
Received 25 May 2024, accepted 8 June 2024, date of publication 12 June 2024, date of current version 20 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3413016

Exploiting SRv6 for Stateless and Per-Connection-
Consistent Load Balancing
RYO NAKAMURA 1, KENTARO EBISAWA 2, HIDEAKI HAYASHI 3, TATSUYA FUJIWARA 3,
AND TOMOKO OKUZAWA 4
1Information Technology Center, The University of Tokyo, Tokyo 113-0033, Japan
2Independent Researcher, Kanagawa 211-0004, Japan
3Furukawa Network Solution Corporation, Kanagawa 254-0016, Japan
4Toyota Motor Corporation, Tokyo 100-0004, Japan

Corresponding author: Ryo Nakamura (upa@nc.u-tokyo.ac.jp)

ABSTRACT This paper proposes a new load-balancing method that supports Per-Connection Consistency
(PCC) by leveraging ECMP with standardized routing protocols for operational simplicity. Load balancers
must consistently deliver packets of a flow to one of the backend servers, even when the backend server pool
changes. Achieving this property—PCC—is not a straightforward task and usually introduces additional
complexity into networks, such as special packet forwarding mechanisms, synchronizing states across load
balancers, and often complicated orchestration. Our approach, VRF-shadowing, achieves PCC on ECMP of
routers without additional control plane systems by exploiting Segment Routing over IPv6 (SRv6). VRF-
shadowing employs the daisy-chaining concept, achieving PCC in a stateless manner with a standardized
SRv6-based Layer-3 VPN (L3VPN). VRF-shadowing is composed of two components: a minimal new
feature for software of SRv6 routers and a new SRv6 End behavior at servers. We implemented the former in
a commercial router and the latter in Linux and evaluated VRF-shadowing on an SRv6 L3VPN network built
with only standardized routing protocols. The evaluation results demonstrate that VRF-shadowing preserves
connections from being disrupted when the ECMP next-hops change. In the most severe scenario, VRF-
shadowing reduced the failed HTTP requests rate from 77% to 0.7% compared to traditional ECMP.

INDEX TERMS Load balancing, per-connection consistency, segment routing, SRv6.

I. INTRODUCTION
Load balancing, which distributes application traffic among
multiple servers, is a fundamental component of today’s
networked systems. There are various use cases of load
balancing for dozens of servers [1], [2], large-scale data
centers [3], [5], and cloud environments [6], [7]. Typical
load balancers distinguish a connection, also known as
a flow, by 5-tuples—source and destination IP addresses,
port numbers, and IP protocol numbers. A load balancer
receives traffic directed to an IP address representing a service
(Virtual IP or VIP) and distributes connections to Direct
IP addresses (DIPs) of backend servers associated with the
service. Namely, load balancers calculate connection-to-DIP
mappings and deliver connections using these mappings.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

The simplest method to implement such a load balancer
is to use Equal Cost Multi-path (ECMP). When a router has
multiple equal-cost next-hops for a given destination prefix,
it distributes the traffic destined for the prefix among the
next-hops on a per-flow basis. ECMP functions as a load
balancer when the destination prefix is a VIP, and its next-
hops are DIPs. ECMP is a popular feature that is widely
implemented in commercial off-the-shelf router products.
Furthermore, operating ECMP does not require additional
and/or dedicated control plane systems beyond traditional
routing protocols. Thus, ECMP is the simplest and least
expensive method for implementing load balancing in a
network.

However, ECMP is known to have a major issue when
used as a load balancer; it lacks Per-Connection Consistency
(PCC) [8]. PCC is a load-balancing property that ensures
a given connection is consistently delivered to the same

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 83525

https://orcid.org/0000-0001-6664-7534
https://orcid.org/0009-0000-8706-9630
https://orcid.org/0009-0000-3796-0732
https://orcid.org/0009-0009-7115-9557
https://orcid.org/0009-0002-3808-3107
https://orcid.org/0000-0002-6921-7369

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

FIGURE 1. ECMP can violate PCC when it performs a load balancer.
Next-hop changes can direct subsequent packets to different servers.
Daisy-chaining is to save connections from disruption by redirecting stray
packets to the correct servers (4) instead of resetting the
connections (4).

server from start to finish, even if the DIP pool changes.
Figure 1 illustrates how ECMP can violate PCC. In the figure,
a router forwards Flow F destined for a VIP. 1 The router
calculates a hash value for Flow F from its 5-tuple values and
directs the packets of Flow F to Server A, chosen from three
backend servers (equal-cost next-hops) based on the hash
value. Then, 2 if a server goes down and disappears from
the next-hops on the router, 3 the router directs subsequent
packets of Flow F to Server C due to the change in the
number of the next-hops. These subsequent stray packets,
now directed to a different server, can disrupt the connections.
4 Server C, not terminating the connection for Flow F,
disrupts the connection by sending a TCP reset to the source.
Thus, ECMP can violate PCC and disrupt connections when
the next-hops change.

Dedicated load balancers are specifically designed to
ensure PCC. The most common approach to achieving
PCC is to enable load balancers to dynamically manage
connection-to-DIP mapping entries, known as stateful load
balancing. The size of the state can be as large as the
number of connections; therefore, the data planes of stateful
load balancers are typically implemented in software due to
the need for substantial memory. An example is Google’s
Maglev [3], and there are several open-source software load
balancers [9], [10], [11], [12]. In contrast to these software
load balancers with relatively low throughput, several studies
have explored implementing stateful load balancers in hard-
ware by leveraging programmable hardware [4], [5], [13].
While mechanisms for distributing traffic have attracted

attention, the control plane aspect is often overlooked from
a practical standpoint. Load balancers require dedicated
control plane systems for tasks such as configuring VIP-
to-DIP mapping, detecting changes in DIP pools, and
sometimes synchronizing the states of connection-to-DIP
mapping. However, developing, operating, and maintaining
such additional systems for load balancers can be challenging
for modest-sized network operators. The paper [3] states
that Maglev is a highly complex distributed system, and its
implementation in production has faced numerous opera-
tional challenges. Unfortunately, not many can operate like
hyper giants.

In contrast to load balancers that require dedicated (and
often complex) control plane systems, we propose to exploit

Segment Routing over IPv6 (SRv6) to enable ECMP to
support PCC using only standardized routing protocols. Our
approach, called VRF-shadowing, leverages daisy-chaining
introduced by Beamer [14] and Faild [1]. In this concept,
when a server receives a stray packet for which the server
is not terminating the associated connection, it forwards the
packet to the correct server selected for the flow in the
previous state. For instance, Server C in Figure 1 forwards
Packet 2 to Server A rather than sending a TCP reset to the
source (4).
Previous load balancers based on daisy-chaining involve

dedicated control and data planes to (1) manage the
previous state of the mapping table in addition to the
current state and (2) ensure that servers forward stray
packets to the correct servers. We achieve both within
the standardized SRv6 framework to democratize daisy-
chaining-based load balancing for operational simplicity.
VRF-shadowing implements the former through a separate
routing table called Shadow VRF, which traces the previous
state of the next-hops in another routing table. Shadow VRF
is maintained by the router’s CPU so that we can use the
existing packet-forwarding hardware without modifications.
The latter is accomplished by a new SRv6 End behavior,
called End.DT4.COND, at the servers. End.DT4.COND
redirects the received stray packets to Shadow VRF. The
combination of Shadow VRF and End.DT4.COND provides
PCC for ECMP over SRv6 Layer-3 VPN (L3VPN) with only
standardized routing protocols.

This study inherits the basic concept from our previous
work [15],1 which implemented daisy-chaining over ECMP
using a special packet-forwarding mechanism developed
for programmable hardware switches. This study extends
the concept and exploits SRv6 to leverage existing packet-
forwarding planes. As new contributions, this paper describes
how PCC is achieved within ECMP over SRv6 data and
control planes (§III). Second, we implemented the Shadow
VRF feature into a production SRv6 router, FITELnet FX2
from FURUKAWA ELECTRIC, and End.DT4.COND using
extended Barkley Packet Filter (eBPF) [16] for Linux (§V).
Third, we evaluate how VRF-shadowing ensures PCC during
next-hop changes (§VI). In summary, the contributions of this
paper include the following:
• We propose to exploit SRv6 to achieve load balancing
based on daisy-chaining without dedicated control and
data planes for operational simplicity.

• Our implementations demonstrate that minimal software
modifications to SRv6 routers and a new SRv6 End
behavior at the server network stack provide PCC for
ECMP over SRv6.

• The proposed method was evaluated to its conceptual
limits of daisy-chaining.

Our evaluation experiment demonstrates that VRF-
shadowing achieves no connections are disrupted, whereas

1Our previous paper is written in Japanese, but the English version of the
slides is available at https://github.com/ToyotaInfoTech/ecmper.

83526 VOLUME 12, 2024

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

traditional ECMP disrupts 9.8% of connections due to next-
hop changes. The evaluation also delves into the limitations of
daisy-chaining in more severe scenarios. In the most severe
case, VRF-shadowing significantly reduces the connection
disruption rate from 77% to 0.7%. Daisy-chaining does
not guarantee complete PCC. Nevertheless, it is a practical
approach to prevent connection disruptions due to changes in
the DIP pool [1], [2]. VRF-shadowing brings daisy-chaining
to SRv6 networks, which transforms ECMP into PCC-
aware, stateless hardware load balancers without the need for
additional control plane systems.

II. RELATED WORK AND MOTIVATION
There are three primary design choices for load balancers:
software implementation using per-flow mapping tables in
the main memory, hardware implementation with tailored
table structures for high throughput, and stateless hardware
implementation without per-flow mapping. This section
summarizes these approaches and describes our motivation
to highlight the control plane aspect of load balancers from
an operational perspective.

A. SOFTWARE LOAD BALANCERS
Implementing stateful load balancers in software is a
straightforward approach for achieving PCC because it can
store many connection-to-DIP entries in the main memory.
Popular open-source software load balancers include Linux
IPVS [9], HAProxy [12], Facebook Katran [10], and Github
GLB [11]. Typically, the throughput of a single software load
balancer is in the tens of Gbps range, which is less than that
of the hardware load balancers.

To enhance the overall throughput, the deployment of
low-throughput software load balancers requires scaling
out. When deploying multiple software-based stateful load
balancers, it is crucial that all load balancers consistently
deliver a given connection to the same server; all load
balancers in an operational domain need to synchronize
the connection-to-DIP mapping table entries. Maglev [3]
employs consistent hashing, enabling all load balancers to
select the same DIPs for given connections without state
synchronization. Another approach involves integrating load
balancers with dedicated orchestration mechanisms, such as
Aanata [6], specifically designed for and tightly integrated
with Microsoft Azure’s cloud infrastructure.

B. HARDWARE LOAD BALANCERS
Previous studies have explored implementing load balancers
in hardware to achieve higher throughput than software
implementations. Duet [7] utilizes ECMP of hardware layer-3
switches for load balancing, complemented by software load
balancers for corner cases. However, relying on ECMP can
violate PCCwhen updating theDIP pool. SilkRoad [4], on the
other hand, implements a stateful load balancer in hardware
using a programmable switch. Given the resource constraints
of hardware switches, such as limited SRAM sizes, SilkRoad
proposes a method to compress connection-to-DIP mapping

entries and employs bloom filters to handle frequent changes
in the DIP pool. Prism [13] proposes a hybrid approach
that stores states only for connections whose DIPs are
changed. Tiara [5] is also a hardware, stateful load-balancing
architecture incorporating FPGA-based smart NICs and
hardware programmable switches to handle large-scale traffic
and over 10 million concurrent flows.

Stateless load balancers are well suited for hardware
implementation because they do not maintain connection-
to-DIP mapping entries. This characteristic also implies
that it needs to preserve PCC without dynamic mapping.
Beamer [14] solves this issue by introducing daisy-chaining.
The Beamer load balancer divides the hash value space into
buckets. Each bucket has a current DIP and a previous DIP
associated with the bucket in the previous DIP pool state.
When the DIP pool changes, the Beamer load balancer sends
balanced packets with the previous DIPs embedded as an IP
option. When a server receives a packet that does not match
any established connections, it redirects the packet to the
previous DIP embedded in the packet. Thus, daisy-chaining
achieves PCC in a stateless manner.

Faild [1] is another stateless hardware load balancer that
employs daisy-chaining to achieve PCC. Whereas Beamer
embeds previous DIPs into the IP option, the Faild load
balancer encodes previous DIP information into destination
MAC addresses. This design allows Faild to be implemented
with commodity-off-the-shelf layer-3 switches by statically
manipulating ARP entries. Additionally, Cloudflare’s Uni-
mog [2], although a software load balancer, also uses the
daisy-chaining approach to ensure PCC.

Cheetah [17] and SHELL [18] employ another approach,
embedding cookies representing connection-to-DIP mapping
information into specific fields in packets (e.g., Connection
ID of QUIC, IPv6 addresses, and TCP Timestamp option).
This design enables the Cheetah load balancer to always
direct packets to the correct servers based on the cookies,
thereby guaranteeing PCC. However, there is an issue of
middle-box transparency due to the cookies.

C. MOTIVATION: THE CONTROL PLANE ASPECT
While the data plane aspect—how load balancers distribute
and deliver packets—is crucial, the control plane aspect often
receives less attention but is also indispensable for practical
deployments. The responsibilities of control plane systems
for load balancers typically include but are not limited to:

• Distributing VIP-to-DIP mappings across load bal-
ancers.

• Detecting changes in DIP states and updating DIP pools.
• Synchronizing connection states across load balancers.
• Calculating and deciding load distribution while collect-
ing telemetry data.

• Detecting and responding to changes in other compo-
nents, such as underlying routing.

Deploying load balancers involves operational costs for
the load balancers themselves and requires significant efforts

VOLUME 12, 2024 83527

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

to develop and maintain associated control plane systems
responsible for the tasks mentioned above. In previous
literature, a popular approach for control tasks is to assume
some dedicated controllers [6], [7], [18], [19], [20]. Others
say that configurations are read from files or received from
external systems through RPC [3] or employ Zookeeper [14].
Leveraging commodity hardware switches involves running
agents on the switches for control tasks [1], [7]. As such,
network operators face additional complexity in network
design and increased operational costs to manage load
balancers.

III. APPROACH
This paper aims to achieve PCC without requiring dedicated
control plane systems that often bring additional complex-
ity. Our approach, called VRF-shadowing, employs the
daisy-chaining concept introduced by Beamer and Faild—
servers deliver stray packets to the correct servers. VRF-
shadowing brings PCC to ECMP in SRv6 Layer-3 VPN
with only standardized control planes of IGP and BGP for
operational simplicity. This section first provides a brief
overview of SRv6-based L3VPN and next describes VRF-
shadowing.

A. SEGMENT ROUTING OVER IPV6 AND LAYER-3 VPN
Segment Routing (SR) [21] is a recent packet-forwarding
paradigm that enables source routing. SR represents any
topological entities as segments, e.g., links, nodes, and
adjacency. A series of segments (segment list) embedded in
a packet indicates where the packet should flow and how the
packet is to be processed.

SRv6, a specific implementation of SR, uses IPv6
addresses as identifiers for segments (Segment Identifiers,
or SIDs). The Segment Routing Header (SRH) [22], an IPv6
extension header, contains a segment list. SRv6 nodes
interpret SRH and process packets according to the embedded
SIDs. RFC8986 [23] defines the basic behaviors of SRv6
nodes. For example, End.DT4 decapsulates IPv4 packets
encapsulated in SRv6 and submits them to an associated
IPv4 routing table lookup. End.DT46, a variant of End.DT4,
handles inner packets of both IPv4 and IPv6 according to
their respective protocol families. SRv6 nodes have their
SIDs (IPv6 addresses and associated behaviors) locally and
execute these behaviors for packets destined for local SIDs.
This concept—encoding how packets are to be processed
as segments indicating specific behaviors—is called SRv6
Network Programming.

L3VPN is a popular use case of SRv6 [24]. Figure 2
illustrates an overview of L3VPN with SRv6 transport.
Routers capable of L3VPN manage separate routing tables,
called Virtual Routing and Forwarding (VRF), for each
customer. In SRv6-based L3VPN, routers maintain local
End.DT4 (and End.DT6, or End.DT46) SIDs for their local
VRFs and advertise prefixes in the VRFs (VPN prefixes)
along with the associated SIDs as next-hops via BGP.
In Figure 2, Router 1 and Router 2 first exchange IPv6

FIGURE 2. Overview of SRv6-based Layer-3 VPN.

addresses assigned to their loopback interfaces via IGP, then
establish a BGP session with each other via the loopback
addresses and subsequently exchange VPN prefixes through
the BGP session. Consequently, Router 1 routes packets
from Customer A’s 10.0.0.0/24 network in VRF Blue to the
10.1.0.0/24 network in VRF Blue of Router 2, encapsulating
the packets in IPv6 with a destination IPv6 address of 6:2::B,
which is Router 2’s End.DT4 SID for VRF Blue. In summary,
SRv6-based L3VPN leverages IPv6 for transport and utilizes
End.DT SIDs to identify the appropriate VRFs for inner
packets at egress SRv6 nodes, similar to VPN route labels
in MPLS VPN.

B. VRF-SHADOWING
VRF-shadowing is designed for networks composed of
SRv6-based L3VPN. Figure 3a illustrates a simplified
example of data center networks utilizing SRv6, where a
router and three servers—Server A, B, and C—form an
SRv6 L3VPN domain. The servers run server processes, e.g.,
HTTP servers, within VRF Blue. All servers advertise an
identical IP address (VIP) in VRF Blue to the router via BGP.
Additionally, the router advertises a default route of 0.0.0.0/0
in VRF Blue. Consequently, the router has an ECMP route
toward the VIP via the three servers’ End.DT4 SIDs as next-
hops, and the servers have a default route in VRF Blue toward
the router. Figure 3a also shows that a flow directed to the VIP
is routed to Server B via ECMP. This scenario exemplifies a
basic setup of SRv6 L3VPN in data center networks. While
SRv6 is an emerging routing architecture, SRv6 has already
been implemented in commodity-off-the-shelf routers and the
Linux kernel. Further, there has already been a deployment of
SRv6 at data centers in production [25].

VRF-shadowing introduces two key techniques into SRv6
L3VPN to accomplish daisy-chaining without the need for
additional control planes:

1) Shadow VRF: A VRF that retrains the previous state
of routing table entries in another VRF.

2) End.DT4.COND: A variant of End.DT4 that submits
stray packets to a different VRF.

While prior studies achieved daisy-chaining by embedding
previous stats of connection-to-DIP mapping into packets,
our approach maintains these previous states within a VRF
(Shadow VRF) in a router—the router copies previous

83528 VOLUME 12, 2024

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

FIGURE 3. How VRF-shadowing performs daisy-chaining in an SRv6 L3VPN-based data center network.

next-hops of ECMP routes in a VRF into a Shadow VRF.
End.DT4.COND at servers redirects stray packets back to the
router instead of receiving them. The router then forwards
the packets with the previous state in the Shadow VRF.
Next, we describe how they accomplish daisy-chaining,
and Section III-C and III-D will provide more detailed
descriptions of Shadow VRF and End.DT4.COND.

Figure 3b illustrates how both techniques achieve
daisy-chaining as a continuation of Figure 3a. Note that
the End.DT4 SIDs in Figure 3a are substituted with
End.DT4.COND SIDs. 1 When a backend server, Server C
in this example, is removed due to maintenance or failure,
the VIP advertisement from Server C stops. 2 At this time,
the SRv6 router copies the ECMP route with the three next-
hops (Server A, B, and C) from VRF Blue to VRF Green,

which is configured as the Shadow VRF for VRF Blue,
and then updates the next-hops for the ECMP route in VRF
Blue (removing the next-hop to Server C). Consequently,
VRF Green—the Shadow VRF of VRF Blue—retains the
previous next-hops of the ECMP route in VRF Blue. 3 Next,
the router misdirects subsequent packets of an existing
connection, intended for Server B, to the wrong server, Server
A, due to the change in next-hops for the ECMP route in VRF
Blue. In other words, the packets start straying.

4 Server A executes End.DT4.COND: it receives packets
to a configured VRF (VRF Blue) as with End.DT4, but if
the packets are straying, it receives them to another VRF
(VRF Green). 5 As VRF Green in the servers has a default
route toward VRFGreen in the router, either by configuration
or a route advertisement, the packets are delivered to the

VOLUME 12, 2024 83529

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

router again, but this time to VRF Green. 6 According to the
ShadowVRFmechanism, VRFGreen in the router retains the
previous next-hops (Server A, B, and C) for the ECMP route.
Therefore, the packets are forwarded again, but to the SID
associated with VRF Blue on Server B, the correct server.

The above example described in Figure 3 illustrates a
connection unrelated to the removed server. If a server
crashes or is removed unexpectedly, connections terminated
by that server are disrupted, but other connections continue
through the daisy-chaining mechanism of VRF-shadowing.
On the other hand, for server removal, the server should
stop advertising the VIP. The router stops directing new
connections to this server because there is no next-hop
for the removed server in VRF Blue. Existing connections
terminated by the server continue to be routed to the
server through daisy-chaining via VRF Green. Once all the
connections to this server end, the server can be removed
without disruption.

VRF-shadowing is applicable to the assets of standardized
SRv6. Shadow VRF operates independently, installing routes
into a VRF regardless of the route structures. In other
words, the packet format and structure of the routing table
entries remain consistent with conventional SRv6. Thus,
VRF-shadowing can leverage the existing packet-forwarding
hardware of routers without modifications. End.DT4.COND,
while being a new End behavior for SRv6, is implemented on
servers and does not require external interactions. Therefore,
there is no need for specialized control plane systems beyond
the standardized BGP for SRv6 L3VPN to operate ECMP as
a stateless and per-connection-consistent load balancer.

C. SHADOW VRF AT ROUTERS
Shadow VRF is the tiny enhancement required at the router
side for implementing VRF-shadowing. As described in
the previous section, Shadow VRF is a mechanism that
copies routes with their associated next-hops in one VRF
to another VRF (the shadow VRF) prior to updates to the
next-hops in the original VRF. Consequently, the previous
next-hops are preserved in the shadow VRF. This feature
operates independently within routers, regardless of the
routing protocols that maintain routes in the original VRF.

When implementing the Shadow VRF mechanism, two
consideration points arise. The first is to update the routing
table entries in the shadow VRF before updating the entries
in the original VRF. If updating entries in the original
VRF before the shadow, stray packets redirected from
servers would temporarily be routed to incorrect servers until
the previous next-hops are copied into the shadow VRF,
potentially creating micro-loops. The second consideration
is that the router must select an identical next-hop from the
given next-hop entries for a flow. If the decision process
for selecting a next-hop for a flow depends on factors other
than next-hop entries (for example, the order of next-hop
insertion and deletion), the shadow VRF might forward
packets to a different next-hop, even though the shadow VRF

has next-hops identical to the previous ones in the original
VRF.

D. END.DT4.COND AT SERVERS
End.DT4.COND is responsible for shifting stray packets to
the shadow VRF instead of the original VRF, in addition
to performing the functions of End.DT4. End.DT4.COND
changes the VRF for receiving packets by a condition:
whether the receiving packets are straying. Algorithm 1
outlines the simplified procedure of End.DT4.COND.2

End.DT4.COND processes every received packet destined
for an associated local SID, with two configured VRFs—
original and backup (corresponding to VRF Blue and Green
at the servers in Figure 3b, respectively). First, it decapsulates
the received packet and then determines whether the inner
packet is part of an existing connection. If the packet is a
TCP packet and the SYN flag is not set, the packet is a
part of a connection. If so, it further checks if the node is
terminating the connection by searching for a socket that
matches the 5-tuple of the packet. If no matching sockets
are found, this indicates that another node is terminating
the connection and the packet is straying. End.DT4.COND
receives the stray packet to the backup VRF, which then
redirects the packet to the router by a default route installed
in the backup VRF. Otherwise (the packet is not TCP,
it is the beginning of a new flow, or the node terminates
the connection), End.DT4.COND receives the packet to the
original VRF. Server processes running on the original VRF
will consume the packet.

Algorithm 1 Procedure of End.DT4.COND
1: function EndDT4Cond(packet , original, backup)
2: innerPacket ← decapsulateSRH(packet)
3: if innerPacket is TCP and SYN flag is not set then
4: if findSocket(innerPacket) is None then
5: return receiveToVRF(innerPacket , backup)
6: end if
7: end if
8: return receiveToVRF(innerPacket , original)
9: end function

Note that, for simplicity, we have described End.DT4.COND
for IPv4 in SRv6 packets so far. The procedure applies
equally to IPv6 in SRv6 packets (End.DT6.COND) and
to both IPv4 and IPv6 in SRv6 packets for a VRF
(End.DT46.COND).

IV. LIMITATIONS AND DEPLOYMENT CONSIDERATIONS
VRF-shadowing has some limitations derived from ECMP
and issues due to daisy-chaining. This section briefly
discusses these considerations.

2An SRv6 End behavior must perform regular processing, e.g., validating
SRH and ICMP handling, as described in RFC8986. Here, we focus on the
logic of End.DT4.COND and omit those details for the sake of clarity.

83530 VOLUME 12, 2024

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

FIGURE 4. An anycast End.DT4 SID for shadow VRFs on the border and
leaf switches localizes redirected traffic.

A. EFFICIENCY OF LOAD DISTRIBUTION
ECMP can lead to load imbalance between next-hops due to
factors such as flow bandwidth-agnostic traffic splitting [26],
[27], [28], [29]. Meanwhile, numerous efforts have been
made to improve load distribution efficiency in ECMP.
Adopting these techniques would address the imbalance sep-
arately from the PCC provided byVRF-shadowing.Weighted
cost multi-path has long been studied [30], [31], [32]. From a
practical perspective, BGP has the Link Bandwidth extended
community [33] to enable weighted traffic splitting over
BGP multi-path. Cisco routers implement this extended
community [34], and Nvidia also supports it for data center
use, called W-ECMP [35]. A similar extended community
for weighted load balancing has been proposed for Ethernet
VPN [36]. The concept of Shadow VRF, which stores
the previous state in a separate VRF for daisy-chaining,
is independently applicable to these weighted traffic splitting
mechanisms.

B. ASSUMING CONNECTION-ORIENTED TRANSPORT
PROTOCOLS
VRF-shadowing can handle only connection-oriented proto-
cols. End.DT4.CONDmust identify an associated connection
for each packet to determine the appropriate receiving
VRF. While Algorithm 1 focuses on TCP, other protocols,
such as QUIC, are also applicable from the protocol
viewpoint. However, an implementation challenge arises
with QUIC. QUIC is typically implemented in user space.
If End.DT4.COND operates at the kernel-level network
stack, a mechanism is needed for the QUIC user-space
implementation to communicate connection information to
the kernel.

C. LOCALIZING REDIRECTED TRAFFIC
As depicted in Figure 3b, all stray packets redirected by
End.DT4.COND pass through the SRv6 router, which can

FIGURE 5. An example configuration for Shadow VRF in FX2. The shadow
attribute in vrf blue specifies that green is its Shadow VRF.

lead to inefficient bandwidth usage depending on topologies.
Utilizing anycast SID [21] can localize this redirected traffic
in typical data center networks such as spine-leaf topologies.
An anycast SID (or anycast segment) is a single SID
advertised from multiple SR nodes. As with IP anycast,
traffic destined for the anycast SID is steered to the closest
node advertising the SID. Figure 4 illustrates how daisy-
chain traffic can be localized using nycast SID. The border
routers and leaf switches are part of the same SRv6 L3VPN
domain; therefore, they have identical routing table entries
in the VRFs. Next, the border routers and leaf switches
have and advertise an identical End.DT4 SID (anycast SID)
associated with their shadow VRFs. As a result, redirected
packets encapsulated in SRv6 are routed to the nearest leaf
switch advertising the anycast SID and then forwarded based
on the previous next-hops in the shadow VRF, as depicted as
dashed arrows in Figure 4.

V. IMPLEMENTATION
We implemented Shadow VRF on a production router,
FITELNet FX2 from FURUKAWA Electric [37], which is
equipped with 24 25Gbps ports and four 100Gbps ports.
FX2 already supported SRv6 L3VPN; thus, we added the
Shadow VRF feature with only 109 steps of codes. Figure 5
shows an example of VRF configurations that include
Shadow VRF. Here, two VRFs, blue and green, are
defined and configured for SRv6 L3VPN, for example, route
distinguisher and route targets. The shadow attribute in VRF
blue designates VRF green as its shadowVRF, so the previous
next-hops of routes in VRF blue will be copied to VRF green.

We also implemented End.DT4.COND for Linux with
eBPF [16]. eBPF is a virtual instruction set, and Linux
provides various hook points to execute eBPF programs,
such as Traffic Control (tc) infrastructure for receiving and
transmitting packets [38]. Figure 6 shows the operation of
the eBPF implementation of End.DT4.COND. The eBPF
program is attached to a network interface via tc, represented
by the diamond shape in the figure. It parses the headers
of a received packet and checks whether the packet is
encapsulated in SRv6. If so, it checks whether the inner

VOLUME 12, 2024 83531

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

FIGURE 6. The flow diagram of the End.DT4.COND implementation in
eBPF.

packet is part of a connection being terminated by another
node (straying) as per Algorithm 1. If the inner packet
is straying, it is then directed to a specified (backup)
VRF. Otherwise, packets not identified as straying are
processed by the kernel network protocol stack, namely, the
original End.DT4, resulting in the packets being received
in the original VRF where the server process runs. The
End.DT4.COND eBPF program has counters for received
and redirected packets, and it is written in C with just
340 lines of code.

The Linux network protocol stack supports various SRv6
End behaviors as routing table entries byseg6local infras-
tructure [39]; however, we implemented End.DT4.COND
in tc eBPF and not in seg6local. The advantage of our
design choice is that End.DT4.COND works independently
of other SRv6 routes managed by other components. Let
us consider a Linux node participating in an SRv6 L3VPN
domain. bgpd of FRRouting [40], a popular routing suite
supporting SRv6 L3VPN, installs End.DT4 routes for each
local VRF. End.DT4.COND in eBPF attached to physical
interfaces can coexist with these End.DT4 routes. If the
received packets are straying, End.DT4.COND receives the
packets to a backup VRF; otherwise, the End.DT4 route
processes the packets. This design adds the End.DT4.COND
functionality without disturbing existing SRv6 implemen-
tations of the Linux kernel and FRRouting. Implementing
End.DT4.COND as seg6local routing table entries like
End.DT4 would have required modifications to FRRouting
to install End.DT4.COND routes instead of End.DT4 routes.

We slightly modified the Linux kernel to address
an L3VPN-specific issue for searching for sockets. The
End.DT4.COND implementation uses bpf-helpers, which
can invoke kernel functionalities from eBPF programs [41],
to find a corresponding socket for an inner packet
(line 4 in Algorithm 1). The function we used is
bpf_skc_lookup_tcp(), which returns a that matches
5-tuple values passed to the function or NULL if not
found. This function searches for sockets associated with
the physical interface that receives the packet. On the other
hand, in Linux, a VRF is represented as a virtual interface
(called l3mdev [42]), and processes running on a VRF receive
packets from the l3mdev associated with the VRF. In the

case of SRv6 L3VPN, packets decapsulated by End.DT4
are received from the l3mdev interface corresponding to
the VRF. Therefore, bpf_skc_lookup_tcp() called for
packets received by a physical interface cannot find sockets
opened within VRFs. To enable tc eBPF programs attached to
physical interfaces to search for sockets associated with other
interfaces, we added five lines of code that introduced a new
flag to specify an interface to use as the search key.

VI. EVALUATION
In this section, we evaluate VRF-shadowing focusing on three
aspects:

1) Does VRF-shadowing perform as expected?
2) How resilient is VRF-shadowing to next-hop changes?
3) Overhead due to End.DT4.COND at the server side.

Since VRF-shadowing leverages the existing data planes
of routers supporting SRv6, we do not evaluate the packet
forwarding performance of the load balancer. Instead, our
evaluation focuses on the behavior of daisy-chaining by
VRF-shadowing on the first and second aspects. In addition,
we investigate the performance degradation on the server side
due to the End.DT4.COND eBPF program.

A. EXPERIMENTAL ENVIRONMENT
We prepared an experimental environment comprising two
physical server machines and an SRv6 router. Figure 7
illustrates the environment. The two server machines were
identical: DELL PowerEdge R440 equipped with an Xeon
Gold 6130 16-core CPU, 48GB memory, and an Nvidia
ConnectX-6Dx 100GbpsNIC. They runUbuntu 22.04.1 with
Linux kernel 5.15.0. Both machines were connected to
the router—FX2 having the Shadow VRF feature—with
100Gbps links.

In the physical topology shown on the left side of Figure 7,
we emulated eight independent HTTP servers behind FX2,
which performed a load balancer, as depicted on the right
side of the figure. We deployed eight containers on one of
the servers (the bottom one in the figure); each container
had a virtual network interface created by SR-IOV and
ran FRRouting and H2O HTTP server [43]. All SR-IOV
virtual interfaces and their associated physical interface were
connected to an embedded switch in the NIC board, allowing
the containers to act as eight independent hosts connected to
the load balancer. The load balancer and the eight containers
used OSPFv3 to exchange the underlying IPv6 addresses and
BGP to compose an SRv6 L3VPN domain. Moreover, all
containers advertised the same IP address in a VRF where
the H2O processes were running. The IP address performed
a VIP for the eight HTTP servers. The load balancer installed
a routing table entry in the VRF, with the destination being
the VIP and the next-hops being End.DT4 SIDs of the eight
containers. Finally, the Shadow VRF feature was configured
and enabled on the load balancer, and the End.DT4.COND
implementation was attached to the virtual interfaces of all
containers.

83532 VOLUME 12, 2024

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

FIGURE 7. Experimental environment.

Another server (the tester machine) emulated clients
issuing HTTP GET requests to the VIP using Apache Bench
(ab) [44]. Note that we slightly modified ab. The original
version stops benchmarking when an HTTP GET request
times out, whereas our modified version continues even
when requests time out or fail. This modification allows the
experiment to proceed when ECMP disrupts the connections.

We also attached an eBPF program to the tester machine
to emulate multiple source IP addresses. ab cannot use
multiple IP addresses as sources; therefore, HTTP GET
requests to the VIP generated by ab have the same source
IP address (assigned to the tester machine) and destination
IP address (VIP). This environment-specific situation hinders
the potential for traffic distribution by ECMP on FX2
due to its hash calculation logic. The eBPF program we
implemented was attached to the tester machine’s interface,
and it manipulated outbound and inbound packets in a
stateless manner. The program embeds the source port
number into the lower 16 bits of the source IP address field
for outbound packets, and it restores the original IP address
in the destination IP address field for inbound packets. This
approach allowed us to emulate 216 different source IP
addresses over a single IP address assigned to the machine.

All components in the environment—the eight HTTP
servers, the load balancer, and the tester machine—were
connected with the 100Gbps links. Thus, the bottleneck
in this setup was the throughput of HTTP GET requests
that the single tester machine running ab can generate,
compared with the traffic that parallelized HTTP servers
can produce. In other words, adding more HTTP servers
does not increase the total throughput because ab is the
bottleneck. To emulate a significant volume of client requests,
we limited the bandwidth of the virtual interfaces of the
containers to 1Gbps. This bandwidth limitation is intended
to emulate many requests that a single server cannot process
alone.

B. DOES VRF-SHADOWING PERFORM AS EXPECTED?
The first experiment is to confirm whether VRF-shadowing
performs as expected. Initially, there were four HTTP

FIGURE 8. The transition of throughput while removing and adding
servers step-by-step per 20 seconds.

servers (containers), and the tester machine started to issue
64 concurrent HTTP GET requests for a 10M-byte file to
the VIP. Then, two HTTP servers were temporarily removed
by stopping their VIP advertisement at 20 and 40 seconds
and then restored by restarting the VIP advertisement at 60
and 80 seconds. During the experiment, we measured the
throughput sent by HTTP servers and counted the failed
HTTP GET requests recorded by ab.
Figure 8 shows the transition of the throughput sent

by the HTTP servers. Traditional ECMP (without VRF-
shadowing) is shown in Figure 8a, and the case with
VRF-shadowing is shown in Figure 8b. Figure 8b also
plots the throughput of daisy-chain traffic measured by
the End.DT4.COND eBPF program attached to the virtual
interfaces of the HTTP servers. As shown in both cases,
there are no significant differences in request distributions
and the resulting throughput, whether with or without
VRF-shadowing; the throughput started at approximately
4Gbps—1Gbps per HTTP server—decreased to 2Gbps and
returned to 4Gbps as the servers were removed and added
back.

However, there was a noticeable difference in the rate
of failed HTTP GET requests between those with and
without VRF shadowing. Traditional ECMP experienced a
9.8% failure rate (381 out of 3902 requests), while VRF-
shadowing had a 0% failure rate (0 out of 3819 requests). This
result suggests that VRF-shadowing provides PCC for ECMP
through daisy-chaining as expected; it protects connections
from disruption to next-hop changes in ECMP. The spikes in
the daisy-chain traffic throughput in Figure 8b also indicate
that daisy-chaining occurred when the servers were removed
and restored.

VOLUME 12, 2024 83533

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

FIGURE 9. Rate of failed HTTP GET requests (5MB file).

FIGURE 10. CDF of times for completing HTTP GET requests for a file of
5MB or 10MB by ab.

C. HOW RESILIENT IS VRF-SHADOWING FOR CHURNS?
Next, we evaluate the ability of VRF-shadowing to maintain
PCC amid changes in the number of next-hops. In this
experiment, ab issued HTTP GET requests to the VIP for
30 seconds while the eight HTTP servers flapped; a randomly
selected server went down (withdrawing the VIP) or up
(advertising the VIP) at fixed intervals.

Figure 9 shows the result when ab retrieved a 5MB file.
The x-axis is the server flap interval, and the y-axis indicates
the rate of failed HTTP GET requests reported by ab.
We conducted 30 runs for each server flap interval, ranging
from 1 to 10 seconds, and the y-axis shows the average
failure rate and their standard deviation over the 30 runs.
As shown, traditional ECMP disrupts approximately 8% of
requests when next-hops change every 10 seconds. This
failure rate increases up to 42.5% as the interval is shortened.
Every next-hop change in the ECMP route disperses existing
flows to different servers, leading to frequent connection
disruptions, particularly with shorter flap intervals.

In contrast, VRF-shadowing achieves a significantly lower
failure rate (< 1%). However, the failure rate is not
zero—ranging from 0.08% to 0.4% as the interval shortens.
This non-zero failure rate is attributed to the nature of

FIGURE 11. Rate of failed HTTP GET requests (10MB file).

daisy-chaining, which redirects stray packets to the last
server. When different next-hops are selected twice for
a continuous connection due to two consecutive next-hop
changes, daisy-chaining fails to deliver the connection to the
appropriate server, resulting in disruption. To confirm this
point, we measured the time required to complete HTTP
GET requests by issuing 10,000 requests with ab in the
experimental environment. Figure 10 shows the CDF of the
times for completing the HTTP GET requests. For a 5MB
file, 8% of the GET requests took longer than 2 seconds to
complete, with the longest connection taking over 10 seconds
(11.8 seconds). Disruptions could occur for such long-lived
connections if two next-hop changes happen, even with VRF-
shadowing.

Long-lived connections are expected to be more suscep-
tible to disruption due to next-hop changes. We conducted
the same experiment except that ab retrieved a 10MB file to
verify this point. The dashed green line in Figure 10 shows
the times to complete the HTTP GET requests for a 10MB
file. As expected, it takes longer than getting the 5MB file.
Figure 11 shows the failure rate versus flap intervals for the
10MB file scenario. As with Figure 9, we conducted 30 runs
for each server flap interval, and the y-axis shows the average
failure rate and their standard deviation over the 30 runs.
As shown, the failure rate of the traditional ECMP doubles
compared to the results in Figure 9. For instance, 77% of
GET requests failed when the flap interval was one second.
Although VRF-shadowing also increases the failure rate for
longer-lived connections, the rate of failed requests remains
low, ranging from 0.2% to 0.7% across the flap intervals,
compared with the traditional ECMP.

Next, we examined the amount of redirected traffic from
the servers to for daisy-chaining. Figure 12 shows the
average ratio of the redirected traffic to the received traffic
measured by the eBPF End.DT4.COND program at the
servers during the experiments of Figure 9 and 11. This ratio
increases alongwith the frequency of next-hop changes. Also,

83534 VOLUME 12, 2024

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

FIGURE 12. Ratio of redirected packets from the servers to the router by
VRF-shadowing.

longer connections typically involve more packets needing
redirection until the connections end. Therefore, getting the
10MB file resulted in a higher redirected ratio than the
5MB case. Specifically, the peak redirection ratio is 20.4%
with a flap interval of one second while getting the 10MB
file. Note that redirected traffic in daisy-chaining consists of
packets sent from clients to servers, e.g., requests and ACKs.
Such incoming traffic is generally smaller in volume than
the outgoing traffic from the servers. In our experiment, the
peak throughput of redirected traffic from a server is just
5.92Mbps.

Based on these results, we conclude that VRF-shadowing
effectively implements daisy-chaining to preserve PCC on
ECMP over SRv6 L3VPN without additional control plane
systems. Daisy-chaining does not guarantee complete PCC;
nevertheless, it remains an effective solution for practical
operations [1], [2]. VRF-shadowing brings daisy-chaining to
SRv6 L3VPN with only standardized routing protocols.

D. OVERHEAD AT THE SERVER SIDE
So far, we have observed the daisy-chaining aspect of
VRF-shadowing. We next measured overhead due to
End.DT4.COND on the server side. To clarify the overhead
on latency, we implemented a simple server-client program
that measures round-trip times over a TCP connection; the
client sends a message, and the server echoes it back. The
server process ran inside a container as with the HTTP servers
in the previous experiments, and we ran the client program
at the tester machine. With this setup, we measured the
latency in three scenarios: without the End.DT4.COND eBPF
program, with it attached, and while daisy-chaining occurs.

Figure 13 shows the CDF of 100,000 measured round-trip
times for each scenario, with one and 1460-byte message
sizes. The results indicate that attaching End.DT4.COND
adds several microseconds of latency, and daisy-chaining
introduces an additional 15–34 microseconds. The former is
attributed to the processing time of the eBPF program, and the
latter involves sending the packet to the router and forwarding
it with the previous next-hop. This microsecond-scale latency
would be considerable for transactions demanding ultra-low

FIGURE 13. Latency overhead due to End.DT4.COND and daisy-chaining.

FIGURE 14. Throughput with/without End.DT4.COND.

latency inside a data center [45], but it is still acceptable for
client-server communications over the Internet.

In the throughput experiment, we directly connected the
two server machines via a 100Gbps link. The servers formed
an SRv6 L3VPN domain using FRRouting. An iperf3 server
process ran in a VRF on a server, with or without the
End.DT4.COND eBPF program, and another server sent or
received TCP traffic with an iperf3 client. Figure 14 shows
the average and standard deviations of the transmitting and
receiving throughput over 30 runs in each configuration. The
results reveal no significant differences in the throughput with
and without End.DT4.COND. Thus, the processing overhead
for End.DT4.COND is not significant, thanks to the Linux
eBPF infrastructure.

VII. CONCLUSION
In this paper, we have proposed VRF-shadowing that
achieves daisy-chaining for PCC in the SRv6 L3VPN
framework without the need for additional control plane
systems. The SRv6 router retains the previous states of
ECMP next-hops in a separate VRF, and the servers
redirect stray packets to the correct servers through the
VRF by a new SRv6 End behavior. As a result, the SRv6
router can perform load balancers that support PCC with
existing packet-forwarding planes and standardized routing
protocols. We have implemented VRF-shadowing with a
commercial router and Linux. The evaluation demonstrates
that VRF-shadowing prevents connection disruptions when
ECMP next-hops change. The most severe case shows that

VOLUME 12, 2024 83535

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

VRF-shadowing reduces the rate of failed requests to 0.7%,
in contrast to ECMP, which disrupts 77% of requests due
to next-hop changes. Although daisy-chaining does not
ensure complete PCC and naive ECMP has limited balancing
performance, VRF-shadowing offers a practical solution for
operational simplicity in deploying hardware load balancers.

REFERENCES
[1] J. T. Araujo, L. Saino, L. Buytenhek, and R. Landa, ‘‘Balancing on the

edge: Transport affinity without network state,’’ in Proc. 15th USENIX
Symp. Networked Syst. Design Implement., Apr. 2018, pp. 111–124.

[2] D. Wragg. (2020). Unimog—Cloudflare’s Edge Load Balancer. [Online].
Available: https://blog.cloudflare.com/unimog-cloudflares-edge-load-
balancer

[3] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, and B. Cheyney, and W. Shang,
‘‘Maglev: A fast and reliable software network load balancer,’’ in Proc.
13th Symp. Netw. Syst. Design Implement., 2016, pp. 523–535.

[4] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, ‘‘SilkRoad: Making stateful
layer-4 load balancing fast and cheap using switching ASICs,’’ in Proc.
Conf. ACM Special Interest Group Data Commun., Aug. 2017, pp. 15–28.

[5] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding, X. Geng, T. Feng, F. Ning, K. Chen, and C. Guo, ‘‘Tiara:
A scalable and efficient hardware acceleration architecture for stateful
layer-4 load balancing,’’ in Proc. 19th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2022, pp. 1345–1358.

[6] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri, ‘‘Ananta:
Cloud scale load balancing,’’ in Proc. ACM SIGCOMM Conf., Aug. 2013,
pp. 207–218.

[7] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and M. Zhang,
‘‘Duet: Cloud scale load balancing with hardware and software,’’ in Proc.
ACM Conf. SIGCOMM. New York, NY, USA: Association for Computing
Machinery, Aug. 2014, pp. 27–38, doi: 10.1145/2619239.2626317.

[8] C. Hopps. (2000). Analysis of an Equal-Cost Multi-Path Algorithm.
[Online]. Available: https://www.rfc-editor.org/info/rfc2992

[9] W. Zhang. (2016). IPVS Software—Advanced Layer-4 Switching. [Online].
Available: http://www.linuxvirtualserver.org/software/ipvs.html

[10] (2023). Facebookincubator/Katran: A High Performance Layer 4 Load
Balancer. [Online]. Available: https://github.com/facebookincubator/
katran

[11] (2023). Github Load Balancer Director and Supporting Tooling. [Online].
Available: https://github.com/github/glb-director

[12] (2023). Haproxy—The Reliable, High Performance TCP/HTTP Load
Balancer. [Online]. Available: http://www.haproxy.org/

[13] R. Cohen, M. Kadosh, A. Lo, and Q. Sayah, ‘‘LB scalability:
Achieving the right balance between being stateful and stateless,’’
IEEE/ACM Trans. Netw., vol. 30, no. 1, pp. 382–393, Feb. 2022,
doi: 10.1109/TNET.2021.3112517. https://doi.org/10.1109/TNET.2021.
3112517

[14] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, ‘‘Stateless datacenter
load-balancing with beamer,’’ in Proc. 15th USENIX Symp. Networked
Syst. Design Implement. (NSDI), 2018, pp. 125–139.

[15] R. Nakamura, K. Ebisawa, T. Okuzawa, C. Lee, and Y. Sekiya, ‘‘Extending
ecmp toward a practical hardware load balancer,’’ in Proc. Internet
Operation Technol. Symp., Dec. 2022, pp. 40–47.

[16] kernel Develop. communit. BPF Documentation—The Linux Ker-
nel Documentation. Accessed: Jun. 13, 2024. [Online]. Available:
https://docs.kernel.org/bpf/

[17] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. Maguire, P. Papadimitratos,
and M. Chiesa, ‘‘A high-speed load-balancer design with guaranteed per-
connection-consistency,’’ in Proc. 17th USENIX Symp. Networked Syst.
Design Implement. (NSDI), 2020, pp. 667–683.

[18] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and
T. Clausen, ‘‘Stateless load-aware load balancing in P4,’’ in
Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), Sep. 2018,
pp. 418–423.

[19] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen,
‘‘6LB: Scalable and application-aware load balancing with segment
routing,’’ IEEE/ACM Trans. Netw., vol. 26, no. 2, pp. 819–834,
Apr. 2018.

[20] R. Gandhi, Y. C. Hu, C. kok Koh, H. H. Liu, and M. Zhang, ‘‘Rubik:
Unlocking the power of locality and end-point flexibility in cloud
scale load balancing,’’ in Proc. USENIX Annu. Tech. Conf., Jul. 2015,
pp. 473–485.

[21] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir. (2018). Segment Routing Architecture. [Online]. Available:
https://www.rfc-editor.org/info/rfc8402

[22] C. Filsfils, D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer.
(2020). IPV6 Segment Routing Header (SRH). [Online]. Available:
https://www.rfc-editor.org/info/rfc8754

[23] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li.
(2021). Segment Routing Over IPV6 (SRV6) Network Programming.
[Online]. Available: https://www.rfc-editor.org/info/rfc8986

[24] G. Dawra, K. Talaulikar, R. Raszuk, B. Decraene, S. Zhuang, and
J. Rabadan, BGP Overlay Services Based on Segment Routing Over IPV6
(SRV6), document RFC 9252, 2022.

[25] S. Matsushima, C. Filsfils, Z. Ali, Z. Li, K. Rajaraman, and A. Dhamija.
(2022). SRV6 Implementation and Deployment Status. [Online].
Available: https://datatracker.ietf.org/doc/draft-matsushima-spring-
srv6-deployment-status/15/

[26] M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A scalable, commodity data
center network architecture,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, Aug. 2008.

[27] Y. Cao and M. Xu, ‘‘Dual-NAT: Dynamic multipath flow scheduling for
data center networks,’’ in Proc. 21st IEEE Int. Conf. Netw. Protocols
(ICNP), Oct. 2013, p. 19.

[28] Z. Zhang, H. Zheng, J. Hu, X. Yu, C. Qi, X. Shi, and G. Wang, ‘‘Hashing
linearity enables relative path control in data centers,’’ in Proc. USENIX
Annu. Tech. Conf., Jul. 2021, pp. 855–862.

[29] Y. Xu, K. He, R. Wang, M. Yu, N. Duffield, H. Wassel, S. Zhang,
L. Poutievski, J. Zhou, and A. Vahdat, ‘‘Hashing design in modern
networks: Challenges and mitigation techniques,’’ in Proc. USENIX
Annual Technical Conf., 2022, pp. 805–818.

[30] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, ‘‘WCMP: Weighted cost multipathing for improved fairness in
data centers,’’ in Proc. 9th Eur. Conf. Comput. Syst., Apr. 2014, pp. 1–14.

[31] M. Shafiee and J. Ghaderi, ‘‘A simple congestion-aware algorithm for load
balancing in datacenter networks,’’ IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3670–3682, Dec. 2017.

[32] K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, and
D. Walker, ‘‘Adaptive weighted traffic splitting in programmable data
planes,’’ in Proc. Symp. SDN Res., Mar. 2020, pp. 103–109, doi:
10.1145/3373360.3380841.

[33] P. Mohapatra and R. Fernando. (2018). BGP Link Bandwidth Extended
Community. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-
idr-link-bandwidth/07/

[34] Cisco Syst. (2016). IP Routing: BGP Configuration Guide—BGP Link
Bandwidth [Cisco ASR 1000 Series Aggregation Services Routers].
[Online]. Available: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ip
route_bgp/configuration/xe-16/irg-xe-16-book/bgp-link-bandwidth.html

[35] NVIDIA Corp. (2024). BGP Weighted Equal Cost Multipath | Cumulus
Linux 5.9. [Online]. Available: https://docs.nvidia.com/networking-ether
net-software/cumulus-linux-59/Layer-3/Routing/BGP-Weighted-Equal-C
ost-Multipath/

[36] N.Malhotra, A. Sajassi, J. Rabadan, J. Drake, A. R. Lingala, and S. Thoria.
(2023). Weighted Multi-Path Procedures for EVPN Multi-Homing.
[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-bess-evpn-
unequal-lb/21/

[37] Furukawa Electric. List of Data Cneter Products. Accessed: Jun. 13,
2024. [Online]. Available: https://www.furukawa.co.jp/en/solution/
datacenter/product.html

[38] D. Borkmann, ‘‘On getting TC classifier fully programmable with CLS
BPF,’’ in Proc. Tech. Conf. Linux Netw., Nov. 2016, pp. 1–19.

[39] (2019). SRV6—Linux Kernel Implementation | Implementation /
Advanced Configuration. [Online]. Available: https://segment-routing.org/
index.php/Implementation/AdvancedConf

[40] FRRouting Protject. (2023). Frrouting. [Online]. Available: https://
frrouting.org/

[41] (2022). BPF—Helpers(7)—Linux Manual Page. [Online]. Available:
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

[42] (2021). Virtual Routing and Forwarding (VRF); The Linux
Kernel Documentation. [Online]. Available: https://docs.kernel.org/
networking/vrf.html

83536 VOLUME 12, 2024

http://dx.doi.org/10.1145/2619239.2626317
http://dx.doi.org/10.1109/TNET.2021.3112517
http://dx.doi.org/10.1145/3373360.3380841

R. Nakamura et al.: Exploiting SRv6 for Stateless and Per-Connection-Consistent Load Balancing

[43] (2024). H2O—The Optimized Http Server. [Online]. Available:
https://h2o.examp1e.net/

[44] Apache Softw. Found. (2022). AB—Apache HTTP Server Bench-
marking Tool—Apache HTTP Server Version 2.4. [Online]. Available:
https://httpd.apache.org/docs/2.4/programs/ab.html

[45] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, ‘‘Homa: A
receiver-driven low-latency transport protocol using network priorities,’’
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 221–235, doi: 10.1145/3230543.3230564.

RYO NAKAMURA received the Ph.D. degree
in information science and technology from The
University of Tokyo, Tokyo, Japan, in 2017.

He is an Associate Professor with the Infor-
mation Technology Center, The University of
Tokyo, and operates The University of Tokyo
campus network. His research interests include the
networking aspect in operating systems, network
virtualization, and network operation.

KENTARO EBISAWA received the degree in Earth
and planetary sciences from Tokyo Institute of
Technology, in 1997. He has engaged in the early
stages of the internet, focusing on ADSL, FTTH,
and VPN, for verification and support for service
implementation. Subsequently, he worked across
various functions, including customer support,
product design, and development management,
primarily in domestic and international star-
tups. After contributing to the development of

high-performance network products using ASICs and FPGAs, such as
flow routers and OpenFlow switches, he was a Research Associate of
major automobile companies and telecommunications operators, involved
in the research and development of protocols and systems utilizing data
plane programming (P4). He is also a co-translator, a supervisor, and the
contributing author of the book: Software-Defined Networks: Concepts,
Design, and Use Cases.

HIDEAKI HAYASHI received the master’s degree
in information science and technology from Tokyo
University of Agriculture and Technology, Tokyo,
Japan. Currently, he is a Blank Software Engineer
with Furukawa Network Solution Corporation,
specializing in BGP and segment routing. His
research interest includes network architecture and
virtualization.

TATSUYA FUJIWARA is a Software Engineer
with FurukawaNetwork Solution Corporation. His
research interests include routing architecture and
network virtualization.

TOMOKO OKUZAWA has been a Senior Engi-
neer with Toyota Motor Corporation, since 2022.
Leveraging her extensive network architect back-
ground from service provider experience, she
currently focuses on researching and developing
digital data platforms for collecting, storing, and
analyzing data generated by connected cars.

VOLUME 12, 2024 83537

http://dx.doi.org/10.1145/3230543.3230564

