25 26
Tiot(s) | 53.0 | 51.6 | 128.1 | 1154 | 151.7 | 1672 | 3213 | 352.5 | 383.7
N, 6 3 3 3 3 3 3 3 3

TABLE 5. The number of deploy and search cycles required and the
computation time taken for each iteration for an alpha value of 0.07.

N Search Deployment Time for simula-
Steps iterations tion(s)

3 6 10,1,1,19,3,3 13.39

5 5 14,1,1,13,2 12.59

10 5 17,1,1,6, 11 25.94

15 4 20, 1,23,2 85.22

20 4 36,1, 13,2 93.26

30 4 30,1,12,3 124.68

40 4 26,1,21,3 223.38

50 4 27,2,3,4 298.57

TABLE 6. The number of deploy and search cycles required and the
computation time for each iteration for an alpha value of 0.1.

TABLE 7. The number of deploy and search cycles required and the
computation time taken for each iteration for an alpha value of 0.3.

N Search Deployment steps Total
Steps Deployment
time(sec)
3 14 10,1, 1,1, 15,3,3,3, | 19.16
3,4,4,2,1,1

5 9 14,1,6,9,3,2,5,3,3 | 18.79

10 7 26, 16,4,5,3,3,12 39.75

15 6 24,14,7,4,6, 12 52.92

20 6 27,22,1,13,12,3 84.7

30 6 24,21, 1, 10,4, 18 112.68
40 5 35,8,2,17,3, 16 155.63
50 6 27,24,2,12,4, 16 198.76

N Search Deployment Total simulation
Steps iterations time(s)

3 8 11,1,1,16,3,3,3,3 25.25

5 5 16,1,1, 11,2 32.37

10 5 23,1,14,3,4 53.96

15 4 39,2,5,8 70.86

20 5 25, 1,20, 1, 17 161.96

30 5 26,2,13,4,5 163.46

40 4 23,22,1,2 212.97

50 4 35,1,12,2 250.5

are more agents exploring the space. However, once a certain
threshold is reached, further increases in the number of drones
may not significantly improve search efficiency because the
search space may already be sufficiently explored. Another
reason is as the number of drones increases, resource
constraints such as computational power become more
pronounced. These limitations could restrict the ability of the
system to effectively coordinate a larger number of drones,
leading to diminishing returns in search efficiency. Also,
an increase in « represents a reduced imaging sensor range,
and more quadcopters are required to saturate the workspace
with their sensor footprint.

2) EFFECT OF @« AND N ON TARGET DETECTION
UNCERTAINTY

The uncertainty density function for varying values of o =
0.07,0.3 and 1 across different numbers of drones (N) has
been computed and presented in figures 18, 19 and 20
respectively. Each trough in these plots signifies the level of
uncertainty associated with the search efficiency of a UAV
within the system. Notably, it’s evident that lower uncertainty
levels correlate with higher search efficiency. Upon closer
examination, it becomes apparent that as the number of
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FIGURE 14. Variation in average target detection uncertainty with
« = 0.3 and varying N.

TABLE 8. The number of deploy and search cycles required and the
computation time taken for each iteration for an alpha value of 0.5.

N Search Deployment steps Total
Steps Deployment
time(sec)
3 20 12,1, 1,1,1, 1, 11,4, | 41.86
3,2,2,3,3,3,3,3, 1,
1,1,1
5 13 18, 1,1,1,9,2,2,2, | 5141
3,6,4,8,3
10 9 29,15,1,8,3,7,9,5, | 1109
4
15 8 23,12, 1, 19, 6,10, 2, | 106.4
1
20 7 36,7,9,18,8,12,3 143.79
30 7 32, 16, 11, 3, 10, 21, | 160.53
17
40 7 25,21,9,6,18,20,33 | 784.29
50 7 33,6,8,7,14,27,20 791

drones within the system increases, the uncertainty density
decreases. This observation suggests that a greater number of
drones leads to a more efficient search process, as evidenced
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FIGURE 15. Variation in average target detection uncertainty with
« = 0.5 and varying N.

TABLE 9. The number of deploy and search cycles required and the
computation time taken for each iteration for an alpha value of 1.

N Search Deployment steps Total
Steps Deployment
time(sec)

3 36 10, 1, 1, 1, 1, I, 1, 1, | 36.37
1,1,12,2,2,2,2,2,
2,2,3,3,3,1,1, 1, 1,
1,1,1,1,1,1,7, 1

5 22 17,1, 1,1, 1, 11, 1, 1, | 32.93
2,1,2,2,5,6,2,6,2,
3,2,2,1,1

10 13 28, 13,2,7,6, 10, 4, | 62.27
6,6,3,15,1,1

15 11 29,13,8,2,8,8,2,11, | 69.02
2,1,1

20 10 39,1, 17,7, 6, 14, 3, | 94.98
6,2,2

30 10 27, 14, 14, 7, 16, 15, | 204.88
14,8, 1,26

40 10 25,18, 8, 3, 8,36, 10, | 239.5
6, 15,4

Average uncertainty density Vs Search steps
! T T

No. of serach steps

FIGURE 16. Variation in average target detection uncertainty with
« =1 and varying N.

by the reduced uncertainty in target detection. Furthermore,
a lower value of o appears to provide enhanced coverage and
a notable reduction in target detection uncertainty.

These findings hold significant practical implications,
particularly in scenarios where optimal resource allocation
is crucial. By leveraging these results, it becomes feasible
to determine the optimum number of UAVs equipped
with similar imaging sensors required to effectively cover
a given area of interest. This optimization process can
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No. of quadcopters Vs Search steps for alpha=0.07, 0.1, 03, 05, 1
“0 T T T T T T
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No. of quadcopters

FIGURE 17. A consolidated graphical representation portraying the
number of deploy and search cycles required as well as the computation
time taken for each iteration for « = 0.07, 0.1, 0.3, 0.5, 1 and

N =3,5,10, 15, 20, 30, 40, 50.

(a) (b)

(& ()

FIGURE 18. The uncertainty density function for various N
values(increasing from figure (a) to (h)) for « = 0.07.

lead to the efficient allocation of resources while ensuring
comprehensive coverage and minimal uncertainty in target
detection, thus maximizing the effectiveness of UAV-based
surveillance and reconnaissance operations.

3) OPTIMAL DEPLOYMENT

The drone configuration at the end of the initial deployment
and search phase with « = 0.07 for various N values is
depicted in figure 21. The centroidal Voronoi partitioning
method is performed for the search space partitioning. The
drones starts deployment process from a starting point( here it
is leftmost bottom point). As individual drones calculate their
respective centroidal Voronoi cells, the partition boundaries
changes and the process terminates when all the drones
reaches the centroids of their respective Voronoi cells. The
readers can refer [94] for an in-depth analysis of centroidal
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FIGURE 19. The uncertainty density function for various N values
(increasing from figure (a) to (h)) for « = 0.3.

Voronoi computation. It is observed that the optimality in area
allocation degrades as the number of drones increases. The
non-uniformity in deployment has implications for search
performance. Lloyd’s algorithm-based optimal deployment
halts when quadcopters are close to their respective centroids
by a predefined tolerance d;,;. It’s important to mention that
the exact value of d;,; has been used for all values of N in this
scenario. Reducing this tolerance may be possible to achieve a
more uniform deployment for scenarios with higher N. Also,
an imaging sensor with large o) value is more effective in
scenarios where N is larger.

C. SUMMARY OF THE RESEARCH CONTRIBUTIONS

This research addresses the intricate challenge of cooperative
multi-agent search by focusing on the deployment of
quadcopter UAVs equipped with downward-facing cameras.
Several significant contributions distinguish this study.
Firstly, it formulates a multi-agent search strategy utilizing
quadcopter UAVs with downward-facing cameras and intro-
duces a realistic search effectiveness model that accurately
considers degradation away from the camera center, thereby
improving model accuracy compared to existing literature.
Secondly, the research presents a comprehensive approach
to uncertainty reduction through the optimal deployment
of quadcopters. This strategy leverages centroidal Voronoi
configuration, demonstrating its effectiveness in maximizing
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FIGURE 20. The uncertainty density function for various N values
(increasing from figure (a) to (h)) for« = 1.

uncertainty reduction and information gain. Additionally, the
study explores the spatial variation of camera effectiveness
within its image frame, leading to an in-depth analysis and
the development of an experimental setup for obtaining a sen-
sor effectiveness model. A hybrid centralized-decentralized
architecture simulates the proposed multi-quadcopter search
strategy using the ROS/Gazebo and Matlab-based platform,
serving as a valuable tool for realistic experiments. This
platform enables the validation and comparative study of
the proposed approach under various parameters, presenting
detailed experimental results, including establishing the
search effectiveness model and the feasibility and efficiency
of the proposed search strategy. Lastly, the versatility of the
simulation platform is highlighted, supporting experiments
with physical A.R. Drones, allowing for the evaluation of
parameters such as the optimal number of quadcopters and
the type of cameras. This research significantly advances
multi-agent search strategies by providing valuable insights
for practical applications and future research in autonomous
search and reconnaissance missions. Its contributions lie
in formulating an effective multi-agent search strategy,
developing a realistic search effectiveness model, and cre-
ating a versatile simulation platform for experimentation
and validation, ultimately enhancing the capabilities and
understanding of distributed multi-robot systems for target
search and exploration tasks.
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FIGURE 21. The drone configuration at the end of initial deploy and
search phase with « = 0.07 and N = 3, 5, 10, 15, 20, 30, 40, and 50.

VI. CONCLUSION AND FUTURE SCOPE

This paper addresses the intricate challenges of cooperative
multi-agent search, focusing on formulating a strategy
using quadcopter UAVs equipped with downward-facing
cameras as search agents. Unlike conventional approaches,
our strategy considers the practical degradation of search
effectiveness away from the camera centre, introducing
a more realistic model. The problem is framed as opti-
mizing quadcopter deployment to maximize uncertainty
reduction, with a ‘deploy’ and ‘search’ strategy based on
centroidal Voronoi configuration. The study delves into
the spatial variation of camera effectiveness for target
detection. An experimental setup is devised to obtain
a sensor effectiveness model by observing non-uniform
effectiveness within the image frame. Target detection exper-
iments establish an exponential function as a suitable model
for spatial variation. A simulation platform is developed
using ROS/Gazebo and Matlab, offering a valuable tool
for realistic experiments to validate the proposed search
strategy. Detailed results include experiments for obtaining
the search effectiveness model and simulation experiments
showcasing the platform’s capability and the proposed

VOLUME 12, 2024

strategy’s performance under different parameters. The
simulation experiments evaluate the impact of the number
of search quadcopters and camera effectiveness parameters
on the performance of the proposed multi-quadcopter search
strategy. The hybrid centralized-decentralized architecture
of the platform enables a comprehensive comparative study
and parameter optimization for real-world missions. This
work contributes to advancing multi-agent search strategies,
offering practical insights and a versatile simulation platform
for future research and applications in autonomous search and
reconnaissance missions.

The study acknowledges limitations in relying solely on
theoretical models and simulations, potentially leading to
discrepancies with real-world performance. Simplifications
in the model, like assuming uniform sensor effectiveness
degradation, may oversimplify scenarios. Additionally, the
narrow focus on downward-facing cameras overlooks other
sensor modalities, and scalability to larger search areas
remains unexplored. However, the developed simulation plat-
form has potential for real-world experimentation, facilitating
parameter optimization and offering a foundation for prac-
tical implementation. Future work can refine the strategy’s
applicability and address limitations by considering broader
sensor modalities, improving scalability, and enhancing the
simulation platform for more realistic scenarios.
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