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ABSTRACT Emotion recognition is one of the crucial topics in computer vision to efficiently recognize the
expression of humans through faces. Recently, transformers have been recognized as a robust architecture,
and many vision-based transformer models for emotion recognition have been proposed. The major
drawback of such models is the high computational cost of the attention mechanism for computing
space-time attention. To that end, we studied temporal feature shifting for frame-wise deep learning
models to avoid this burden. In this work, we propose a novel temporal shifting approach for a frame-
wise transformer-based model by replacing multi-head self-attention (MSA) with multi-head self/cross-
attention (MSCA) to model the temporal interactions between tokens without additional cost. The contextual
connection between and inside channels and across time is encoded by the proposed MSCA to enhance the
recognition rate and reduce the latency for real-world applications. We extensively evaluated our system on
CK+ (Cohn-Kanad) and Fer-2013plus (Facial-Emotion-Recognition) benchmark datasets with geometric
transforms-based augmentation to address the imbalance issue in the data. According to the results, the
proposed MSCA has either outperformed or closely matched the performance of state-of-the-art (SOTA)
techniques. However, we conducted an ablation study on a challenging Fer2013+ dataset to demonstrate the
significance and potential of our model for complex emotion recognition tasks.

INDEX TERMS Attention mechanism, deep learning, end-to-end architecture, multi-head self/cross-
attention, emotion recognition.

I. INTRODUCTION
Emotion recognition and facial expressions are crucial
aspects of non-verbal human communication that directly
represent behavior and intentions. However, automatic
expression recognition in computer vision is a challeng-
ing task due to variations in lighting, environment, and
poses [1], [2]. Even humans face difficulties in distinguishing
expressions under different conditions [3]. Although recent
deep learning-based approaches have significantly improved
expression recognition performance, these techniques are
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still limited to datasets and have limitations in cross-corpus
experimentation [4], [5]. The task becomes even more
intricate when considering variations induced by lighting,
environmental conditions, and posture, making it challenging
even for human observers [6], [7].

The Vision Transformer (ViT ) has been a significant
breakthrough in image classification, surpassing traditional
deep learning systems [8], [9]. The transformer architecture
initially designed for text-based tasks is considered a foun-
dation of ViT [10], [11]. Transformers represent an image
as patches, following the approach of text transformers, pre-
serving image and token quality while reducing computation.
However, optimizing the performance of the ViT model
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for emotion recognition requires a nuanced exploration of
hyper-parameters [12]. Researchers investigated hyper-
parameter tuning to maximize ViT model accuracy while
probing into the synergy between computational intelligence
techniques and their applications [13]. As a result, neuronal
architectures that have recently experienced tremendous
success in recognition are considered the future of hybrid
intelligence [14]. The attention mechanism and their tremen-
dous results in some applications have also made them a
potential [15].

The ViT model has been widely used in emotion recog-
nition, and researchers have achieved significant success
in many tasks in other domains. Still, in computer vision,
the transformers have several challenges [16]. Transformers
use self-attention mechanisms that are computationally
expensive, which makes them challenging to scale to
high-resolution visual data. They still consider images as
sets of patches rather than grids, losing the inherent spatial
relationships that CNNs effectively model. This results
in decreased performance on tasks that require strong
spatial understanding. Additionally, standard Transformer
self-attention has a limited local receptive field. Over-
reliance on large pre-trained datasets limits their applicability
and causes their performance on fine-grained texture-based
problems due to reduced resolution from pacification [17].
This research addresses these limitations by proposing

a multi-head self/cross-attention (MSCA) mechanism for
human emotion recognition. We introduce an innovative
attention mechanism called MSCA as a novel approach to
address the limitations of existing front-end reinforcement
techniques. Our proposed technique effectively captures
temporal interactions between tokens without incurring addi-
tional costs. Furthermore, our model uses an attention strat-
egy to establish meaningful relations across tokens, enabling
accurate acoustic-to-feature mapping for emotions. Addition-
ally, our model directly incorporates spatial and temporal
representations of the input tensor for real-time analysis. The
experimental results demonstrate the superior performance of
the proposed model on CK+ and Fer2013+ datasets com-
pared to the baseline (See experimental results sections for
details). The main contributions are summarized as follows:

• We proposed a mechanism for emotion recognition
using multi-headed self/cross-attention (MSCA), which
incorporates a temporal shift module to eliminate the
need for computing spatial-temporal attention in the
multi-channel encoder-decoder attention module.

• We incorporated the concept of cross-attention inMSCA
to improve temporal interactions within the transformer
block. This is different from token shift, which involves
the use of extra shifting modules. As a result, we are
able to achieve temporal interaction without adding any
computational complexity or requiring any changes to
the underlying model architecture.

• Experimental evaluations conducted on the CK+ and
Fer2013+ datasets demonstrate that our proposed
approach outperforms 3 to 5 percent of the baseline

models and the token-shift method in accuracy and
20 percent faster in frame-per-second (fps) processing.

The rest of the article is structured as follows: The
background of the domain with recent literature is discussed
in Section II, and the proposed methodology is discussed
in Section III. The experimental results is described in
Section IV, and discussion with comparative analysis are
discussed in Section V. Finally, the idea is concluded in
Section VI with possible future directions.

II. LITERATURE REVIEW
In effective interpersonal communication, facial expression
and emotion play an important role in conveying emotions
non-verbally that enhance mutual understanding. In recent
years, there have been notable improvements in this area as
the importance of precise emotion recognition has gained
wider recognition across various application domains [18].
Advancements in computational models and techniques aim
to develop technologies with capabilities that begin to
approach human-level interpretation of non-verbal signals.
This progress shows ongoing efforts to create tools that
can understand emotional cues from visual stimuli, just like
people do non-verbally in their daily lives [17], [19].
Facial expression/emotion recognition (FER) techniques

provide useful insights into human behavioral analysis [20].
Prior FER research primarily focused on manually extracting
features from landmarks, textures, and other geometric
details [16]. However, recent progress in machine learn-
ing and large datasets has advanced computational FER
models. These models integrate feature extraction and
classification in an end-to-end manner, automating the
process and leveraging deep networks’ representation [21].
Early approaches applied multi-layer perceptron, support
vector machines (SVM), and k-nearest neighbors (KNN) for
classification using hand-crafted features like histograms of
gradients and eigenvectors. More recent work has proposed
robust deep learning-based FER systems [20] that applied
principal component analysis (PCA) to reconstruct occluded
expressions before extracting Gabor wavelet and geometric
features [22]. PCA and linear discriminant analysis (LDA)
utilized in these techniques to reduce dimensions before
classification. Another study demonstrates noise-resistant
recognition through an active contour model for face
detection [23], [24]. These models combines two different
distance functions to better discriminate faces under variable
lighting and identities.

Deep learning frameworks advanced the FER systems
instead of conventional methods, which can handle large
amounts of data [25], [26]. Our focus is on two recent
strategies of deep learning for recognition: Convolution
Neural Network (CNN) and Visual Transformer (ViT) -
based emotion recognition becouse traditional approaches
rely on manual feature extraction, limiting robustness and
generalization [27]. Hence, CNNs have gained prominence
in the deep learning field for addressing these issues that
can learn representations directly from raw image data in an
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end-to-end manner without laborious feature engineer-
ing [28], [29]. These architectures mimic the human visual
cortex through hierarchies of locally connected layers and
pooling operations that apply trainable filters to detect
patterns across input feature maps [17]. Subsampling layers
is used in these networks to reduce the dimensionality while
preserving key structure and fully-connected layers enable
classification based on global representations [30].

A range of CNN-based FER techniques have achieved
state-of-the-art (SoTA) performance [31] by exploring
deep 3D and attention-based models to address challenges
like micro-expressions and occlusions. Hybrid CNN-SVM
approaches leverage extracted CNN embedding for clas-
sification [23] and multi-stream, CNN fusion methods
integrate temporal and geometric cues [32] to recognized
emotions. While CNN excel at automated feature learning,
large training datasets and compute requirements remain
obstacles. So, the transformers frameworks address these
through self-attention, allowing global context modeling
more efficiently than CNN, which is used local filters.
However, transformers’ sequence-based design differs from
CNN grid-structured processing of images [33]. Some work
advanced deep learning architectures balancing CNN and
transformer strengths for robust, scalable facial expression
analysis by end-to-end automated feature engineering and
efficient modeling of long-range dependencies that help the
realization of human-level perceptual capabilities [34].
The Vision Transformer (ViT) was introduced in 2021 with

promising results across computer vision tasks like image
classification [10]. Inspired by transformers’ success in nat-
ural language processing, ViT represent images as sequences
of patches input to an encoder, learning global representations
for classification [11]. Several FER approaches leverage
ViT and explore local attention features and global context
through squeeze-and-excitation blocks [35]. Similarly, Trans-
FER introduced multi-attention dropping to learn detailed
local representations in an adaptive manner, combining ViT
andmulti-head self-attention [36] for emotion recognition via
face images.

Recent work introduces Visual Transformers with Feature
Fusion (VTFF) to enhance visual word representations [37]
for facial emotion detection. The authors adaptively fuse
CNN and local bounding pixel features through attentional
feature fusion in VTFF to models contextual information
and focuses on discriminative characteristics. Furthermore,
another model focuses on low-level grid attention to reg-
ularize convolutional filters, and high-level visual trans-
former attention learns global representation from seman-
tic tokens [38] to efficiently recognize facial emotions.
Additionally, a new dataset called Aggregation for ViT on
Facial Emotion Recognition (AVFER) was developed that
combines training and evaluating ViT configurations for
facial expression, which is publicly available [39]. Finally,
a novel Squeeze ViT representation technique considers both

localized landmark features and global context that address
ViT challenges involving parameters and complexity [40].
In the domain of image recognition and classifica-

tion, as indicated in seminal ViT literature, consistently
outperform CNNs in terms of accuracy [10]. However,
to enable widespread deployment, ViT architectures must
prioritize computational efficiency and scalability without
compromising performance. ViT is well-suited to modeling
global dependencies across an image via self-attention,
excelling at holistic image categorization. However, further
enhancing ViT for facial expression recognition necessitates
attending to localized changes, especially around the maps,
which are most expressive. Therefore, this research proposed
developing a novel, optimized architecture called MSCA for
emotion recognition to advance the SoTA methods. Rather
than solely maximizing classification accuracy, the proposed
model will balance global and local feature extraction
through strategic architectural design choices and self/cross-
attention mechanisms to reduce computational complexity.
This aims to leverage MSCA strengths while ameliorating
its limitations for the more nuanced task of facial behavior
analysis. Parameter optimization will furnish the model
with capabilities that generalize robustly across datasets and
deployment contexts and are applicable in edge devices for
real-time processing.

III. PROPOSED ARCHITECTURE
To maximize the conditional probability p(y|x), our objective
is to acquire a mapping across the input sequence channels Ĉ .
The input sequence, denoted as x = (x1, . . . , xj, . . . , xc),
is composed of patches and features. In this context,
xj ∈ R(S×f ) represents the feature map of the jth term,
encompassing S patches and f features. Conversely, the target
sequence y = (y1, . . . , yk , . . . , yu) forms a sequence of
entire patches with a length of U , where each yj ∈ R(L×1)

corresponds to the features for the jth term.
The overview and significance of our proposed encoder

with baseline transformers architecture is illustrated in Fig. 1,
where (a) illustrates the original transformer encoder block,
incorporating the multi-headed self-attention (MSA) module,
and (b) represents the encoder block with token shift,
introducing two additional modules to shift intermediate
features within the original transformer block. This module
executes a single-step forward and backward temporal shift,
akin to the token shift strategy. Similarly, (c) showcases the
proposed (MSCA) encoder instead of (MSA). Notably, this
configuration does not include any additional modules, and
the performance is better, with the baseline having reduced
latency and cost computations.

A. TOKEN-SHIFTING & TRANSFORMERS
The role of token-shift is briefly investigated in this part based
on transformers [41].
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FIGURE 1. (a) Original transformer encoder block, (b) encoder block with
token shift, (c) proposed encoder with MSCA block.

1) EMBEDDING OF PATCHES
We consider the input tensor, denoted as W ∈ RSe×H×W .
Here, Se represents the number of patches in the images,
while H and W represent the dimensions. Each input is
divided into the size of patches ps × ps pixels. These
patches are transformed into a tensor Ĥ = [Ĥ1

0 , . . . , ĤN
0 ] ∈

RW×N×D, where Ĥ j
0 ∈ RW×D denotes the ith patch. The total

number of patches, denoted byN , is determined asN =
H ·W
ps2

,

and each patch has a D = 3ps2 dimension. Subsequently,
the input patch Ĥ0i undergoes a transformation using an
embedding matrix En ∈ RD and positional encoding Enpos.
The transformation process is as follows:

x0 = (c0, x10 En, x
2
0 En, . . . , x

N
0 En) + Enpos (1)

In Eq. 1, c0 ∈ RW×D represents a token of the class.
The embedding of patch B0 ∈ RW×(n+1)×D is obtained by
adding the product of each x i0 and the embedding matrix En
(Encoder) to the class token c0. The positional encodingEnpos
is added to x0. The patch embedding B0 is initially utilized as
an input for the encoder block.

2) ENCODER BLOCK OF BASELINE
The encoder block is a crucial component in the Transformer
architecture (baseline), designed for parallelized processing
of input sequences by incorporating the MSA mechanism,
where the input is divided into heads, allowing the model
to capture different relationships within the sequence. The
scaled dot-product attention is used to calculate the attention
scores and then passes through a series of operations to
process the information at each position independently
further. We modify this hierarchical structure, consisting
of self/cross attention MSCA and feed-forward layers with
residual connections, which enable the encoders to capture
intricate patterns and dependencies in input, and multiple

MSCA blocks are typically stacked to enhance the model’s
representative capacity. The visual flow diagram of the
baseline encoder is illustrated in Fig. 1(a), and working
mechanism is as follow: Let Bl denote the input sequence up
to l th term in the encoder. The resulting output Bl from the
blocks can be represented as

B′
l = MSA (Norm(Bl−1)) + Bl−1 (2)

Bl = MLP
(
Norm(B′

l)
)
+ B1l (3)

In Eq. 2 and Eq. 3, the input Bl is passed through
the MSA module, followed by the normalization layer
and an element-wise addition with Bl−1. The resulting
output is denoted as B′

l . Subsequently, B
′
l undergoes Linear

normalization denoted by Norm and is fed into an MLP. The
output of the MLP is added element-wise with B1l , resulting
in the final output Bl of the l th encoder block.

3) SHIFT-MODULES
Vision Transformers have achieved remarkable success with
self-attention but struggle to capture fine-grained local
context due to the loss of 2D positional information during
patchification. The token-shift mechanism aims to address
this limitation by incorporating a notion of locality into
the self-attention computation. It augments token embedding
with 2D positional encoding before self-attention. Rather
than attending to tokens directly, the query is shifted
to nearby patches within a neighborhood window. This
effectively makes the attention map more focused on
local regions, enabling ViTs to better model fine-grained
relationships between neighboring patches in a manner
analogous to convolutional kernels. Token-shift enables
Transformers to balance their strengths in global context
modeling through self-attention with stronger localization
abilities, akin to CNNs, and achieve improved performance
for dense prediction tasks while maintaining competitive data
efficiency.

The visual flow diagram of the baseline encoder with
shift module is illustrated in Fig. 1(b) with working strategy.
Therefore, the proposed MSCA attention block includes two
shift modules representing the token-shift mechanism in
Fig. 1(c). The shift operations can be described as

B′

(l−1) = shift(B(l−1)) (4)

B′′
l = MSA

(
Norm(B′

l−1)
)
+ B′

l−1 (5)

B′′′
l = shift(B′′

l ) (6)

Bl = MLP
(
Norm(B′′′

l )
)
+ B′′′

l (7)

In this process, the incoming tensor Bin ∈ R(W×(N+1)×D)

and generate a result Bout in similar dimensions. These
modules shift the section of Bin that token corresponds to
class (B(in,T ,O,D)) to the beginning of the other part of Bin
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thereby keeping the second sections unaltered.

Bout,T ,O,D =


Bin,T−1,O,D

Bin,T+1,O,D + Df
Bin,T ,O,D

(8)

Bout,T ,N ,D = Bin,T ,N ,D (9)

These shift operations are part of the token-shift mechanism
employed in the proposed attention block.

B. PROPOSED MSCA ATTENTION MECHANISM
This section discusses the main differences between the
MSA (multi-headed self-attention) and the proposed MSCA
(multi-headed self/cross-attention) networks. We provide
an overview and the main difference between MSA and
proposed MSCA in terms of theoretical background and a
step-by-step procedure for building and working strategy
with input data. Relations of Eq. 2 and Eq. 3 demonstrate
the MSA block of baseline encoders that we propose here to
replace by MSCA. A step-by-step procedure and strategy to
show the main distinction between the baseline MSA and the
proposed MSCA networks is explained below.
The MSA module computes the query (Q(t)), value (V (t)),

and key (K (t)) with a certain part (B(t) ∈ R(N+1)×D) of the
input feature (B ∈ R(W×(N+1)×D)) at a given Number N . This
process is carried out using the following expressions:

Q(t),V (t),K (t)
= B(N )

· (wk ,wq,wv) (10)

In the given equations, the matrices wk ,wq,wv ∈ R(D×N )

represent the embedding matrices, and the input feature B is
composed of patches B(1), . . . ,B(N ). These values are utilized
to calculate the attention of the ith head:

H(t)
i = P(Qti ,K

t
i )V

t
i ∈ R(N+1)× D

H (11)

P(Q,K ) = softmax

(
QK t ′

√
D

)
(12)

In Eq. 11 and Eq. 12, the patch P is considered, where
Qti ∈ R(N+1) represents a part of the Qt heads denoted by
Q(t)

= (Qt1, . . . ,Q
t
i , . . . ,Q

P
H ), with H denoting the head and

t ′ representing the transpose.

MSA(B(N )) = [HN
1 , . . . ,HN

H ] (13)

where K t
i and V

t
i are the same heads stacked from the MSA,

where patches in the ith head attend to another patch within
a similar pitch. This implies that no temporal interactions
are occurring between the different patches. The visual
framework of the proposed MSCA architecture is illustrated
in Fig.2 with related components, and the description of each
block is discussed in the upcoming sections.

1) KEY & VALUE KV POSITION IN PROPOSED MSCA
MODULE
The designedMSCAmodule incorporates saliency across the
input, allowing patches in the ith tensor at level N − 1 and
N + 1. It’s achieved through shift operations, where the

FIGURE 2. A visual illustration of the proposed MSCA model for emotion
recognition.

query Q, key K , and value V are generated for each tensor
(input), and depending on the chosen configuration, K and V
can be shifted, allowing the current frame’s query to attend
pairs of key values in other pitch in the proposed MSCA
mechanism, which is described as follows:

headtj =


I (Qtj ,K

t−1
j )V t−1

j , 1 ≤ j < hb,

I (Qtj ,K
t−1
j )V t+1

j , hb ≤ j < hb + hf ,

I (Qtj ,K
t−1
j )V t−1

j , hb + hf ≤ j < h.

(14)

In Eq. 14, the initial heads experience a shift backward,
the following heads hf undergo a shift forward, and the
remaining heads do not shift. This approach is referred to
as MSCA − KV , where I represents the input image/pitch.
Initially, keys, queries, and values are calculated for each
input, and subsequently, some of these values are shifted
before the attention computation step. The solid arrows
indicated shifts interval t + 1 and t − 1 for key-value. The
same shift process occurs simultaneously in all other input
tensors, which is illustrated in Fig.3.

FIGURE 3. A visual illustration of the proposed MSCA-KV learning module
and attention mechanism for emotion recognition.
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2) VALUE V POSITION IN PROPOSED MSCA MODULE
The other possible solutions in a shift module for the
proposed MSCA involve shifting only the value V while
keeping the query Q and key K unchanged, which is visually
illustrated inFig. 4. The correspondingmathematical concept
is formally modeled by Eq. 15.

headti =


I (Qti ,K

t
i )V

t−1
i , 1 ≤ j < hb

I (Qti ,K
t
i )V

t+1
i , hb ≤ j < hb + hf

I (Qti ,K
t
i )V

t
i , hb + hf ≤ j ≤ h

(15)

This approach, known as MSCA-V, differs from the previous
shift method as only the value component is shifted, while
the query and key components remain within their respective
place. It’s important to note that this approach may not be
commonly used because it separates the key and value from
different pitches. Apart from V in MSCA, there are some
additional combinations, and all variants will be examined
in the experiments to evaluate their performance. Notably,
QKV in MSCA can be regarded as a form of feature shifting,
as the attended features are computed within each input and
subsequently shifted accordingly.

FIGURE 4. A visual illustration of the proposed MSCA-V learning module
and attention mechanism for emotion recognition.

3) PITCH KEYS & VALUES (PKV ) IN PROPOSED MSCA
MODULE
All MSCA variants incorporate shift operations in the head
dimension D, and it is also possible to apply similar shift
variants in the patch dimension N + 1. The shapes of K t , Qt ,
and V t are R(N+1)×D, where the first dimension represents
patches and the second dimension represents heads. This
allows for shifts in both the head and patch dimensions.
Initially, the keys and values are organized as stacks, each
consisting of keys and values from different frames of
patches. For example, K t

= (K t
1, . . . ,K

t
1, . . . ,K

t
N ) and V

t
=

(V t
0, . . . ,V

t
1, . . . ,V

t
N ). The shift operations for the keys are

defined as

K
′t
N =


K t−1
N , 1 ≤ N < Nb

K t+1
N , Nb ≤ N < Nb + Nf

K t
N , Nb + Nf ≤ N < N

(16)

TABLE 1. Statistical analysis of the Fer-2013plus and CK+ datasets.

where K t
N and V t

N ∈ RD represent the values and keys
of patches at interval T . The key of certain parts in
the current pitch is transferred to K ′ and V ′ using the
same approach. Finally, the computation of the ith head is
performed following Eq. 17.

Ht
i = I (Qti ,K

′t
i )V

′t
i ⇒ (Qti ,K

t
i )V

′t
i (17)

We refer to the proposed version of MSCA with patch shift
using keys and values as MSCA-PKV and the version with
patch shift using only values asMSCA-PV. These variants are
similar to MSCA-V (see Fig. 4, which involves shifting in the
patch direction, focusing on the value component. Similarly,
there are seven total variants, includingMSCA-PV and so on.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASETS & PRE-PROCESSING
In this study, we used two benchmark datasets,
Fer-2013plus [42] and Cohn-Kanade (CK+) [43], to evaluate
the performance and robustness of the proposed system.

Fer-2013plus [42]: The Fer-2013plus dataset is created
in 2016 as an extension of the FER-2013 dataset provided
by Kaggle. The images in this dataset are greyscale facial
expressions measuring 48 pixels by 48 pixels that have
been classified into various emotion categories. The Fer-
2013plus dataset contains 35,887 images representing seven
facial expressions, with labels ranging from zero to six. The
distribution of images across these classes varies from each
other as illustrated in Table 1. Test sets consist of 7178 sam-
ples split between public and private, whereas training sets
consist of 28,709 samples. We have validated our approach
on this standardized facial expression/emotion recognition
benchmark with a variety of emotional categories, and the
testing results visually showed in Fig. 7.

CK+ [43]: This dataset is the extended version of
the original Cohn-Kanade (CK) dataset, which consists
of 593 video sequences and labeled images collected in
a controlled laboratory environment. The data includes
123 subjects ranging from 18 to 30 years old, and the
resolution of the images is 640× 480, and 640× 490 pixels at
8-bit grayscale version. In addition to the six basic emotions
of anger, disgust, fear, happiness, sadness, and surprise,
the CK+ dataset also includes the emotion of neutral as
shown in Table 1. For model evaluation, we utilized 80%
of the data for training and 20% for validation purposes.
This dataset provides a standardized resource to benchmark
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FER algorithms incorporating a wider range of emotional
categories than prior datasets.

Pre-processing: In pre-processing, the data augmentation
technique is applied to enhance and enrich the datasets and
reduce overfitting for robust model training. All images
are undergoing multiple transformations aimed at expanding
the available training samples in a computationally efficient
manner, and scales are adjusted to normalize the size variation
of each image in the dataset. Random rotations are applied
to artificially introduce angular changes in orientation and
flipped horizontally and vertically to generate left-right and
up-down variants from existing images. Additionally, Pixel
values are normalized to facilitate model convergence by
ensuring input features lie within a similar distribution
and scale to help in the training process for more effi-
cient outcomes. The visual representation module of data
pre-processing is illustrated in Fig. 2.

B. RESULTS AND ANALYSIS
We used the accuracy matrix defined in Eq. 18 to evaluate
the effectiveness of our model and conduct a comparative
analysis with baseline models.

ACC =

∑6
i=0 Ti∑6

i=0 Ti + Fi
(18)

Similarly, Fi represents the number of predictions of samples
of the ith class that do not match that class. Dataset classes
are associated with i.
This matrix indicates the model performance across all

classes and defines the ratio between the proposed model
correct predictions and the total number of predictions.
Additionally, a K-fold cross-validation technique is used to
extensively evaluated the proposedmodel to report themature
results. During experimentation, a 10-fold cross-validation
approach is adopted whereby the data is split into ten folds,
nine used for training and one for validation in each iteration.
The procedure involves random shuffling, splitting into folds,
training testing and saving the evaluation score on each
iteration. Furthermore, the model is tested on a separate
hold-out test set to obtain an overall accuracy matrix and
compared with SoTA in Table 4.

C. ABLATION STUDY
Overall, the baseline transformers and our proposed multi-
head self/cross-attention (MSCA) have dff = 1024 hidden
neurons, and h = 3 heads at initial version. During
configuration, we analyse various setups with MSCA having
h = 4, via other transformers, as stated in Table 2, with
equivalent model sizes utilizing Fer-2013plus dataset. The
accuracy demonstrates the outcomes of all experiments,
which can be calculated for different mechanisms. The larger
accuracy value shows better performance with similar setup
and input data. Table 2 demonstrates that the ‘‘Proposed
MSCA’’ model outperforms the other approaches in terms
of accuracy for emotion recognition. The proposed setup

TABLE 2. Ablation study of the proposed system with different learning
strategies using Fer-2013plus dataset using image as input to the model.

TABLE 3. Classification scores of MSCA on Fer-2013plus dataset.

achieves better results with the rest using similar dataset.
Conclusively, we performed an ablation study to illustrate
the significance of various attention layers and train different
types of transformers to select the best architecture for
emotion recognition.

D. QUANTITATIVE ANALYSIS
Fer-2013plus: This dataset includes images representing
seven basic facial expressions as depicted in the confusion
matrix Fig. 5, it appears that most classes have been predicted
accurately during validation except for fear expressions. For
some samples, the predicted class of fear is incorrectly
given as anger and disgust. Still, the overall classification
accuracy is better than the baseline as reflected by the
precision, recall, and F1-score metrics calculated for each
sample in the test set as shown in Table 3. Furthermore,
Fig. 5 depicts the matrix for the Fer-2013plus dataset,
providing insight into how well the model differentiated
between the true versus predicted expression categories
during evaluation. The matrix visualization helps analyse
what types of errors or misclassifications occurred across
expressions. The diagonal values in the confusion matrix
is showing the actual prediction corresponding each class,
which is highlighted in Fig. 5.

CK+: For model significance and robustness, we trained
and tested the proposed model utilizing CK+ dataset as well.
During the model testing, our system correctly recognized
the most expression classes and identified them with a high
precision rate. However, similar to findings with the prior
dataset, Sad expression was occasionally misclassified as
neutral. Still, this misclassification could be attributed to
visual similarities between the tension displayed in sad and
neutral as depicted in Fig. 6. Both involve downward-turned
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TABLE 4. Comparison of the proposed MSCA model with existing models on the Fer-2013plus and CK+ datasets.

FIGURE 5. Proposed model prediction results among actual and
predicted labels over the Fer-2013plus dataset. The diagonal value
represents the actual recall across each class.

mouths and eyes, which may sometimes confound automated
models and confuse the model to correctly predicted the
emotion. The accuracy score incorporates precision, recall,
and F1 metrics calculated individually for each class
calculated and mentioned in Table 5. This provides a more
nuanced view of how well different emotions are predicted
beyond just an aggregate accuracy percentage. With an
overall accuracy of 95%, most expressions were correctly
classified most of the time. However, exploring performance
on a per-class basis through the confusion matrix sheds light
on where the model may require targeted improvements to
better discern emotionally similar but distinct facial cues like
fear versus sadness. The diagonal values in the confusion
matrix is showing the actual prediction corresponding each
class, which is highlighted in Fig. 6.

E. QUALITATIVE ANALYSIS
We tested our proposed system over different emotions and
reported their confidence score, which is shown in Fig. 7,

TABLE 5. Classification scores of MSCA on CK+ dataset.

FIGURE 6. Proposed model prediction results among actual and
predicted labels over CK+ dataset. The diagonal value represents the
actual recall across each class.

where (a) and (b) show the testing performance of the
facial emotion recognition model on the Fer-2013plus and
CK+ datasets, respectively, by displaying the accuracy across
different probability thresholds. In Fig. 7 (a), the model
achieves over 95% accuracy in classifying anger, disgust, and
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FIGURE 7. Performance of the proposed MSCA model on different emotions along with confidence scores.

sadness across all thresholds when tested on Fer-2013plus
data. However, the accuracy for fear decreases significantly
at lower thresholds. Fig. 7 (b) depicts the performance on
the CK+ dataset, where accuracy remains above 95% for
classifying anger, disgust, and surprise but drops noticeably
for sad, surprise, and fear emotions as the threshold is
reduced. Thus, the visual results indicate that while the model
robustly classifies certain expressions like anger and disgust,
it strugglesmorewith emotionally ambiguous categories such
as fear and sadness that involve subtle facial differences.
The accuracy is also dependent on the threshold choice,
highlighting the need to optimize the parameter for the
best performance for a high confidence score. Overall, the
proposed model confidence score is better than the baseline
quantitative and qualitative analysis. The visual illustration of
each emotion and the model score is represented in Fig. 7.

V. DISCUSSION AND COMPARATIVE ANALYSIS
The provided Table 4 compares various methods of FER,
showcasing the architecture and accuracy of each model on
the Fer-2013plus and CK+ datasets. Each row represents a
different method, employing diverse architectures of deep
and machine learning algorithms. The accuracy percent-
ages are reported for both datasets, with CK+ generally
exhibiting higher accuracy. Notably, the last row shows
the proposed method MSCA architecture results, achieving
95.12% accuracy on Fer-2013plus and 98.30% on CK+,
indicating competitive performance compared to the other
methods in the Table 4 as well as the computation cost of the

designed model is quite reasonable for edge devices in real-
time, which is mentioned in Table 6 and visually illustrated
inFig. 8 utilizing different architectures. The results highlight
the potential effectiveness of the proposed MSCA model in
emotion recognition tasks with reduced latency time with
higher frame per second (FPS) rate.

Our proposedMSCAmodel achieved better results against
recent work that utilized various deep learning architectures
ranging from basic CNNs to memory networks, fine-tuning
and generative models, and vision transformers as mentioned
in Table 4. An important finding is that not all studies
report results on both datasets, limiting direct cross-method
assessment. Nonetheless, it can be seen that deeper CNN
models like ViT and fine-tuning approaches have realized
the highest accuracy with computationally expensive models.
Significantly, the proposed MSCA model outperforms all
prior works in terms of accuracy and computation as
mentioned inTable 4& 6. This comparison aims to assess the
performance of the MSCA model in relation to established
works, providing insights into its effectiveness and potential
advancements in emotion recognition tasks across diverse
datasets. Overall, the tables provide a useful quantitative
summary to position the new model within the SoTA, though
human-level recognition ability still remains elusively above
current techniques.

A. COMPUTATIONAL ANALYSIS FOR EDGE DEVICES
We optimize the proposed MSCA model to resource-
constrained edge devices, it is crucial to optimize the models
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TABLE 6. Performance comparison of the proposed MSCA model using
different frameworks on the Jetson Xavier board.

FIGURE 8. Effect of different frameworks (Keras, TensorFlow, PyTorch,
ONNX, and Tensor-RT) on the model size and frames per second (FPS).

for low latency, small memory footprint and high energy-
efficiency. We employed several techniques during the model
optimization process. First, model compression methods like
pruning, quantization and distillation are used to shrink
proposed models into a more compressed form without loss
in accuracy. Its drastically reduces the memory and storage
requirements for the proposed model to deploy in real-
time applications. Further, model parameters and weights
are encoded efficiently using standards ONNX (open neural
network exchange) technique. Operators within the model
graph are fused together to minimize computational opera-
tions. Additionally, we optimize the model to lower precision
numeric formats like FP08 (floating point) to more accelerate
the model speed without loss any accuracy. The end goal
is to produce a model that delivers fast and energy-efficient
inference while preserving good prediction quality for
deployment on bandwidth and resource-constrained edge
devices. The detail experimental results of optimized model
is shown in Table 6 and visually illustrated in Fig. 8 to show
the high FPS over various frameworks.

In Fig 8, we shows the FPS rate and model size of
the proposed system over different frameworks such as
Keras, TensorFlow, PyTorch, open neural network exchange
(ONNX) and Tensor-RT. Keras and TensorFlow have the
lowest FPS rate of 3 and 2.26 respectively, despite having
the largest model sizes of 88MB and PyTorch achieves a

bit higher FPS rate of 5.5 with a slightly smaller model
size of 83 MB, showing it has better optimizations than
Keras/TF. Furthermore, we optimize our model by ONNX,
which provides a significant boost in FPS rate to 11.5 while
further reducing the model size that shows the runtime
performs. Hence, we convert our model to Tensor-RT that
achieves the highest FPS rate of 48.5 with the smallest
model size of because its a dedicated inference optimization
framework so it is able to optimize the model through
techniques like operator fusion, kernel auto-tuning, tensor
cores etc to maximize throughput. In conclusion, frameworks
with dedicated focus on runtime optimizations like ONNX
and TensorRT are able to achieve much higher efficiencies in
terms of both speed and size for the same model compared to
general ML frameworks. Finally, our optimized Tensor-RT
model is ready to deploy on edge-devices for real-time
applications.

VI. CONCLUSION
The proposed research introduces a novel approach to facial
expression recognition (FER) using a deep learning-based
method that leverages the multi-head self/cross-attention
(MSCA) mechanism within a transformer architecture.
This approach aims to improve FER performance across
different datasets while being optimized for edge devices.
Our experiments demonstrate that the MSCA-based method
outperforms 3 to 5 percent baseline models in terms of
accuracy and 20 percent in latency and can be easily
adapted for real-time applications with minimal changes
to model parameters. The experiments were conducted on
the Fer-2013plus and CK+ datasets using a consistent
custom structure, as well as with variations in the MSCA
configuration. Future research could explore unsupervised
pre-training techniques and further optimize pre-processing,
feature extraction, and dataset balancing to enhance the FER
system’s efficiency. Despite significant progress, there is still
room for improvement in creating sustainable and publicly
accessible FER systems. Incorporating more advanced AI
and ML techniques could further enhance the FER system’s
capabilities.
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