
Received 26 April 2024, accepted 6 June 2024, date of publication 12 June 2024, date of current version 19 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3413576

LLMT: A Transformer-Based Multi-Modal Lower
Limb Human Motion Prediction Model for
Assistive Robotics Applications
S. HOSSEIN SADAT HOSSEINI 1, NADER N. JOOJILI2,
AND MOJTABA AHMADI 1, (Senior Member, IEEE)
1Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
2Department of Information Technology, Carleton University, Ottawa, ON K1S 5B6, Canada

Corresponding author: S. Hossein Sadat Hosseini (sayyedhosseinsadatho@cmail.carleton.ca)

The work of Mojtaba Ahmadi was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) under
the Discovery Grant RGPIN-2021-04207, and in part by the CREATE READi Program under Grant 497303.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Research Ethics Board (REB) of Carleton University under Application No. 114417.

ABSTRACT Recognition of human intendedmotion is key to developing intelligent human-robot interaction
(HRI) controllers in assistive devices. This study aims to develop a human motion recognition architecture
tailored explicitly for real-time assistive robotics, such as exoskeletons and robot-assisted walking systems.
We introduced a multi-modal lower limb modified transformer (LLMT), an architecture that bridges the
gap in existing HRI technologies by defining a comprehensive set of relevant motions that generalize
well for unseen subjects, ensuring adaptability and precision in diverse interaction scenarios. LLMT uses
sparse multi-channel surface electromyography (sEMG) and Inertial Measurement Unit (IMU) signals to
classify different motion patterns. The accuracy of the proposed method was compared with that of the
classical machine learning (cML) models and a convolutional neural network (CNN). This comparison
uses experimental data from seven human participants in two motion scenarios and a benchmark dataset.
The validation methods included inter-subject, leave-one-subject-out, and intra-subject approaches. The
proposed method demonstrated excellent accuracy, achieving 99.42 ± 0.25%, 99.07 ± 0.32%, and
97.08 ± 1.16% in inter-subject, leave-one-subject-out, and intra-subject validation methods on the collected
and benchmark datasets, respectively. Additionally, it exhibited an average online prediction time of 84.09ms
within the recording loop.

INDEX TERMS Surface electromyography, inertial measurement unit, modified transformer, human–robot
interaction, lower limb motion recognition, assistive robotics.

I. INTRODUCTION
As the population ages, the need for assistive and reha-
bilitation robots is increasing. These robots are practical
tools that can significantly increase motor capabilities,
independence, and quality of life for disabled individuals [1],
[2]. For optimal benefits of rehabilitation devices, it is
essential to customize them to meet the unique needs of
people with disabilities [3]. Moreover, accurate predictions
of human motion ensure safety and foster a more intuitive
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and cooperative interaction between humans and robots.
Kinematic, kinetic, and digital data are frequently used
in human motion recognition systems [4], [5]. However,
a drawback of these signals is that they can only be measured
once the human starts the motion. This adds an inherent delay
to the kinetic, kinematic, and image-based human motion
recognition [6]. Therefore, new technologies are required that
can predict the motions intended by humans for robots to
react in real-time.

Surface electromyography (sEMG) is an alternative
non-intrusive signal for detecting a human’s intended motion.
This signal is produced 30-150 ms before a human initiates a
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motion [7]. Early detection may help decrease the inherent
delay in motion recognition systems and improve the
response time of robots in human-robot interaction (HRI),
leading to a more natural cooperation. However, the accuracy
of the sEMG-based motion recognition system may not be
sufficient due to the limb position effect [8]. Mechanical
sensors, such as Inertial Measurement Units (IMUs), can
supply extra information regarding the position of the
limb, thus offsetting the limitations of sEMG. Therefore,
to improve the performance of motion intent recognition
systems, neuromuscular-mechanical sensor fusion has been
developed [9]. The fusion of two modalities helps to offset
the limitations of each modality, ensuring early detection and
precise limb position information, which enhances the overall
robustness and consistency of the motion recognition system.

classical machine learning (cML) and deep learning (DL)
are the two main methods for multi-channel sEMG and
mechanical-based recognition of gestures and motion in the
upper and lower limbs. Various cML models have been
applied to hand gesture recognition, including multi-layer
perceptron (MLP) [10], k-nearest neighbor (KNN), support
vector machine (SVM) [11], and random forest (RF) [12].
These ML models use time and frequency features such
as mean absolute value (MAV), root mean square (RMS),
slope sign changes (SSC), waveform length (WL), integrated
sEMG (iEMG), auto-regressive coefficients (AR), and other
statistical measures [13].

DL has been extensively used for motion and gesture
recognition. In [14], five cML and DL algorithms were
employed to detect and classify muscular activities through
sEMG signals, where Ninapro DB1 [15] was utilized to
validate the model. An autonomous learning framework
combining depth vision and sEMG signals was introduced
in [16], enabling the automatic labelling of sEMG data
classes using depth insights. The system then employs a
multi-layer neural network (MNN) to detect hand gestures in
real-time. A convolutional neural network (CNN) approach
for recognizing different wrist and finger movements was
presented in [17]. Performance evaluations were conducted
using the Ninapro DB2.

Despite abundant research on hand movement and gesture
recognition, few studies have been conducted on the lower
limbs. cML techniques such as SVM, LDA, and MLP
were used in [18] to predict gait phases during walking on
different terrains. Their method predicted the gait phases
for leg prosthesis control by fusing multi-channel sEMG,
IMU, and goniometer signals. The study found that including
contralateral signals significantly reduced the errors in gait
phase prediction. A neural network algorithm was developed
in [19] to detect eight lower limb movements. The algorithm
extracts time-frequency features from the sEMG signal and
uses a genetic algorithm to optimize and speed up the
convergence. They achieved an average recognition accuracy
of 94.89% and an average recognition time of 109.67 ms.
To mitigate the impact of subjects’ slow response and lack
of concentration, the original multi-channel sEMG data

undergoes a preprocessing step called ‘‘breaking off both
ends,’’ which involves discarding the initial and final 200 ms
segments of each action data to eliminate potential bias.
The authors of [20] proposed a vision transformer-based
recognition algorithm using mechanomyography (MMG)
and kinematic signals for recognizing eight lower limb
motions. Testing on six subjects, achieved 94.62% and
80.13% accuracy in the inter-subject and leave-one-subject-
out validation methods, respectively.

Prior research on lower limb motion recognition in
exoskeletons and robot-assisted walking systems often lacks
a broad spectrum of motions, including transitions between
sitting and standing, directional changes, and walking.
Moreover, for lower-limb robotics applications, it is crit-
ical to develop a highly accurate and robust model that
performs well in various validation scenarios, such as inter-
subject, intra-subject, and leave-one-subject-out validations.
Misclassification in this context can lead to falls, underlining
the criticality of a model that can precisely predict human
motion. High-accuracy motion/intention detection remains
an open and vital challenge in lower-limbmotion recognition,
particularly when working in online applications. In recent
years, numerous variants of the transformer model [21]
have emerged, known for their effectiveness in various
domains. In the biosignal processing field, a transformer-
based architecture was presented in [22] for electroen-
cephalography (EEG) signal decoding. Another transformer
architecture has been presented in [23] for hand gesture
recognition. The recent transformer-based architecture for
biosignal processing had many model parameters, making it
challenging in real-time and online applications in assistive
robotics. Therefore, based on [21], this study proposes a
modified transformer architecture tailored for lower limb
motion recognition for real-time applications. Our approach
aims to fill the gaps in the existing research by providing
a solution that enhances the accuracy and robustness of
motion recognition in lower-limb assistive robotics. Themain
contributions of this study are as follows.

• To the best of our knowledge, this study is the first to
propose a transformer structure for recognizing various
lower limb motions customized for exoskeletons and
assistive walking systems through sparse multi-channel
sEMG and IMU signal fusion.

• This study shows the superior accuracy of the proposed
model under several rigorous validation methods in
which the model has not seen the test subject in the
training phase.

• In this study, we evaluated the online performance of the
proposed model for real-time applications.

• This study adopted the average weighting method for
the attention score to achieve balanced information
aggregation.

Section II of this paper discusses the experimental
protocols, tools, and motion scenarios. Section III elucidates
the cML framework and introduces the proposed lower
limb modified transformer (LLMT) algorithm. Section IV
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showcases the classification results obtained using the
collected and benchmark public dataset. Finally, Section V
presents the paper’s discussion, conclusions, and future
works.

II. TOOLS AND PROTOCOLS
A. EXPERIMENTAL PROTOCOL
This studywas approved by the Research Ethics Board (REB)
of Carleton University under ID 114417. All participants
provided informed consent to participate in the study. The
study was conducted with seven healthy participants, three
males and four females. The age rangewas 33.14±7.75 years.
Participants’ heights averaged 166.85 ± 8.31 cm, and their
weights were approximately 69.28 ± 18.34 kg.
Wearable sensors were attached to the dominant leg of

the subjects to monitor lower limb muscle activity and joint
and limb movements. Multi-channel sEMG and IMU signals
were collected using EMG-IMU Delsys Wireless® Trigno
Avanti™ sensors from seven specific muscles in the dominant
leg. These muscles included the gastrocnemius lateralis (GL),
tibialis anterior (TA), biceps femoris (BF), rectus femoris
(RF), gluteus maximus (GMA), gluteus medius (GME), and
sartorius (SA). Figure 1 shows the lower limb muscles
included in this study and the placement of the IMU sensors
used [24], [25]. These particular muscles were selected for
data collection as they exhibit low correlation [24], are
suitable for detecting gait initiation intentions [25], and are
crucial for movements of the hip, knee, and ankle, which
are often supported by wearable lower limb devices [18].
While we have not specifically studied the impact of fewer
muscles on the performance of the models, the best selection
of fewer or more muscles can be optimized in real-time
applications based on the accuracy and runtime of themodels.
The placement of electrodes followed the standards set by
the sEMG for the non-invasive assessment of muscles [26].
To determine the ideal position for electrode placement,
we physically examined the muscle belly and aligned the
electrode in the direction of the primary muscle fibres [27].
Before sensor attachment, any excess hair at the muscle
sites was removed, and the skin was gently cleansed using
an alcohol wipe. Double-sided adhesives were then used to
secure the sensors to the skin.

sEMG signals were sampled at 1778 Hz and subjected
to hardware band-pass filtering within 20 to 450 Hz range.
6-degree of freedom (DOF) IMUs, comprising tri-axial
accelerometers and gyroscopes, were positioned on the
subjects’ thigh–below the RF muscle sEMG electrode–and
on the shank adjacent to the TA muscle sEMG electrode
(Figure 1). IMUs were sampled at 374 Hz, resampled
to 1778 Hz, and fused with sEMG signals at the feature
level [28]. All of the data were streamed wireless into Python
for further analysis. To diminish motion artifacts, sEMG
signals underwent high-pass filtration using a 6th−order
Butterworth filter at 20 Hz. Subsequently, the sEMG signals
underwent notch filtering with a 6th−order Butterworth filter

having a bandwidth of 6 Hz at frequencies 60 Hz, 180 Hz,
and 300 Hz. These frequencies were chosen based on spectral
analysis to effectively eliminate surrounding electromagnetic
interference. The filtering steps help ensure that the output of
the models is noise-free and remains consistent.

FIGURE 1. Lower limb muscles of the human [29] and the location of the
IMU sensors.

B. MOTION SCENARIOS
Two distinct motion scenarios were defined to comprehen-
sively represent the range of daily activities that an individual
typically engages in. These scenarios were designed for
application to both exoskeletons and robot-assisted walking
systems.

• Scenario 1 (distinct motions): This scenario comprises
ten distinct motions, which include sitting, standing,
transitioning between standing and sitting and vice
versa, moving forward and backward, turning left and
right, and sidestepping (Figure 2a). At the start of each
recording trial, the subjects were instructed to perform
one of the tasks, and then the recording started for
the entire duration of motion. Each movement was
repeated 30 times. At the end of the movement, a sound
prompt was provided by the recording software was
given to them, and the subsequent movement started.
The recording software randomly chose the movements.
A time progression bar prompted the participant to
perform activity onset and offset.

• Scenario 2 (walking motions): This scenario was
segmented into six distinct phases: (1) standing, (2) level
walking (LW) on a flat surface, (3) stairs ascending
(SA), (4) stairs descending (SD), (5) ramp ascending
(RA), and (6) ramp descending (RD). Participants were
instructed to navigate various terrains, as depicted in
Figure 2b. Each terrain was traversed for 2 seconds, from
direction 1 to direction 2 and then in the reverse order.
Upon receiving a cue from the software, participants
commenced walking. Notably, the software recorded
only 2 seconds of each motion, and each activity was
repeated 30 times.
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In both scenarios, to diminish the fatigue effects, the
participants were given a 5-minute rest period every five
repetitions. In these motion scenarios, the gait did not get
disturbed and the participants walked on the ground at a self-
selected, comfortable speed.

After data collection, to reduce the fluctuation and
nonstationarity of the sEMG and IMU signals, the Z -score
method was employed as follows:

X =
x − µ
√

σ 2
(1)

where X ∈ RW×S, x ∈ RW×S, µ, σ 2, S, and W represent
the standardized input, input signal, mean value, variance of
the data, number of data channels, and sample points in each
trial, respectively.

FIGURE 2. Motion scenarios. (a) Scenario 1. (b) Scenario 2.

III. METHODOLOGY
In section III-A, we discuss various cML algorithms and our
implementation methodology for the models. Section III-C
describes the detailed structure and design of the LLMT
architecture.

A. CLASSICAL MACHINE LEARNING (CML)
Time-domain (TD) features tend to outperform frequency-
domain (FD) features in classification tasks, demanding less
computational power. This efficiency reduces latency in real-
time applications [13]. Therefore, TD features were extracted
in this study. Nine TD features are extracted per channel,
including RMS, iEMG,MAV,WL, SSC, variance, logarithm,
skewness, and kurtosis from the sEMG signals [13]. For
the IMU signals, nine features per channel were extracted,
including themean, standard deviation,minimum,maximum,
energy, median absolute deviation, mean absolute deviation,

kurtosis, and skewness [30]. The time window length was
W=250, with an overlap of 64 between two consecutive
windows. Given the sEMG and IMU signals sampling rates
(1778 Hz), 250 samples were equivalent to approximately
140 ms. The sEMG had a feature space dimensionality of 63,
whereas the IMU had 108.

B. FEATURE SELECTION
In this study, we employed the sklearn library [31] to compute
the mutual information (MI) and quantify the relationship
between two random variables. MI is characterized by a
value of zero when the variables are independent, with higher
values indicating a greater degree of dependency between
them [32]. As the entire feature space has a dimensionality of
171, we selected the top 100 features based on their MI values
and fed them into the RF, MLP, KNN, and SVM classifiers to
predict human motion.

C. LOWER LIMB MODIFIED TRANSFORMER (LLMT)
MODEL
Sequential learning traditionally uses recurrent neural net-
works (RNNs), which have challenges such as gradient
instability and difficulty in capturing long-range depen-
dencies [33]. Gated Recurrent Units (GRUs) and Long
Short-TermMemory (LSTM) networks have been introduced
to solve these problems. However, they have limitations
in terms of training duration and scalability for long
sequences [34].

With their self-attention (SA) mechanism, transformers
have revolutionized the natural language processing (NLP)
field [35]. They can effectively capture long-range dependen-
cies in sequences of various lengths. The model employs an
encoder-decoder architecture that processes sequential data
in parallel, in contrast to the local receptive fields of CNNs
and sequential order of RNNs. The Vanilla Transformer
extends standard transformer applications to time series
classification [36].
As illustrated in Fig. 3, the proposed architecture

encompasses a preprocessing block in Section III-C1,
embedding layer in Section III-C2, transformer encoder in
Section III-C3, and classifier in Section III-C4.

1) PREPROCESSING OF DATA
Transforming a raw time series dataset into a format suitable
for supervised learning [37] involves segmenting the dataset
into parts, denoted as Xi, where i represents the segment
index. These segments consist of S channels andW samples,
capturing distinct data subsets. The transformation of each
segment begins by creating a lagged input sequence, Xi,L.
This sequence is formed by shifting the data segment
backward using a lag parameter nin = 10. A prediction
sequence, Xi,P, is then generated by shifting the data forward,
as determined by the prediction parameter nout = 1. Finally,
the matrices of the lagged and predicted sequences are
concatenated horizontally to form Xi,T ∈ RW×(M .S), where
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FIGURE 3. The architecture of the proposed LLMT.

M = (nin + nout). Applied across all segments, this method
yields a transformed dataset D.

2) LINEAR EMBEDDING LAYER
Before the processed sequence is input to the transformer
encoder, we split Xi,T into M non-overlapping patches with
a size of (S × S). Each patch was then flattened into a vector
xpj ∈ RS2 , 1 ≤ j ≤ M . A linear projection is then applied
within the dimensional vector space of the model, denoted
as d , utilizing the embedding matrix E ∈ RS2×d . This
step transformed the input into an embedded representation.
Subsequently, these representations were concatenated with
a learnable classification token, vclass [35]. If the spatial
arrangement of these patches is not preserved, the transformer
treats the inputs as an unordered patch collection. However,
because the sEMG and IMU signals are time series, it is
crucial to maintain the spatial arrangement, mirroring the
order of the original sequence. To achieve this, the positional

information Epos ∈ R(M+1)×d is encoded and integrated with
the patches, ensuring the sequential integrity of the data. It has
been claimed that 1 − D and 2 − D positional encodings
produce almost identical results [38], [39]. Therefore, simple
1 − D positional encoding is used in the proposed model
to maintain positional information. Equation 2 describes the
final embedded sequence.

z0 = [vclass; x
p
1E; xp2E; . . . ; xpME] + Epos (2)

3) TRANSFORMER ENCODER
The embedded sequence, z0, is sent to the transformer
encoder (Figure 3). The encoder consists of L identical layers
(in the proposed model, it consists of one layer). Each layer
has two main components: a multihead self-attention block
(MSA), and a fully connected MLP block consisting of
two linear layers and a Gaussian Error Linear Unit (GELU)
activation function. MSA and MLP are described as follows:

z′ι = MSA(LN (zι−1)) + zι−1, ι = 1, ..,L (3)
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zι = MLP(LN (z′ι)) + z′ι, ι = 1, ..,L (4)

where LN represents the normalization layer. The final output
of the transformer is then described as

ZL = [zL0; zL1; . . . ; zLN ] (5)

we take the first element of matrix ZL in Equation 5, zL0 , and
send it to a layer normalization function as

y = LN (zL0 ) (6)

The output from Equation 6 is sent to the classifier block,
as described in Section III-C4.

TheMSA block (Figure 3), as the central component of the
transformer, has two linear layers: SA and a concatenation
layer. Next, we focus on SA and MSA.

1) Self-attention (SA): SA was first introduced in [21],
intended to capture the interaction between different
vectors in the input sequence of Z ∈ RN×d , where d
is the embedding dimension and N is the number of
vectors in the input sequence. The attention mechanism
can be mathematically represented as:

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V (7)

where Q, K , V , and dk are the query, key, and value
matrices, and the size of each vector in these matrices,
respectively. These matrices can be represented by the
following linear transformation of input sequence of Z :

[Q,K ,V ] = ZWQKV (8)

where WQKV
∈ Rd×3dk denotes the learnable weight

matrix. The attention score between query element qi
and key element kj is calculated as:

score(qi, kj) = qi · kTj (9)

To improve the weighting, attention scores are often
scaled by the square root of the dimension of keys dk :

scaled_score(qi, kj) =
score(qi, kj)

√
dk

(10)

The scaled scores were then passed through a softmax
function to obtain the attention weights wij:

wij =
escaled_score(qi,kj)∑n
j=1 e

scaled_score(qi,kj)
(11)

These attention weights represent the importance of
each key element kj with respect to the query element
qi. They are then used to compute the weighted sum of
the value elements vj to obtain the final output.

attention(qi,K ,V ) =

n∑
j=1

wij · vj (12)

Calculating the attention scores using the average
weighting method for every input sequence ensures

a balanced information aggregation without reducing
overall results.

2) Multihead Self-Attention (MSA): We applied the SA
mechanism (Eq. 7- Eq. 12) h times (number of heads
in Table 1) to the input sequence Z and concatenate
the outputs in matrix [Head1;Head2; . . . .;Headh] ∈

RN×h.dk . We then apply a linear transformation to
obtain the following results:

MSA(Q,K ,V ) = [Head1;Head2; . . . ;Headh]WO

(13)

where WO
∈ Rh.dk×d and dk = d/h. This completes

the description of LLMT architecture.

4) CLASSIFIER
After the above steps, we applied average pooling to
Equation 6, the output of the transformer encoder, batch
normalization followed by an alpha dropout, an MLP, and an
alpha dropout layer, and then an MLP with an output number
of neurons equal to the number of motion classes. Then,
the softmax function was used to predict the probability of
each motion (classifier block in Figure 3). The cross-entropy
objective function is employed to calculate the classification
loss as follows:

L = −

N∑
n=1

yn log(ŷn) (14)

where N , yn, and ŷn are the number of motions, real label
of the motion, and predicted probability of the motion,
respectively.

IV. RESULTS
The proposed method was implemented using Python 3.9 and
the TensorFlow library on an Nvidia A100 GPU. It was
trained using the Lazy Adam optimizer with β values of
0.9 and 0.999, and weight decay of 0.001. The training
process used a batch size of 250 for each model. An early
stopping function was employed to avoid overfitting and,
monitor the validation loss. To demonstrate the effectiveness
of LLMT, we compared its performance with other models,
such as MLP, SVM, KNN, RF, and CNN proposed in [40].
The parameters for both the LLMT and classical models
were chosen heuristically to optimize their performance and
ensure satisfactory results. This includes a KNN model
with four nearest neighbors, an SVM using a radial basis
function (RBF) kernel, an RF model with 120 trees, an MLP
configured with hidden layers of sizes 200 and 80, and a
maximum of 1000 iterations.

A. VALIDATION METHODS
To validate the results comprehensively, distinct approaches
were considered as:

• Inter-subject validation: In this validation approach, the
dataset pf each subject was divided into 80% for training
and 20% for testing.
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• Intra-subject validation: In this method, we trained the
model with one specific subject and tested it with all
other subjects. This process was repeated for all subjects.

• Leave-one-subject-out: In this strategy, one subject is
excluded from the training dataset for each iteration.
The model was then tested using excluded subjects. This
process was repeated for all subjects, ensuring that each
subject was used once as the test set.

The last two approaches allow us to thoroughly assess the
model’s ability to generalize and make accurate predic-
tions for subjects that they have not encountered during
training [41], [42].

B. CLASSIFICATION RESULTS
Section IV-B1 presents the classification results of cML,
CNN, and LLMT for the collected dataset, followed by a
comparative analysis of these models on a public benchmark
dataset in Section IV-B2.

1) COLLECTED DATASET
Initially, different variants of LLMT were assessed using
our dataset (section II). To evaluate the accuracy of models,
we focused on their mean and standard deviation (STD) for
the classification of the two motion scenarios involving all
subjects, as detailed in Table 1. Notably, Table 1 reveals
that the model’s accuracy improved and the STD reduced
as we increased both the embedding size and number of
model parameters. As the number of parameters in a model
increases, there is a corresponding increase in training
and testing durations and computational costs. This trend
presents a challenge for real-time control of assistive robotics,
which is the main objective of our project. Consequently,
we consciously chose not to increase the model’s param-
eters to mitigate these challenges and to align with our
goals.

TABLE 1. Description, classification accuracy, and STD of LLMT variants
for two motion scenarios.

Using the inter-subject validation method, we compre-
hensively evaluated various cML models, a CNN model
alongside the LLMT variants, namely LLMT 1-3. Table 2
shows the results of these assessments for both motion
scenarios. LLMT 3 demonstrated an outstanding perfor-
mance and, emerged as the most effective model. It achieved

accuracies of 99.38% in scenario 1 and 99.57% in scenario 2,
as listed in Table 2. LLMT 2 was the second-best performer,
exhibiting robust accuracies of 98.99% and 98.80% for
scenarios 1 and 2, respectively. LLMT 1, however, achieved
a lower accuracy of 83.16% in scenario 1 and 68.44% in
scenario 2. CNN achieved accuracy of 94.26% and 96.37%
in scenarios 1 and 2, respectively. The RF classifier was
notable in the realm of the cML models, with significant
accuracies of 92.99% and 93.44% in the two scenarios. The
MLPmodel exhibited accuracies of 90.91% in scenario 1 and
94.24% in scenario 2. The SVM classifier attained 80.34%
and 91.99% accuracy in the respective scenarios. Finally,
the KNN algorithm demonstrated accuracies of 80.07% in
scenario 1 and 93.73% in scenario 2.

In the rigorous assessment of the proposed architecture,
we focused on LLMT 2 and LLMT 3, employing a leave-
one-subject-out validation method. LLMT 1 was excluded
from further analysis because of its insufficient classification
accuracy in inter-subject validation. This validation approach
involved training the models on six subjects and testing the
remaining one, which was iteratively applied to each subject
in turn. The detailed results of this process are compiled in
Table 3. As detailed in the Table, LLMT 2 demonstrated an
accuracy of 98.47± 0.72% in scenario 1 and 95.19± 5.10%
in scenario 2, across all subjects. LLMT 3, on the other hand,
achieved accuracies of 99.25 ± 0.16% in scenario 1 and
99.30 ± 0.60% in scenario 2. S1 in the table denotes that the
model was trained on all subjects except S1, and then tested
exclusively on S1. This methodology was replicated for other
subjects, as listed in table.

The superior variant of the proposed model, LLMT 3,
underwent intra-subject validation to substantiate its efficacy,
in which each subject’s data were used exclusively for
training and then tested against all other subjects. The detailed
results of this validation approach are illustrated in Figures 4.
LLMT3 demonstrated an impressive overall accuracy of
97.41 ± 0.91% in scenario 1 and 98.64 ± 0.79% in scenario
2. These results underscore the robustness and ability of the
model to generalize well, even when trained on data from
a single subject and tested on entirely distinct data from
other subjects. In Figure 4,′S1′ denotes where the model was
trained on Subject 1 and tested on the remaining subjects,
with analogous interpretations for other legends in the
Figure.

2) PUBLIC BENCHMARK DATASET
The two best variants of the proposed model in terms of accu-
racy are LLMT 2 and LLMT 3 (Table 1). To further assess
these models, we utilized the ‘‘Encyclopedia of Able-bodied
Bilateral Lower Limb Locomotor Signals (ENABL3S)’’
benchmark dataset [43]. This dataset includes bilateral
sEMG data from seven muscles, IMU, and goniometer
data collected from 10 non-disabled participants performing
various activities. These activities include sitting, standing,
walking, ramp ascending and descending, step ascending, and
descending. To make it comparable with our dataset, we used
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TABLE 2. Average accuracy and F1-score of various models using the inter-subject validation method in different motion scenarios.

TABLE 3. The accuracy and F1-score of LLMT 2 and LLMT 3 models for leave-one-subject-out validation on the collected dataset.

TABLE 4. Average classification performance metrics of various models on public benchmark dataset for inter-subject validation method.

only the sEMG and IMU data from the right leg, omitting the
left leg and goniometer data. The resulting dataset comprised
seven sEMG and twelve IMU channels from the shank and
thigh of the participants.

Table 4 shows the average performance metrics for the
cML, CNN, and LLMTmodels for inter-subject validation on
the public dataset. LLMT 3, LLMT2, CNN, MLP, SVM, RF,
and KNN achieved accuracies of 99.33%, 97.70%, 95.02%,
90.75%, 85.93%, 89.92%, and 89.97%, respectively, across
all subjects.

The leave-one-subject-out validation method results for
LLMT 2 and LLMT 3 for the public dataset are presented
in Table 5, where LLMT 2 and LLMT 3 attained an accuracy
of 89.82 ± 3.72% and 98.67 ± 0.93%, respectively. In this
table, S156 indicates that this subject was reserved for testing,
which applies similarly to the other subjects in the dataset.
Intra-subject validation of LLMT3, depicted in Figure 5,
revealed an accuracy of 95.20 ± 1.77%. In Figure 5, ′S156′

shows that the model was trained with this subject and tested
on other subjects. It can be applied similarly to all subjects in
Figure.

C. ASSESSMENT OF MODELS FOR REAL-TIME SCENARIOS
This study aimed to develop a model capable of accurately
predicting human motion with strong generalization for

unseen data that is light and quick for real-time assistive
robotics applications. We trained various cML, CNN, and
LLMT models and saved them for online analysis. The
test times of these models were evaluated by incorporating
them into a recording loop, as shown in Figure 6, where
the fused sEMG and IMU signals were segmented into
250-sample windows (equivalent to 140 ms) and input into
the models to recognize human motion. These experiments
were performed on aWindows 11 laptopwith an Intel CoreTM

i7 CPU and 16 GB RAM. A custom-written Python program
managed data streaming from the sensors to the laptop, and
we measured the runtime of the models for each signal
segment. As Table 6 indicates, the RF model achieved a
92.99% accuracy with a test time of 11.80 ms, while the
MLPmodel reached 90.13% accuracy in 10.54ms. TheKNN,
SVM, and CNN models recorded accuracies of 80.07%,
80.34%, and 94.6% with test times of 7.07 ms, 8.09 ms, and
45.16 ms, respectively. In contrast, the LLMT 2 and LLMT
3 models delivered the highest accuracies of 98.99% and
99.32%, but with longer test times of 75.50 ms and 84.09 ms,
and parameter counts of 12,426 and 17,559, respectively.
These findings suggest that an increase in the signal’s test
time per input batch and the number of parameters for
the models correlates with improved accuracy in motion
prediction.
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TABLE 5. The accuracy and F1-score of the LLMT2 and LLMT3 for leave-one-subject-out validation on the public dataset.

FIGURE 4. The accuracy of LLMT 3 in intra-subject validation method.
(a) Scenario 1. (b) Scenario2.

FIGURE 5. The accuracy of the LLMT3 on the public dataset. Intra-subject
validation.

V. DISCUSSION AND FUTURE WORK
As one of the popular DL architectures in human gesture and
motion recognition using biosignals, CNN can only extract
spatial features from the input signals and cannot capture

FIGURE 6. Recording loop for the on-line model evaluation.

TABLE 6. Average online prediction time of different models for
scenario 1.

the temporal features [40]. LSTM and GRU networks were
introduced to solve this drawback; however, they suffer from
long training duration and scalability for long sequences [33].
Recently, transformers with temporal and spatial feature
learning have drawn the attention of researchers in biosignal
processing. However, much of the existing research in
this area typically has too many model parameters and
restricted sets of motions [20], [23], making real-time and
online applications challenging. Unlike previous works,
by defining a broader spectrum of lower-limb motions,
this work introduces LLMT, which leverages the fusion of
sparse multi-channel sEMG and IMU signals and is uniquely
designed for online applications, offering high accuracy
and swift response times essential for assistive walking
devices.

In existing research on controlling assistive devices for
the upper and lower limbs using sEMG signals, the common
approach involves defining specific gestures. The participants
were asked to perform and hold gestures for approximately
five seconds. Based on these gestures, the pattern recognition
system recognizes human activities and issues commands
to the assistive device accordingly. However, this gesture
recognitionmethod requires a longer experimental period and
hinders the recognition system’s ability to swiftly identify the
user’s state. This delay is undesirable for assistive devices
which aim to be intuitive and responsive. Some studies,
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such as in [19], the initial and final 200 ms segment of the
motion were discarded to reduce the effects of slow responses
and lack of concentration in subjects. However, because
sEMG is produced 30-150 ms before motion starts [7], it is
one of the main reasons for choosing sEMG signals to
control an assistive device, as it allows for early detection
of intended movements and improves the response time of
the device. Excluding the first and last 200 ms of the signal
in real-time control is problematic because the model has
not been trained on this signal segment. Consequently, this
increases the risk of misclassification at the beginning and
end of the motion cycle. To address these gaps, our research
defines motions instead of gestures, each lasting between
900-1200 ms for scenario 1 and 2000 ms for scenario 2.
Unlike previous studies, we did not exclude the initial part
of the sEMG signals from our model’s training. By including
this segment, which carries the intended part of the motion,
we aimed to develop a pattern recognition system that is
more responsive and intuitive. The findings suggest that the
LLMT model can accurately predict motion, even with these
adjustments.

In Table 1, we show that an increase in the embedding
size and number of heads in the model correlates with
an increase in the number of parameters. This parameter
escalation enhances the accuracy of motion recognition and
reduces the STD, but also leads to longer training and testing
durations. This creates conflict with the aim of our project
for real-time applications. Consequently, we decided not to
further increase the number of parameters after observing that
LLMT 2 achieved accuracies of 98.99% and 98.80%, and
LLMT 3 achieved 99.38% and 99.57% in scenarios 1 and 2,
respectively. While models such as RF, MLP, SVM, KNN,
and CNN achieved notable accuracy in the two motion
scenarios, the LLMT 2 and LLMT 3 models demonstrated
superior performance in terms of inter-subject validation
accuracy. However, as shown in Table 6, it is essential to note
that LLMT3’s average online prediction time in the recording
loop is 84.09 ms. This duration is seven times longer than the
best cMLmodel in terms of accuracy, which is RF. This obser-
vation highlights a trade-off: achieving higher accuracies with
LLMT models requires increased computational resources.
Previously, we discussed howmost sEMG-based frameworks
for human motion recognition are not designed for real-time
applications and often lack an online evaluation of their
models. Despite its longer prediction time than the cML
models and CNN, LLMT 3 outperforms some models such
as the one reported in [19]. This comparison shows LLMT
3’s balance between the accuracy and online prediction
time.

To test the generalizability of LLMT models, we subject
them to rigorous validation methods, such as leave-one-
subject-out and intra-subject. In these scenarios, the model
did not consider the data from the subjects during training.
Because of the nonstationary nature and subject-to-subject
variation of sEMG, generalization of the subject that the
model has not seen during the training phase is very

challenging. As shown in table 3, LLMT 2 demonstrated an
accuracy of 98.47± 0.72% in scenario 1 and 95.19± 5.10%
in scenario 2, across all subjects for the leave-one-subject-
out method. LLMT 3, on the other hand, achieved accuracies
of 99.25 ± 0.16% in scenario 1 and 99.30 ± 0.60% in
scenario 2. The other rigorous validation method was intra-
subject validation, in which LLMT is trained on one subject
and tested against all other subjects. As shown in Figure 4,
LLMT3 demonstrated an impressive overall accuracy of
97.41 ± 0.91% in scenario 1 and 98.64 ± 0.79% in scenario
2. LLMT3, a superior variant of the proposed model, was
tested using these validation methods on a public benchmark
dataset. As Figure 5 and Table 5 show, it attained the accuracy
of 98.67 ± 0.93% and 95.20 ± 1.77% during leave-one-
subject-out and intra-subject validation, respectively. These
results indicate that the proposed method generalizes well
and is robust even when the subject is not in the training
phase.
Future research explores the effectiveness of the model

in populations with high variability in sEMG signals, such
as individuals with cerebral palsy (CP). This exploration,
alongside long-term user studies in daily activities and testing
of the model with advanced assistive walking robots, will
offer valuable insights into practical challenges and real-life
user experiences.
Our research presented the LLMT model for human

motion recognition from the fusion of multi-channel sEMG
and IMU signals. Unlike previous studies, we focused on
a more comprehensive range of lower-limb motions and
real-time applications of the proposed model. Our findings
demonstrate that LLMT models, particularly LLMT 3,
achieve high accuracy in motion prediction while balancing
computational demands. Despite longer prediction times
than cML models, LLMT models excelled in different
validation methods even when the model had not seen
the data of the subjects during the training phase, high-
lighting their robustness and potential for developing more
intuitive and, adaptable to users and efficient assistive
devices.
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