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ABSTRACT To better design AI processors, it is critical to characterize artificial intelligence (AI) workloads
and contrast them to normal personal computer (PC) workloads. In this work, we profiled the AIBench and
PassMark PerformanceTest benchmarks with the Intel oneAPI VTune Profiler on a multi-core computer.
We captured and contrasted the various CPU and platform metrics and event counts for these two distinct
benchmarks. Using the Orange 3.0 data mining tool, and based on the captured profile metrics and event
counts, we then trained and tested 9 machine learning (ML) models to classify the CPIs and elapsed times
of the various tests of these two benchmarks, including inference and training tests in AIBench, and CPU,
memory, graphics, and disk tests in PassMark. The linear regression machine learning model emerged as the
best clocks per instruction (CPI) classifier, while the neural network model with 4 hidden layers was the best
elapsed time classifier. This machine learning classification can help in predicting the CPI and elapsed time
and distinguish between AI and standard PC workloads based on the profiled application(s) and captured
profile metrics and event counts. The stressed computer units identified by this detailed profiling work and
exercised by the benchmark tests can also guide future AI processor design improvements.

INDEX TERMS AI workloads, Tensorflow, PassMark PerformanceTest, AIBench, workload characteriza-
tion, event counts, benchmark profiling, machine learning classification, VTune.

I. INTRODUCTION
The amount of research devoted to artificial intelligence (AI),
machine learning (ML), and deep learning (DL) has acceler-
ated. Applications of AI, ML and DL have spanned a wide
range of fields including health, engineering, business, agri-
culture, and arts. A critical factor in successful AI deployment
is the performance of the computing infrastructure. Com-
puter benchmarks were created to assess the performance
of computers. Computer performance has relied on bench-
marks such as 3DMark [1], [2], SPEC [3], PCMark [4], [5],
and Open Source Mark (OSMark) benchmarks [6]. These
benchmarks attempt to stress the components of computers
such as the CPU, memory system, or I/O system. Other
performance studies have focused on narrower subjects such
as the performance of the cache hierarchy [7], performance

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio J. R. Neves .

impact of cache locking schemes [8] and thread scheduling
and migration [9], or performance comparisons of libraries
such as MPI vs Pthread [10], or OpenCL vs CUDA [11]. Per-
formanceTest 11.0 (PassMark) [12] is a computer benchmark
similar to PCMark which measures the performances of the
CPU, memory, 2D and 3D graphics, and the hard disk.

More recently, the performance of deep learning and
machine learning systems has caught the attention of several
researchers to characterize workloads, identify performance
bottlenecks in hardware and software stacks, and assess the
performance gains due to various accelerators. AI bench-
marks include DawnBench, ParaDNN,HPL-AI,MLPerf, and
AI Benchmark (AIBench). MLPerf [13], [14] includes seven
benchmarks for training and five benchmarks for inference.
Such benchmarks include workloads for image classification,
translation, face recognition, image compression, recommen-
dations, speech recognition, as well as other DL-related tasks.
AIBench 0.1.2 [15], [16] encompasses 19 tests with training
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and testing versions and reports the elapsed time with error.
AIBench is free of cost unlike other benchmarks. It is the
intent of our work to characterize the AIBench workload on
a modern multi-core Intel Haswell processor, and compare
it the PassMark benchmark workload, which is considered to
be a standard computer workload. Although today’s AI work-
loads are run on computer platforms equipped with GPUs,
it is the intent of this work to run the benchmarks on a single
AI-capable processor for personal computers, without any AI
co-processor assistance, to pinpoint weaknesses and identify
areas of future improvements. In this work, the methodology
we followed consisted of these steps:
1. The AIBench and PassMark benchmarks were run on a

modern PC and the overall and subtest times were cap-
tured;

2. The components of the central processing unit (CPU)
and computer platform were monitored using the Intel
oneAPI’s VTune profiler 2023.1, and a list of events
with event counts were captured for both benchmarks,
allowing the stressed units to be identified. VTune is
an Intel-based profiler providing analysis of algorithm,
parallelism, platform, processor microarchitecture, and
accelerator analyses. It employs statistical sampling to
update a large variety of performance counters. This
exercise allows one to contrast the signatures of AI DL
workloads (AIBench) and standard computer workloads
(PassMark) on a modern multi-core PC. Following the
identification of stressed units, design, circuit, or firmware
implementation enhancements conducted on computer
units which are more frequently stressed, or particularly,
which have reached their top performance capabilities
and stalled earlier units in the pipeline, often results in
higher overall speedups and likely raises user satisfac-
tions. In that sense, the results of our study can help
identify AI workload bottlenecks [34] and consequently
guide future design enhancements of AI-capable proces-
sors.

3. Also using VTune, the multiple parallel thread activities
were captured and visualized to assess the threading per-
formance.

4. Next, Orange 3.0 [17] was used to generate the corre-
lation coefficients of all the captured events for the two
combined benchmark suites with the number of clocks
per instruction (CPI) and the elapsed time. Orange is a
graphical data mining tool supporting various machine
learning models and providing a variety of data visualiza-
tion functions.

5. Also, with the help of the Orange tool, nine ML models
were optimized to classify the clocks per instruction (CPI;
model target) and then the elapsed time based on the cap-
tured events (model features). The ninemodels are random
forest (RF), support vector machine (SVM), k-nearest
neighbor (kNN), decision tree (Tree), linear regression
(LR), stochastic gradient descent (SGD), AdaBoost, and
gradient boosting (GB). The best CPI and elapsed time
ML classifiers were identified.

Our work differs from prior work in its focus on profiling
and correlating the AIBench and PassMark benchmarks in
order to contrast these two workloads and identify perfor-
mance bottlenecks, and in its use of machine learning models
to classify the CPI and elapsed time based on the various
performance events in order to predict the performance from
the captured events. Following the capturing of events of
a workload, the captured performance event signature can
help distinguish between AI and non-AI workloads. The
workload’s performance can be predicted assisted by the
machine learning models to decide for instance whether to
activate hardware units kept dormant for power saving in
order to meet performance demands, or for capacity plan-
ning in AI clouds. Another key contribution of this study
lies in its ability to integrate insights from both data-centric
and model-centric AI perspectives. By leveraging benchmark
datasets and employing machine learning models for per-
formance classification, the research offers a comprehensive
understanding of AI workload characteristics and hardware
utilization patterns. This integrated approach enables not only
the analysis of performance metrics but also the predic-
tion of system behavior, thus facilitating optimization efforts
for hardware design and system efficiency in handling AI
tasks. In essence, this study exemplifies the synergy between
data-centric and model-centric AI methodologies [35], show-
casing a holistic approach towards advancing the field of AI
performance analysis and optimization onmodern computing
platforms.

The paper is organized as follows. Section II provides
some background information from the literature review.
Section III discusses AIBench tests and their runs on an
Intel core i5 quadcore platform. Section IV presents the
PassMark tests and reports the results of running PassMark
on the same platform. In Section V, we present the AIbench
and PassMark benchmark profiling results obtained with the
oneAPI VTune profiler including percentages of time spent
in various units and detailed event counts. In Section VI,
the two benchmarks are characterized via various graphically
plots, and the captured event counts are correlated with both
the CPI and the elapsed time, in order to identify the most
impactful events on the performance. Section VII presents the
ML-based classification of the CPI and the elapsed time with
the 9 ML models. The paper concludes in Section VIII.

II. BACKGROUND
In [18], the AIC-Bench methodology for selecting work-
loads to benchmark AI processor performance based on
their computational and memory operation intensities was
described. The operational intensity is the ratio of computa-
tional operations (number of multiply-accumulate, add and
divide, and compare in pooling, softmax, normalization, and
convolution operators) over the number of memory accesses.
FCN and VGG and Inception deep learning neural networks
scored higher operational intensities, whereas ResNet and
VOCNet scored the lowest operational intensities. Of all the
2036 operators in 8 sub-benchmarks, 79% of them were
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found to be memory-intensive, in particular ReLU, Scale
and BatchNorm. The convolution operators were found to
be, in the majority, 92%-99% compute-intensive, and conse-
quently with the highest operational intensities, rising more
with window size. In the investigated deep neural networks
(VGG, ResNet, Inception, SqueezeNet, DenseNet), between
70%-80% of the workloads were memory-intensive (due to
the inner product operations on VGG and VOCNet, or due
to convolution on Inception and SqueezeNet), and the rest
were found to be CPU-intensive. The inner product operator
had the highest number of memory accesses and among the
top number of computational operations. Therefore, its opera-
tional intensity was 1, also reached by Tanh, ReLU, and Scale.
Flatten, crop, and concat operators were found to be mainly
memory-intensive with little computations. The GPU and
Cambricon machine learning unit (MLU) outperformed the
CPU on deep learning workloads. It was found that the CPU
was not effective in compute-intensive operators, and the
GPU underperformed theMLU in such operations. TheMLU
was found to underperform on memory-intensive operators.

The MLPerf benchmark [13], [14] is a widely used bench-
mark used in evaluating AI platforms with 7 tests spanning
image recognition, object detection, object segmentation,
recurrent translation with GNMT model, non-recurrent
translation with Transformer model, recommendation, and
reinforcement learning. Some AI benchmarks may suffer
from high cost, scalability (due to fixed problem scaling), and
repeatability. Specifically, regarding repeatability, training
DL networks encompasses random factors in: model initial-
ization, data augment, data shuffle, dropout and other stages.
In particular, the 3D face recognition, image to text transla-
tion, text summarization and compression tests encompass
more randomness than the other tests. It is important to select
an AI benchmark free of the above weaknesses for detailed
studies.

Tang et al. [19] implemented nineteen AI tasks with
DL models and concluded that AIBench Training v1.1 out-
performed MLPerf Training(v0.7 in terms of benchmark
representativeness, computational cost, convergence rate,
computation, distinctivememory access patterns, and number
of hotspot functions. On AIBench, the tensor processing
units (TPUs) outperformed the GPU, although the GPU has
better model support. The specification, source code, and
performance numbers are available from the AIBench home-
page [20]. Notably, to MLPerf Training’s text and image
data, AIBench added 3D, audio and video data. MLPerf had
30 hotspot functions, to only 9 for MLPerf. In Tang et al’s
study, MLPerf converged in up to 96 epochs, compared to
the MLPerf which converged in up to 49 epochs. In terms of
millions of floating-point operations per second (MFLOPS)
range covered, AIBench’s range of 0.09-282830 outsized
MLPerf’s range of 0.213248-24500 MFLOPs. From the
perspective of model complexity, the number of learnable
parameters of AIBench learned 0.03-68.4million parameters,
a larger range than MLPerf’s range of 5.2-49.53 million
parameters. The authors [19] found the TPU to outperform

the GPU on image classifications. The general AIBench
benchmark suite added real-world application scenarios from
Datacenter, HPC, IoT, and Edge, into the scenario, training,
inference, micro, and synthetic benchmarks. In particular, the
AIBench Training and AIBench Inference benchmarks [15],
which we focus on in this work, cover nineteen diverse AI
tasks with DL models spanning image classification and
generation, object detection, text to text and image to text
translations, to speech recognition, and text summarization.
Object detection and 3D object reconstruction consumed top
FLOPs, while learning-to-rank generated the lowest FLOPS.
Image-to-text was the most complex model, while the spatial
transformer was the least. Text-to-text translation required
the most epochs to converge. Both AIBench and MLPerf
supported five optimizers, but AIBench supported 14 loss
functions, while MLPerf supported only 6. The authors [19]
concluded that AIBench captured distinct computation and
memory patterns under different scenarios and covered a
wider range of DL applications while costing less than
MLPerf. Scores of runs of AIBench on a number of GPUs
with CUDA and cudNN can be found in [21].

Wang et al. [22] compared the performances and energy
efficiencies of CPU, GPU and TPU on DL workloads
including convolutional neural networks (CNNs), recurrent
neural networks (LSTM), Deep Speech 2, and Transformer.
The compute-intensive operators in high-throughput kernels
included matrix multiply and 2D convolution heavily used
during DL training. The low-throughput kernels required
serial operations and longer training times. Key learnings
were that matrix multiplication operations were better opti-
mized than convolution on the Intel CPU constrained by peak
FLOPS and data fetching. The Tensor cores were underuti-
lized on the GPU during training. Also, the TPU 2 to TUP
3 transition witnessed a much larger improvement in peak
FLOPS than memory bandwidth.

A review of novel AI accelerators from SambaNova, Cere-
bras, Graphcore, and Groq and their performance evaluation
can be found in [23]. The paper mentioned several bench-
marks for characterizing the performance of ML workloads,
including Deep500, HPCAI500, HPL-AI, DAWNBench,
DeepBench, Fathom, ParaDNN, HPE DLBS, XSP, Mahon,
as well as MLPerf, CosmoFlow, DeepCAM, and OpenCat-
alyst. The researchers evaluated the SambaNova, Cerebras,
Graphcore, andGroq accelerators on the followingworkloads
on the general matrix multiply layers, the convolution layers,
and the ReLU layers. The matrix multiply layers GEMMs
are used in fully connected layers, convolution layers, and
recurrent layers. More importantly from a performance per-
spective, convolutions account for the most FLOPS in DL
networks that operate on images and videos and occupy
significant portions of DL networks for speech recognition.
ReLU is a popular activation operator in DL networks requir-
ing one comparison and one multiplication per input.

The HPC AI500 benchmark included two AIBench tests
and was introduced in [24]. Ten AI kernels were selected
in [25] to measure massive AI performance across distributed
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computer systems spanning the cloud and the edge. In [26],
qualitative metrics for AI benchmark performance are dis-
cussed. Al-Ali et al. [27] made the case for using FPGA
to run AI workloads at the edge, supporting their case with
the AlexNet deep learning classifier whose inference on
the FPGA surpassed ARM and i5-6400 CPUs, and a GPU.
In [28], AI performance was measured on NVIDIA V-100
and A-100, AMD MI100, and Cerebras CS-2 and Graphcore
accelerators. Davis [29] surveyed AI benchmarks and pro-
vides detailed description for 12 of them. Arora et al. [30]
addressed the energy efficiency of AI workloads. Other
researchers [31] investigated DL performance on FPGAs
and presented DL acceleration benchmark circuits for FPGA
architecture and CAD research with 19 circuits covering a
wide variety of accelerated neural networks, design sizes,
implementation styles, abstraction levels, and numerical pre-
cisions.

Regarding metrics reported for DL/ML accelerator perfor-
mance, it is arguable that FLOPS is not the only relevant
metric for assessing AI performance. For instance, in some
cases, mixing high and low FP precision may improve the
FLOPS performance at the expense of lowering the quality
of the AI application. Benchmarks which therefore consider
these various dimensions in their scoring will report more
realistic scores.

III. AIBENCH
AIBench is an open source Python library for evaluating the
training and inference performances of DL models running
on various hardware platforms, including CPUs, GPUs and
TPUs.We ranAIBench v. 0.1.2 on the following platform:HP
EliteOne 800, Intel Core i5-4570S Haswell processor with
4 logical processors at 2.9 GHz, 64-bit Windows 10 Pro 21
H2 Windows-10-10.0.19044-SP0, 8GB RAM, and Intel HD
4600 integrated graphics. The benchmark required the instal-
lation of Python, and the TensorFlow [31] machine learning
library, and in ourwork, we installed TensorFlow-intel 2.12.0.
In total, AI Benchmark consists of a total of 42 tests (5 3-
tests+ 1 1-test+13 2-tests= 15+1+26=42) distributed over
19 sections as listed below:

1. MobileNet-V2 (classification, 2 tests)
2. Inception-V3 (classification, 2 tests)
3. Inception-V4 (classification, 2 tests)
4. Inception-ResNet-V2 (classification, 2 tests)
5. ResNet-V2-50 (classification, 2 tests)
6. ResNet-V2-152 (classification, 2 tests)
7. VGG-16 (classification, 2 tests)
8. SRCNN 9-5-5 (image to image mapping, 3 tests)
9. VGG-19 (image to image mapping3 tests)
10. ResNet-RSGAN (image to image mapping, 3 tests)
11. ResNet-DPED (image to image mapping, 3 tests)
12. U-Net (image to image mapping, 3 tests)
13. Nvidia Spade (image to image mapping, 2 tests)
14. ICNet (image segmentation, 2 tests)
15. PSPNet (image segmentation, 2 tests)

16. DeepLab (image segmentation, 2 tests)
17. Pixel-RNN (image inpainting, 2 tests)
18. LSTM (sentence sentiment analysis, 2 tests)
19. GNMT (text translation, 1 test)

Table 1 displays the run times of the AIBench tests, along
with their run time variations. Tests 1.1 and 1.2 are the two
MobileNet-V2 tests, while test 19.1 is the sole GNMT test.
These run times do not only help in assessing the contribution
of each test to the final benchmark score, but also serve
in contrasting the execution times of various deep neural
networks with similar parameters. The final AIBench scores
are

Device Inference Score: 346
Device Training Score: 302
Device AI Score: 648.
Note that the run times and scores were obtained while

simultaneously running the Intel OneAPI VTune profiler
2023.1.0 in parallel with the benchmark run, which slightly
raised the total run time to about 35 minutes for all 19 tests.
Also note that the device AI score, at the end of the run, is the
sum of the device AI inference score and the device training
score. The installation and running steps for AIBench training
or inference only are found in [32].

IV. PASSMARK PERFORMANCE TEST
On the same platform, and also while simultaneously run-
ning the VTune profiler, the PassMark PerformanceTest 11.0
(PassMark) benchmark produced a score of 786, 6th per-
centile, and consisted of the following tests and their scores
on the tested platform. The results of the PassMark bench-
mark run with the test suite scores and individual test score
breakdowns (no units) are shown in Table 2. Note that unlike
the AIbench run times where smaller numbers are better, the
PassMark individual test scores are such that higher scores
are better. A computer scoring twice as much as another
computer approximately means that it can process twice the
amount of data in the same amount of time. The CPU Mark
score is a measure of the CPU performance while the Pass-
Mark score is a measure of the overall computer platform
performance and is limited by the weakest component perfor-
mance. It is not the average or sum of the subscores. Instead,
the overall PassMark v. 11 score is given by the following
formula

PassMark Rating

= 1/({(1/(CPU Mark∗0.33))

+ (1/(2D Mark∗50)) + (1/(3D Mark∗0.5))

+ (1/(Memory Mark∗1.92)) + (1/(Disk Mark∗0.37))}/5)

(1)

V. BENCHMARK PROFILING AND WORKLOAD
CHARACTERIZATION
The results of the VTune profiling including performance
snapshot, microarchitectural exploration, and memory access
are displayed in Table 3. Memory access profiling and the
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TABLE 1. AIBench tests run times.

‘‘AIBench - First 5 tests only’’ ran until 1GB of data were
collected and stopped (between 4 min. and 5 min. of run
time). Table 3 also includes the VTune profiling results of
AIBench with all tests, with only the inference tests, and with
only the training tests.

The major performance indices are:

TABLE 2. PassMark subtest scores.

Front-End Bound is the percentage of time where the
Front-End (i.e., instruction fetching, branch prediction, and
decoding instructions into micro-operations) section of the
CPU does not provide enough micro-operations (uOps) to its
Back-End section (execution units). The Front-End Bound
number reflects the amount of bubbles or empty issue slots
where the Front-End delivered no uOps –due to instruction
cache misses for example– when the Back-End could have
accepted them.
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TABLE 3. VTune profiling of AIBench and PassMark tests.

Memory bound: is the fraction of execution pipeline slots
stalled due to memory loads and stores.

Retiring: is the fraction of pipeline slots with useful (not
speculative) work. When the Retiring number is high, this
usually entails a larger Instruction-Per-Cycle (IPC=1/CPI)
number.

Core bound: reflects how much non-memory issues were a
bottleneck, such as contention to shared hardware resources,
or instruction dependencies (for instance, RAR, WAR haz-
ards).

Bad Speculation: is the fraction of pipeline slots wasted
due to incorrect speculations, for instance, as a result of
mispredicted branches and machine clears.

CPU utilization: indicates howmuch the logical processors
were loaded.

Regarding the parallel thread executions and core utiliza-
tions, the thread activities versus time for the AIBench and
CPUMark benchmarks are plotted in Figures 1-2.We observe
that AIBench with all 45 inference and training tests dis-

played the longest andmost intense parallel logical core activ-
ities with high utilization compared to the PassMark tests.

The blue bar charts in Tables 3 reflect the core utilizations
of the tests with the leftmost bar representing the elapsed
time (in sec.) the test ran on 0 cores (i.e. all cores idle). The
next 4 bars represent the elapsed time spent with 1, 2, 3 and
4 cores running simultaneously, respectively. It is clear that
the tests which mostly took advantage of all processor cores
were AIBench-inference only, AIBench-all tests, AIbench-
first 5 tests. CPUMark placed in second as most of its elapsed
time was spent on 3 cores. In third place, Memory Mark and
AIbench-training spent most of their elapsed times on only
1 core. In the last places were 3D Graphics Mark and Disk
Mark which left all 4 processor cores idle for most of their
elapsed times.

In terms of speculation performance, bad speculation was
more pronounced in CPU Mark and Disk Mark than the rest.

Table 4 displays a sample of event counts in mil-
lions of events per second. The complete list of events
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FIGURE 1. Thread activity of AIBench – all tests.

FIGURE 2. Thread activity of CPU mark.

supplied by VTune, and which were later normalized to
display as millions of events per second, can be found
in the Table in the Supplementary. Higher event counts
(per sec.) directly correlate with more intense stressing
of the related units. For instance, considering the event
counts where the lowest benchmark test count (per sec.)
is less than 0.1% of the highest benchmark test count (per
sec.), the event count analysis reveals that both AIBench
training and inference tests exceed all other considered
benchmarks in CPU_CLK_UNHALTED.REF_TSC (num-
ber of reference cycles when the core is not in a halt
state), IDQ_UOPS_NOT_DELIVERED.CYCLES_0 (num-
ber cycles during which the Front-End allocated zero uOps
to the Resource Allocation Table while the Back-end of the
processor is not stalled.), INT_MISC.RECOVERY_CYC-
LES (number of cycles spent waiting for a recovery
after an event such as a processor nuke or assist),
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT (num-
ber of retired load uOps for which the data sources were L3
and cross-core snoop hits in core cache), and MEM_LOAD
_UOPS_RETIRED.L1_HIT_PS (number of retired load
uOps with L1 cache hits as data sources) counts (per

sec.). AIBench training only tests exceed all other tests
in DTLB_LOAD_MISSES.WALK_DURATION (number of
cycles when the page miss handler is servicing page walks
caused by DTLB load misses), L1D_PEND_MISS.PEND-
ING (increments the number of outstanding L1D misses
every cycle), and L1D_PEND_MISS.REQUEST_FB_FULL
(number of times a request needed a FB entry but there was
no entry available for it) counts (per sec.). AIBench inference
only tests exceeded all other tests in IDQ.ALL_DSB_CYCLE
_ANY _UOPS (number of cycles where DSB is delivered
at least one uOp), INST_RETIRED.PREC_DIST (number
of precise instruction retired events), L2_RQSTS.RFO_HIT
(number of store RFO requests that hit the L2 cache),
and UOPS_RETIRED. RETIRE _SLOTS (number of
retirement slots used each cycle). CPU Mark exceeded
all other tests in ARITH.DIVIDER_UOPS (number of
uOps which used the divider including divide and square
root uOps), BR_MISP_RETIRED.ALL_BRANCHES (num-
ber of mis-predicted branch instructions at retirement),
and MEM_UOPS_RETIRED.ALL_STORES (number of
all retired store uOps) counts (per sec.). Memory Mark
exceeded all other tests in CYCLE_ACTIVITY.STALLS
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TABLE 4. Events per second sample.

_LDM_PENDING (number of cycles during which no
instructions were executed in the execution stage of the
pipeline and there were pending memory instructions waiting
for data), and LSD.UOPS (number of uOps delivered by the
loop stream detector in the branch prediction unit) counts (per
sec.). DiskMark exceeded all other tests in ILD_STALL.LCP
(number of cycles where the decoder is stalled on an
instruction with a length changing prefix), MEM_LOAD_
UOPS_L3_HIT_RETIRED.XSNP_MISS (number of retired
load uOps for which data sources were L3 hit and cross-core
snoop missed in core cache), and OTHER_ASSISTS.ANY
_WB_ASSIST (number of micro-code assists invoked by
hardware upon uOp writeback) counts (per sec.).

VI. RESULTS ANALYSIS
A. GRAPHICAL ANALYSIS
In this section, in order to better assess the results, we conduct
a graphical analysis of the AIbench and PassMark bench-
marks by plotting the CPI (one of the factors in the elapsed
time product) Vs. various captured metrics to better contrast
the AIBench and components of the PassMark benchmarks.

In order to identify bottlenecks, we start by analyzing the
CPI versus the core utilization, and the major components of
Table 3: Core Bound, Memory Bound, Memory Bandwidth,
Percent Retiring, Front End Bound, and Back End Bound.
TheCPI vs CPUutilization plot is shown in Fig. 3. The bubble
colors indicate the percent port utilization value. The ports on
a modern Intel microprocessor attach to either an arithmetic
logic unit (ALU), a floating-point unit (FPU), a load-store
(LS) unit, and an address generation unit (AGU). A regression
line with r=−0.81 (slope) is also drawn and shown to reflect
the relationship. Low port utilization results in a large CPI.
A high CPU utilization results in a low CPI. The AIBench-
Training only, CPU Mark, and AIBench-Inference only are
the furthest away points from the regression line. This results
from these tests being highly memory bound which raises the
CPI despite a high CPU utilization.

The CPI vs Core Bound (which reflects non-memory
core cycles) plot is shown in Fig. 4 along with a regres-
sion line with r=−0.74. The bubble color reflects the

UOPS_ISSUED.ANYvalue. As expected, the CPUMark and
AIBench were the most core bound tests and suffered from
contention to shared hardware resources. Disk Mark was the
least core bound, followed by the 3D Graphics Mark test.
The number of uOps issued correlates positively with the core
bound value.

In Fig. 5, we plot CPI vs Memory Bound and a very weak
regression line with r=−0.04. The bubble color reflects the
% DRAM Bound value, i.e., the amount of cycles where the
CPU stalled on DRAM. As expected, Memory Mark was
the most DRAM bound followed by AIBench, 3D Graphics
Mark. Disk Mark and CPU Mark were the least DRAM
bound. Disk Mark seems to be the test going against the trend
of the higher the memory bound value, the higher is the CPI.
Without the Disk Mark test, the regression line would have a
positive r.

Although 3DGraphicsMark andAIBench-all tests seem to
have a close memory bound value, 3D Graphics Mark shows
a much higher CPI given that it is more front end bound with
less threading than AIBench.

In Fig. 6, we plot the CPI vs the memory bandwidth with
a regression line with r=-0.48. The bubble color reflects the
memory latency value.MemoryMark followed byCPUMark
were the most memory bandwidth consuming benchmarks
with the highest stalls due to approaching the bandwidth
limits of the DRAM. The AIBench and 3D Graphics Mark
came next. Disk Mark was in the distant last position. The
benchmarks which accumulated the largest percentage of
stalls due to the memory latency were AIBench-Inference,
AIBench-all tests, followed by 3D Graphics Mark and Disk
Mark, then AIBench-Training and CPUMark.MemoryMark
was a distant last.

The CPI vs % Retiring graph is displayed in Fig. 7 with
a regression line with a strong r=-0.96. The bubble color
is uOps retired. AIBench, in particular AIBench-Inference,
had the highest number of retired uOps slots followed by
CPU Mark. Disk Mark, Memory Mark, and 3D Graph-
ics Mark occupied the last positions. The CPI correlated
negatively with the % retiring and the number of retired
uOps. We also observe that due to its memory bound nature,
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FIGURE 3. CPI vs. CPU utilization (and Port Utilization).

FIGURE 4. CPI vs. core bound (and uOps_Issued).

AIBench-Training had a much lower % retiring and number
of uOps retired than its AIBench-Inference counterpart.

In Fig. 8, we plot CPI vs Front End Bound, along with a
regression line with slope r=0.73. The bubble color reflects
the mispredicted branched retired value. Disk Mark was a
distant first given its high number of stalled cycles due to high
Icache misses (16.4%) and branch resteers (21.5%, as a result
of branch mispredictions). 3DGraphicsMark came in second
place. Memory Mark, CPU Mark, and AIBench were in the
last spots with little front end issues.

In Fig. 9, we plot CPI vs Back End Bound, with a regres-
sion line of slope r=−0.27. The bubble color reflects the

Memory Bound value. Memory Mark, with high memory
bandwidth and latency, and with a high –59%– port 0 utiliza-
tion, came in first place due to data (L1, L2, L3) cachemisses,
followed by AIBench (due its high DRAMbound percentage,
high – 49%– port 0 utilization), 3D Graphics Mark (memory
latency 42% and memory bandwidth 37%, L1 –20%– and
L3 –10%– cache bound, and high –38%– port 0 utilization)
and CPU Mark (core bound, high port utilization indicating
execution unit contention, and high memory bandwidth).

For comparison purposes, Fig. 10 displays the Radviz dia-
gram for the benchmarks with four axes: % retiring, % front
end bound, % back end bound, % bad speculation. We make
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FIGURE 5. CPI vs. memory bound (and DRAM bound).

FIGURE 6. CPI vs. memory bandwidth (and Memory Latency).

the following observations. TheAIBench andCPUMark tests
achieve higher % retiring from the rest. Most benchmarks are
more back end bound than front end bound with the exception
of Disk Mark. Memory Mark is the most back end bound.
In terms of bad speculation, CPU Mark, 3D Graphics Mark,
and Disk Mark exceed the rest, while the Memory Mark
and AIBench tests generate the lowest percentages of bad
speculations.

Fig. 11 shows another Radviz diagram for the benchmarks
with four axes: memory latency, memory bandwidth, number
of last level cache (LLC) misses, and % store bound. In terms
of memory performance, AIBench is the least sensitive to

memory bandwidth and is in the center. In terms of memory
latency, Disk Mark is the most sensitive and is in distant first
place, whileMemoryMark is the least sensitive. The opposite
can be said regarding % store bound, with Memory Mark in
first place, while Disk Mark in last place. In terms of number
of last level cache (LLC) misses, AIBench is in first place,
in particular AIBench-Training. Furthermore, according to
the memory access profiles of Table 3, the AIBench tests
performed 6x more loads/sec, 2560x more stores/sec, and 3x
more LLC misses than the Memory Mark tests.

In Fig. 12, the last Radviz diagram for the benchmarks
with four axes: % L1 Bound, % L2 Bound, % L3 Bound,

VOLUME 12, 2024 83867



F. N. Sibai et al.: Characterization and Machine Learning Classification of AI and PC Workloads

FIGURE 7. CPI vs. retiring (and uOps Retired).

FIGURE 8. CPI vs. front end bound (and Branch Mispredicted Retired).

and LLC misses, reflects the cache performance. The 3D
Graphics Mark stalled the most on the L1 cache without
missing it. The Memory Mark tests stalled the least on the
L1 cache. The Disk Mark benchmark stalled the most on the
L2 cache. The Disk Mark tests, followed by 3D Graphics
Mark, stalled the most on the L3 cache shared by the 4 cores
either due to contention between the cores or due to conflict
misses. The AIBench, CPU Mark, and Memory Mark tests
missed the LLC the most, while the Disk Mark tests missed
the LLC the least, and was more L3 bound and L1 bound than
L2 bound. In general, the 3D Graphics Mark was closest to
the center.

B. HOTSPOT ANALYSIS
Fig. 13 displays the results of the hotspots and function call
stack for the AIBench-Inference benchmark revealing that
Tensorflow roughly occupies 25% of the CPU time exercising
the AVX instruction set. The Tensorflow-ML was reported to
improve the performance AI workloads on CPUs.

C. EVENT CORRELATIONS WITH CPI AND ELAPSED TIME
We fed the VTune performance snapshot metrics and event
counts of the AIBench and PassMark benchmarks to Orange
3.0 after normalizing the data by dividing the event counts by
the elapsed time ∗ 106, and dividing the elapsed time by 100.
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FIGURE 9. CPI vs. back end bound (and Memory Bound).

FIGURE 10. Radviz diagram with four axes.

Fig. 14 displays the Pearson correlation coefficients of
the features with CPI, where - or blue mean negative cor-
relation, and + or green mean positive correlation. Some
of the events highly correlating with the CPI are uOps dis-
patched to Port 5 /1 /7 /0 /4, uOps executed, cycles delivering
at least one uOp or 4 uOps to the decode stream buffer,
instructions retired, % retiring, retired store uOps, and % port

utilization. More details on the meaning of the events can be
found in [33]. Interestingly, the highest negatively correlating
events with the CPI, are the number of dispatched uOps on
the Haswell port 5 (Integer ALU/shift, vector Integer ALU,
and 256-bit FP shuffle and blend), number of issued uOps,
number of instruction decode queues (IDQ) decode stream
buffer (DSB) uOps. Among the highest positively correlating
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FIGURE 11. Second radviz diagram with four axes – memory performance.

FIGURE 12. Third radviz diagram with four axes – cache performance.

events with the CPI, are the % front end bound, and L2
cache bound.

Similarly, we correlated the captured events of the
AIBench and PassMark benchmarks with the normalized
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FIGURE 13. Hotspots and function call stack in AIBench-Inference only.

FIGURE 14. Correlation coefficients of the event counts and metrics with the CPI.

elapsed time. The Pearson correlation coefficients of
the features with elapsed time (scaled by 1/100; - or
blue means negative correlation, + or green mean pos-
itive correlation) are displayed in Fig. 15. Some of
the events which highly correlate with the normal-
ized elapsed time are write back assists, ITLB misses,
STLB and DTLB load misses, memory uOps retired,
and ‘‘OFFCORE_RESPONSE:request= DEMAND_RFO:
response=L3_hit.hitm_other_core’’ which reflects the num-
ber of all data writes –request for ownership RFOs – which
hit in the L3 cache, and which also hit in another core cache

in the Modified state requiring a line forwarding. Write back
assists reflect the number of microcode assists invoked by the
hardware when writing back, exclude FP assists, and include
assists pertaining to page access dirty and AVX.

D. RESULT DISCUSSION
In Summary, the AIBench benchmark was characterized by
having among the highest levels of CPU utilization par-
ticularly with all 4 cores active, microarchitectural usage,
retiring, port utilization, back end (memory, DRAM) bound,
memory latency, store bound, and core bound percentages
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FIGURE 15. Correlation coefficients of the event counts and metrics with the elapsed time.

among the covered benchmarks. It scored among the lowest
CPIs. In particular, the AIBench-Training generated the high-
est L1D and L2 cache pending, DTLB miss, and machine
clear counts. The AIBench-Training exhibited a larger CPI,
was more memory bound, and exhibited lower retiring
and logical core utilization than its AIBench-Inference
counterpart.

The PassMark CPUMark benchmark was characterized by
having among the highest levels of microarchitectural usage,
threading, retiring, port utilization, memory bandwidth, and
core bound percentages. It also scored among the lowest
CPIs.

The Memory Mark benchmark was characterized by hav-
ing among the highest levels of back end (memory, DRAM)
bound, and memory bandwidth percentages. It also scored
among the lowest percentages of microarchitectural usage,
retiring, port utilization, front end bound, L1 and L3 cache
bound, and memory latency.

The 3D Graphics Mark benchmark exhibited the highest
L1 and L3 cache bound, and the lowest CPU utilization,
microarchitectural usage, threading, and core bound percent-
ages.

The Disk Mark benchmark was the most front end bound,
L1 and L3 cache bound, and among the lowest in CPU
utilization, retiring, port utilization, back end bound, memory
bandwidth, and store bound.

Generally, the performance of hardware units identified
and exercised by the above workload characteristics can be

enhanced by increasing hardware resources, raising capaci-
ties, reducing latencies, or increasing pathway bandwidths.

In terms of core activity, the DiskMark test followed by the
3D Graphics Mark marked the lowest core utilization with
all 4 cores idle during most of the elapsed time. AIBench-
training only and Memory Mark followed with most of their
elapsed times spent on 1 core only. Next came CPU Mark
which ran most of the time on 3 cores. The AIBench-all
tests, AIBench-inference only, and AIBench-first 5 tests took
the crown with the top utilizations of all 4 cores. Although
AIBench-all tests and CPU Mark marked high core utiliza-
tions, the thread activity plots of both benchmarks revealed a
much higher execution intensity of the AIBench benchmark.

VII. MACHINE LEARNING CLASSIFICATIONS
A. CLASSIFYING THE CPI
Using Orange 3.0 to train and test 9MLmodels, we classified
the different AIBench and PassMark workload CPIs and
elapsed times based on the above event counts (events/sec),
and the following captured metrics (as is): retiring, front end
bound, bad speculation, back end bound, memory bound,
L1 bound, L2 bound, L3 bound, contested accesses, data
sharing, L2 latency, SQ full, DRAM bound, memory band-
width, memory latency, LLC miss, store bound, core bound,
port utilization, and CPU utilization. In this classification
investigation, the AIBench-inference only and AIBench-
training only data were skipped and excluded. Instead, the
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TABLE 5. Performance of the 9 ML models in classifying the CPI.

TABLE 6. Optimal ML model parameters for classifying the CPI.

AIBench-all tests metrics were included in the dataset. With
66% random sampling (i.e. 66% of data rows were used
for training, and 34% of the rows used for testing), and
based on the mean square error (MSE) and R2 metrics, the
linear regression (LR; with MSE=0.006; R2

= 0.778) turned
out to be the best CPI classifier, followed by kNN (with
MSE=0.008; R2

= 0.711), as shown in Table 5. SGD per-
formed the worst.

The above results were obtained by trial and error after
repeated experiments by varying theMLmodel parameters to
optimize the mean square error (MSE) and R2 metrics. The
optimal parameters which resulted in the best MSE and R2

are displayed in Table 6.

TABLE 7. Performance of the 9 ML models in classifying the CPI with
trimmed parameters.

After trimming the number of features in the dataset, and
only leaving as features the following 10 features which
highly correlate with the CPI:

• OFFCORE_REQUESTS_OUTSTANDING.ALL _
DATA_RD:cmask=6,

• OFFCORE_REQUESTS_OUTSTANDING.CYCLES
_WITH_DATA_RD,

• UOPS_DISPATCHED_PORT.PORT_5,
• UOPS_EXECUTED.CORE:cmask=1,
• UOPS_RETIRED.RETIRE_SLOTSRETIRING,
• FRONT-END BOUND,
• LLC Miss,
• CORE BOUND,
• PORT UTILIZATION, and
• CPU UTILIZATION,

the 9 ML models performed as shown in Table 7. After
pruning the features and using only the 10 above features,
all ML classifiers dropped in performance except for LR and
NN which improved. LR remained in the top spot as the best
CPI classifier, with a slight performance drop in R2 andMSE.
One important consequence of training with only 10 features,
is a large reduction in training time.

B. CLASSIFYING THE ELAPSED TIME
Next, classifying the normalized elapsed time (target), with
only the following features which correlated well with the
elapsed time:

• DTLB_LOAD_MISSES.WALK_DURATION,
• ICACHE.IFDATA_STALL,
• ILD_STALL.LCP,
• ITLB_MISSES.WALK_COMPLETED,
• L2_RQSTS.RFO_HIT,
• LD_BLOCKS_PARTIAL.ADDRESS_ALIAS, and
• MACHINE_CLEARS.COUNT,

the 9 ML models performed as displayed in Table 8.
NN emerged as the best classifier with a RMSE of 5 and

R2 of 0.64. The optimal NN parameter settings are 4 hidden
layers with 80, 70, 30, and 20 neurons, respectively, and
with ReLU activation, regularization=0.02 and Adam solver.
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TABLE 8. Performance of the 9 ML models in classifying the normalized
elapsed time.

Again, the performance numbers of Table 8 were obtained
after several runs to optimize the MSE and R2 metrics.

VIII. CONCLUSION
In this work, the performance metrics and events counts
for the AIBench and PassMark PerformanceTest benchmarks
along with their components were captured. AIBench repre-
sents AI workloads with training and inference contents of
deep neural networks such as MobileNet, Inception, ResNet,
VGG, and LSTM. On the other hand, PassMark measures
standard PC applications such as compression, encryption,
sorting, 2D and 3D graphics, and memory and disk reads and
writes. The events most highly correlated with the CPI and
elapsed time were also identified.

Representing deep learning workloads with tests in clas-
sification, image to image mapping, image segmentation,
sentiment analysis, and text translation, the AIBench was
characterized by having among the highest levels of CPU
utilization, microarchitectural usage, retiring, port utilization,
back end bound,memory latency, and core bound percentages
among the covered benchmarks, while ticking the lowest
CPIs. In particular, the AIBench-Training generated the high-
est L1D and L2 cache pending, DTLB miss, and machine
clear counts. The AIBench-Training had larger CPI, was
more memory bound, and had less retiring and logical core
utilization than its AIBench-Inference counterpart. Compar-
atively, CPU Mark exhibited the highest levels of threading
and memory bandwidth. Memory Mark stressed the back
end (memory, DRAM), and the memory bandwidth. The 3D
Graphics Mark benchmark exhibited the highest L1 and L3
cache bound and core bound percentages. In contrast, the
Disk Mark benchmark was the most front end bound, L1 and
L3 cache bound, while exhibiting low CPU utilization and
back end activities.

Based on the collected performance metrics and event
counts, nine machine learning models were trained and tested
to classify the CPI and elapsed time. In classifying the CPI,
the linear regression classifier was the top classifier to mini-
mize theMSE andmaximize the R2 metrics. In classifying the
elapsed time, the neural network model with 4 hidden layers
was the best performer.

This machine learning-based classification can help pre-
dict the CPI and elapsed time of profiled applications and
distinguish between applications with and without deep
learning content based on captured performance metrics and
event counts. Additionally, predicting the workload perfor-
mance based on captured performance event counts can have
other uses such as activating dormant hardware units when
desired, and capacity planning in clouds. Furthermore, the
above findings identified the stressed and overloaded hard-
ware units and can help guide future CPU and accelerator
hardware design enhancements for the various workloads.

Another key contribution of this study lies in its ability to
integrate insights from both data-centric and model-centric
AI perspectives, offering a comprehensive understanding of
AI workload characteristics and hardware utilization pat-
terns, and exemplifying the synergy between data-centric and
model-centric AI methodologies.

It is important to recall that performance enhancements are
not free, for instance, FP4 arithmetic boosts floating-point
performance at the expense of precision and/or accuracy,
while general platform enhancements may be accompanied
by increased costs and power consumptions. One limitation
of this study is that, although the general workload signa-
tures and identified stressed units apply across computing
platforms, the actual performance numbers are specific to
the Intel Haswell processor. Future work includes extending
this work to other PC processors, and to mobile computing
platforms.
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