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ABSTRACT Federated learning (FL) is considered a de facto standard for privacy preservation in Al
environments because it does not require data to be aggregated in some central place to train an Al model.
Preserving data on the client side and sharing only the model’s parameters with a central server preserves
privacy while training an Al model of higher generalizability. Unfortunately, sharing the model’s parameters
with the server can create privacy leaks, and therefore, FL is unable to meet privacy requirements in many
situations. Furthermore, FL is prone to other technical issues, such as data poisoning, model poisoning,
fairness, client dropout, and convergence issues, to name just a few. In this work, we provide a multifaceted
survey on FL, including its fundamentals, paradigm shifts, technical issues, recent developments, and future
prospects. First, we discuss the fundamental concepts of FL (workflow, categorization, the differences
between centralized learning and FL, and applications of FL in diverse fields), and we then discuss the
paradigm shifts brought on by FL from a broader perspective (e.g., data use, Al model development, resource
sharing, etc.). Later, we pinpoint ten practical issues currently hindering the viability of the FL landscape,
and we discuss developments made under each issue by summarizing state-of-the-art (SOTA) literature.
We highlight FL partnerships with two or more technologies that either improve practical aspects/issues in
FL or extend its adoption to new areas/domains. We pinpoint various trade-offs that exist in an FL ecosystem,
and the corresponding SOTA developments to mitigate them. We also discuss the latest studies that have been
proposed to make FL trustworthy and beneficial for the community. Lastly, we suggest valuable research
directions towards enhancing technical efficacy by guiding researchers to less explored topics in FL.

INDEX TERMS Federated learning, AI models, poisoning attacks, privacy preservation, training data.

I. INTRODUCTION personal data misuse. In the traditional CL approach, data
Before 2016, centralized learning (CL) was one of the owners collect measurements, readings, sounds, etc., from
promising solutions for training Al models. CL usually record owners or the industry, apply basic pre-processing,
requires some centralized environment for aggregating data, and transfer the data to a centralized environment, which
and Al models are subsequently trained on them. However, subsequently performs computationally expensive tasks (e.g.,
most data owners like hospitals, banks, and insurance training Al models). Such a setting/approach, however, places
companies are reluctant to transfer their data to a centralized significant computing overhead on the server, since the
architecture owing to the risks of privacy breaches and training of complex Al models usually requires significantly

large blocks of data, and places a heavy computing burden
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privacy preservation is a big obstacle in CL, creating the need
for distributed/federated learning. The concept of federated
learning (FL) was coined by Google in 2016 [2] and has
attracted the attention of researchers worldwide. In FL, data
transfer to a central server is not needed, and Al models can
still be trained with distributed data. Only the parameters
of the Al/learning model are sent to the server instead of
the data; training is delegated to the client, and the (local)
data are protected from third-party/server access. In FL,
Al models are transferred periodically over the network,
in contrast to transferring the raw data in the CL setting.
FL has been deployed in many domains, such as object
detection in a vehicle [3], the predictive keyboards of Google,
and healthcare with distributed data [4].

FL is a promising candidate for producing Al models that
exhibit better generalization than CL, and privacy problems
are inherently solved because the data do not move from
clients to a centralized environment [5]. Furthermore, FL is
a modern-day paradigm with higher privacy guarantees and
robust Al model development [22], [23]. Without FL, the
privacy of clients’ data cannot be preserved, and the Al model
cannot achieve higher generalizability [24], [25], [26]. FL can
assist in developing data-driven products and Al applications
that benefit the community. Since its inception, researchers
have explored FL use in almost all fields, including medical
practices [27], [28], dealing with COVID-19 [29], [30], [31],
finance [32], robotics [33], the automotive industry [34],
mobile robotics [35], autonomous driving [36], [37], traffic
prediction [38], and IoT-based applications [39].

Motivation: FL has become a ground-breaking invention
of Al, and this topic is gaining the compelling interest of
researchers around the globe. Due to a variety of upsides (e.g.,
higher generalizability, privacy protection of training data,
DIP solution, etc.) and drawbacks (e.g., data aggregation,
privacy leakage, byzantine client behavior, poor network
design, and poisoning attacks [40], [41].) of FL, a lot
of experiential and theoretical studies have been recently
published. Therefore, a unified and systematic classification
of most works is imperative to guide researchers/practitioners
in designing next-generation FL systems. Although many
surveys focusing on FL have been recently published, broad
aspects were not adequately discussed, and coverage was
limited to only a few well-known aspects (e.g., privacy,
poisoning, etc.). Table 1 lists previous surveys and their
coverage in order to visualize the research gaps. Referring
to Table 1, most surveys covered limited aspects of FL;
practical issues of diverse types were not discussed along
with the state-of-the-art (SOTA) literature. Various trade-offs
and corresponding studies were not reported. Furthermore,
trustworthy aspects and FL partnerships with other tech-
nologies (two or more) were not covered in them, which
could be highly beneficial for researchers and practitioners
in navigating the potential harms of FL systems and making
the FL systems more robust/dependable. To fill this research
gap, we offer a multifaceted survey on FL with broader
coverage of most concepts and aspects with the support of
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recently published SOTA studies and their methodological
contributions. We aim to provide deeper insight into FL
developments/concepts that either remained unexplored or
partially covered in the previous surveys to provide a solid
foundation for future studies in this line of work.

In Table 1, we choose factors such as paradigm shift,
trustworthy aspects, trade-offs, and partnerships to highlight
the recent trends in the FL topic, and these factors have not
been mentioned or thoroughly researched in other survey
articles. For instance, there exist many surveys on FL
applications, privacy preservation, poisoning attacks, etc., but
surveys centering on the above factors are very limited in the
literature. Recently, most of the research works have focused
on the optimization of FL and navigating the potential harms
in FL (e.g., making FL trustworthy), and therefore, we chose
these factors to highlight developments in them with the help
of SOTA studies. The comparison given in Table 1 depicts
the coverage of existing surveys, highlights the limitations of
existing surveys, and underscores research gaps to be filled
by this survey. This comparison also highlights the different
sub-topics which are being researched under the umbrella of
FL, but yet not explicitly reported through survey articles. Our
major contributions are listed below.

« A multifaceted and comprehensive coverage: This
survey provides a multifaceted and in-depth analy-
sis of different topics associated with FL, includ-
ing fundamentals, paradigm shifts, practical issues,
partnerships, optimizations, trustworthy aspects, and
prospects.

o Delving into paradigm shifts of FL: We delve deeper
into the paradigm shifts brought on by FL in the Al field,
and we present examples to systematically demonstrate
this paradigm shift through ten different aspects.

o Taxonomy of FL practical issues:We provide a tax-
onomy of practical issues with FL which can either
lead to poor performance or make FL the target of
various adversarial attacks. We identify and discuss
10 practical issues along with relevant studies to pinpoint
recent developments that have not been thoroughly
reported in the literature. The presented analysis can
assist researchers in quickly grasping the challenges
associated with FL without enduring a difficult learning
process.

« Different optimizations in FL landscape: We high-
light various kinds of optimizations in the FL landscape
which are due to either integrating FL. with other
technologies or solving different types of trade-offs.
Specifically, we discuss the partnerships of FL with two
or more different technologies that were made to either
improve the practical aspects/issues in FL or extend
its adoption/use to new unexplored areas/domains.
We illuminate various trade-offs that exist in the FL
and the corresponding SOTA developments to mitigate
them.

o Trustworthy aspects of FL: We identify and discuss
the latest studies that have proposed ways to make FL
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TABLE 1. Analysis of recently published SOTA surveys centered on FL (from year 2020 onward).

Ref. Year Coverage of the survey/review Fundamental concepts ~ Paradigm shifts ~ # of practical issues ~ Trustworthy aspects ~ Trade-offs  Partnerships
Zhang et al. [5] 2021 Report on five aspects' related to FL Limited X 2 X X X
Lietal. [6] 2021 Basic categorization of FL components Limited X 2 X X X
Yuetal. [7] 2022 Novel FL taxonomies and applications in data mining Limited X 2 X X X
Banabilah et al. [8] 2022 Basic applications of FL in diverse fields Detailed X 0 X X X
El Ouadrhiri et al. [9] 2022 Privacy issues and solutions in FL Limited X 1 X X X
Caruccio et al. [10] 2023 Applications of FL in data mining Detailed X 3 X X X
Yeetal. [11] 2023 New settings of FL (e.g., HFL) and analysis of related studies Detailed X 4 X X X
Rodriguez et al. [12] 2023 Taxonomies of adversarial attacks and defenses Limited X 1 X X X
Beltr et al. [13] 2023 Differentiating DFL and CFL; optimization Detailed X 4 X X X
Zhang et al. [14] 2023 Security, robustness, and privacy in FL Detailed X 3 v X X
Rafi et al. [15] 2024 Brief analysis of the privacy/fairness trade-off in FL Detailed X 2 X X X
Xiao et al. [16] 2024 Introducing over-the-air FL concepts and related studies Limited X 3 X X X
Wan et al. [17] 2024 Model and data poisoning, backdoor attacks, and defenses Detailed X 1 X X X
Xie et al. [18] 2024 Threat models to the FL learning process Limited X 1 X X X
Chaddad et al. [19] 2024 FL applications in healthcare; use cases Detailed X 1 X X X
Nguyen et al. [20] 2024 Backdoor attacks, and defense methods Limited X 1 X X X
Pei et al. [21] 2024 Device, data, and model heterogeneity Limited X 1 X X X
This study 2024 Broader coverage of FC, PS, PIs, TOs, P, and TA of FL Detailed v 10 v v v

Abbreviations: FC: fundamental concepts, PS: paradigm shifts, PIs: practical issues, TOs: trade-offs, P= partnerships, TA: trustworthy aspects. Aspects': privacy mechanism, data partitioning, systems
heterogeneity, communication architecture, and machine learning models. Symbols: x: not covered/discussed, v': covered/discussed

trustworthy and beneficial. Specifically, we summarize
SOTA literature centering on FL trustworthy aspects
(e.g., six dimensions of trustworthy AI/FL).

o Prospects of FL: We suggest various research tracks
and potential topics for future work in the FL ecosystem.
The presented analysis offers a valuable resource for
researchers/practitioners who aim to tackle one or
more of the issues in FL or design next-generation
FL systems.

The rest of this paper is structured as follows. Section II
presents the fundamentals of FL, including its major types
and entities, a detailed comparison between CL and FL, and
practical applications. Section III provides the methodology
used in this survey. Section IV discusses the paradigm
shifts in FL with examples. Section V presents practical
issues w.r.t. performance and adversarial attacks, as well as
corresponding SOTA developments. The partnership of FL
with two or more technologies is discussed in Section VI.
Trade-offs of diverse types and the associated SOTA literature
to mitigate them are in Section VII. Recent developments
making FL trustworthy are discussed in Section VIII. Lessons
learned and potential topics for future research are listed in
Section IX. We conclude this paper in Section X. For ease of
reference, we list all the acronyms used in this survey article
in Table 2.

Il. FUNDAMENTALS OF FL

In this section, we provide the fundamentals of FL from four
different aspects (i.e., FL. workflow, major categorizations,
comparisons between CL and FL, and FL applications in
diverse fields).

A. WORKFLOW

FL is a decentralized technology in which N clients
collaboratively train an Al model with their local data,
and only the parameters of local models are shared with a
centralized server. By not sharing local data with the central
server, FL. is a mainstream privacy-preserving technology.
In typical FL, n rounds are performed to accomplish the
training and eventual convergence. In each round, the server
shares the global model with each client, and each client trains
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the local model and shares its local model with the server.
This process is repeated until accuracy reaches a specific
threshold or a specified number of rounds are completed.
In some cases, convergence is accomplished when there is
no change in accuracy/loss for a certain number of rounds.

1) SERVER AND CLIENT ACTIVITIES

In this subsection, we discuss the key activities performed
by the server and client under the traditional FL setting. The
server usually performs three key activities: (i) chooses a set
of clients, (ii) aggregates their local models, and (iii) curates a
global model. However, a few additional steps are performed
by the server to detect malicious clients/models. In some
cases, the noise is added/removed to secure the local/global
models from the adversaries. Clients usually perform three
key activities: (i) acquire a global model, (ii) train a local
model with local data, and (iii) forward the local training
results to the server. Clients can offload some computations
when they do not have sufficient resources [42], [43]. Figure 1
presents the typical FL workflow including the main activities
of clients and servers in medical scenario.

Prepare global
odel for sharing

Update global
S4 model
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FIGURE 1. Illlustration of workflow of the traditional FL. The main
activities of the clients and server are marked with S1~S4 (adapted
from [89]).
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TABLE 2. Acronym used in this survey article.

Acronym Definition ‘ Acronym Definition ‘ Acronym Definition ‘ Acronym  Definition

FL federated learning | cL centralized learning | NLP natural language processing | cv computer vision

VFL vertical federated learning ‘ HFL horizontal federated learning ‘ SFL synchronous federated learning ‘ FHE fully homomorphic encryption

DIP data island problem | PP privacy-preserving | PbD privacy-by design | MA micro-aggregation

SVM support vector machine ‘ RF random forest ‘ CNN convolutional neural networks ‘ LSTM long short term memory

RNN Recurrent neural network | PPEL privacy preserving federated learning | PPMs privacy preserving methods | cp cross-device

CcsS cross silo ‘ QoS quality of service ‘ FLA federated learning architechtures ‘ IloT industrial internet of things

BC blockchain ‘ AV autonomous vehicles ‘ RA resource allocation ‘ 6G sixth generation

1T inference threats ‘ SMC secure multi-party computation ‘ DP differential privacy ‘ LAT loss and accuracy trade-off

AD autonomous driving | GM global model | PCAT privacy convergance and accuracy trade-off | ANP alternating noise permutation

ADP adaptive differential privacy ‘ LM local model ‘ HDP heterogeneous differential privacy ‘ TIoMT internet of medical things

GLA aradient leakage attacks | DP-GANs differential private GANs | PI pseudo-identity | FLIPSS  FL incentivizer payoff-sharing scheme

AFT accuracy-fairness trade-off ‘ DMG double momentum gradient ‘ Ccs client selection ‘ N shapley value

CC-MAB Contextual combinatorial multi-armed bandit ‘ WDP winner determination problem ‘ CSMAB copeland score and multi-arm bandits ‘ CEPD cumulative effective participation data

VFL volatile federated learning | LFA label flipping attack | LFS latent feature space | GT game theory

IST irrelevance sampling technique ‘ QSR quality scoring rules ‘ DCM data-centric methods ‘ RS regularization strategies

MCE mutual cross-entropy | QB quality enhancement | Al artificial intelligence | cp clients profiling

k-NNG k-nearest neighbor graph ‘ AP accuracy-based predictions ‘ AG auto group ‘ IC infleunce computation

PA poisoning attacks | TC trusted coordinates | GAE graph autoencoder | SGD sub-gradient descent

GoMORE G 10 bal MO del RE use strategy ‘ FedAdp Fed erated Ad a p tive Weighting ‘ FedPNS P robabilistic N ode S election framework ‘ CT contact theory

OIMAF online incentive mechanism for AFL | AFL asynchronous FL | ACN aerial computing networks | KLD Kullback-Leibler divergence

MA mobile apps ‘ ZMS zone merge and split ‘ ZGD zone gradient diffusion ‘ MN mobile network

OB open banking | HEco healthcare ecosystem | DEco digital ecosystem | TWA temporally weighted aggregation

SLD skin lesion diagnosis ‘ MI medical images ‘ SCP skin cancer prediction ‘ CT classification threshold

LE lightweight encryption | pL discrete logarithm | Cr cryptography | 140 industry 4.0

PoC proof of concept ‘ IRT image recognition task ‘ GE gradient encryption ‘ STE spatio temporal entropy

CcC confidential computing ‘ ATZ arm trust zone ‘ CFL clustered federated learning ‘ RM randomization and mixture

IR image representation ‘ DAM domain adaptation methods ‘ WT wavelet transform ‘ EI edge intelligence

BANet brain-region attention network | PP-FDL privacy protection-based federated deep learning | F-ToT fog-assisted internet of things | GANs generative adversarial networks

Anon. anonymity | Enc. encryption | cc cloud compuring | UKG user and context-based knowledge graph

RD real dataset ‘ SD synthetic dataset ‘ iid. independent and identically distributed ‘ ToT internet of things

PR pattern recognition | NMF non-negative matrix factorization | ALS alternating least squares | ss secret sharing

FDI false data injection ‘ GT game theory ‘ SCS symmetric cryptosystem ‘ DDPG deep deterministic policy gradient

PCS pallier crypto system | Go gradient compression | KD knowledge distillation | FE feature engineering

RI real identity | Gr gradient indistinguishability | KA k-anonymity | LS?DNN linear sigmoid singleton DNN

PBKA pearson and brownian motion induced KA ‘ Facor. factorization ‘ LDP local differential privacy ‘ NN neural networks

HE homomorphic encryption | PUT privacy-utility trade-off | DT decision tree | sDL shallow deep layers

QC quantum computing | LMU lattice-based multi-use | NAs neural architecture search | PET parameter efficient fine-tuning

EC edge computing ‘ DNN deep neural network ‘ CEDDLA cost-effective dynamic distributed learning | non- non independent and identically dis-
algorithms iid. tributed

In Figure 1, N hospitals are jointly training a global
model by training their own local models on their local
data. The quantity and quality of the data can be different at
each site/hospital, and the local data of each hospital is not
shared with either the server or other hospitals. It is worth
noting that the parties can be either the same (e.g., only
hospitals) or different (hospital, bank, clinic, etc.) depending
on the scenario. The training process is repeated over several
iterations until convergence. In some cases, clients and
servers share additional information about the underlying
data to speed up the convergence process or to eliminate
the risks of attack. Similarly, some additional algorithms
or evaluations are applied to judge the quality of local
models and to prune malicious-looking local models. After
convergence, a global model is curated, which exhibits better
generalization and robustness. This model can be deployed in
some real-world environments (e.g., hospitals) for prediction
or classification tasks.

B. MAJOR CATEGORIZATIONS

There are multiple FL categories w.r.t. training architec-
tures: centralized, decentralized, and hybrid. Communication
between clients and servers can be either direct or via
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edge/fog computing. There are FL categories based on
the privacy mechanism used in them, either syntactic
(k-anonymization) or semantic (differential privacy). Simi-
larly, there are FL categories w.r.t. defense mechanisms used
to ensure security [44]. FL systems have been categorized
based on data heterogeneity (e.g., non-i.i.d. and i.i.d.).
Li et al. [6] discussed six FL categories (data partitioning,
Al models, privacy methods, communication procedures,
federation scale, and motivation for federation). Liu et al. [45]
discussed the differences among three FL categories w.r.t.
data. In this work, we present major FL categories w.r.t.
data, resources, response sharing with clients, and network
topologies that are relevant to the context of this paper.

1) DATA

Based on the data, FL can be categorized into three
main types: vertical FL. (VFL), horizontal FL. (HFL), and
hybrid(a.k.a. federated transfer learning (FTL)). Figure 2
illustrates all three types of FL categorized w.r.t. data. In
Figure 2, the x-axis is the feature space, and the y-axis
is the sample space. In HFL, the data are different in the
sample space, but the same in the feature space. In contrast,
VFL has different data in the feature space, similar in
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sample space. However, hybrid FL settings have different
data in both spaces. All these types of FL enable identical or
distinct clients to collaboratively train an AI model of higher
generalizability.

8 : 8 8
g Kb 4 8l ClientA
H o] | ClientA || ClientB H
£ Client B I £ E||Client B >
al, ILELl u3 i
Feature space Labels Feature space Label Feature space Labels
(a) Horizontal FL (b) Vertical FL (c) Hybrid FL

FIGURE 2. Major categories of FL w.r.t. data (adapted from [6]).

2) RESOURCES

Based on resources, FL can be categorized into two main
types: cross-device (CD) and cross-silo (CS) [46]. Table 3
compares these categories, and each has challenges and
benefits. In the literature, CD FL has been widely investigated
compared to CS. However, most of the recent studies were
focused on CS FL [47]. In CD FL, there are many devices,
and therefore, client management is challenging. In contrast,
CS FL has fewer clients, but data sizes are very large,
which can lead to higher computing and communications
costs. Recently, a new category of FL named intra-domain
was introduced to accelerate convergence in heterogeneous
data centers [48]. This new type of FL can overcome the
effect of stragglers without losing guarantees of accuracy and
efficiency while training Al models.

TABLE 3. Comparison between CD and CS settings of FL.

Parameter/Criteria CD setting CS setting

Mobile devices
~ 1 million

Clients
Number of clients

Organizations/companies
~ 100

3) RESPONSE

Based on the response interval from the server to the clients,
FL is categorized into two types: synchronous FL (SFL)
and asynchronous FL (AFL) [49]. In SFL, the server begins
aggregation of the global model only after the local models
of all participating clients are retrieved. In AFL, the global
model is updated as soon as a local model is uploaded by a
client without waiting for the local models of all participating
clients. AFL is preferable for faster convergence, particularly
if clients intentionally hold on to their local models to delay
the convergence. In some cases, clients have fewer resources,
and their updates do not arrive at the central server in a
reasonable time. SFL and AFL workflows are illustrated in
Figure 3.

In Figure 3, some clients can be idle in SFL, but client
updates are immediately aggregated in AFL, so clients are
never idle. Recently, semi-synchronous FL was introduced in
which clients are not idle, but keep doing some additional
training to contribute to faster convergence [50]. In the
literature, SFL has been widely investigated, but not AFL and
semi-synchronous FL. These categorizations pave the way to
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FIGURE 3. Major categories of FL w.r.t. response.

choosing the appropriate FL type by considering the available
data and computing resources.

4) TOPOLOGY

Based on the arrangement of clients and the server, FL can
be categorized into three network topologies: star, ring,
and hybrid [10]. Figure 4 illustrates the structure of each
one. The star topology is widely used, where each client
is linked to the server via one-to-one communications
but does not communicate with other clients. In the ring
topology, each client connects to two clients, constituting
the ring. In this topology, there is no server; instead,
clients curate the global model through different rounds
of training, and the global model is distributed to all.
Wang et al. [51] devised a ring-topology FL. mechanism for
healthcare systems by protecting the privacy of medical data
while reducing bandwidth and communications overheads.
The hybrid topology combines the features of both star
and ring topologies. Specifically, clients are arranged into
different groups, and only some clients from each group
communicate with the server. Training is usually done in ring
fashion within each group, and results are communicated to

(c) Hybrid
FIGURE 4. Major categories of FL w.r.t. network toplogies.
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the central server (akin to the star topology) by at least two
clients from each group.

Hosseinalipour et al. [52] proposed a hybrid topology for
FL systems by extending the star topology and designing the
network in a multi-level, cluster-based structure. Some hybrid
topology FL systems have been proposed to overcome the
issues of data heterogeneity by placing clients with similar
resources into the same clusters. For each client group,
training of the local model is performed by using a ring
topology, which then forwards results to a central server to
curate the global model. All these topologies have benefits
and challenges, and the choice depends on performance
objectives, client nature, convergence criteria, and target
domains.

C. COMPARISON BETWEEN CL AND FL

In this section, we provide a comparative analysis of CL
and FL, which are two mainstream methods for training Al
models. Before the advent of FL, CL was mostly used in
general as well as in client/server scenarios. Service scenarios
for the CL and FL are visualized in Figure 5. As seen in
Figure 5, FL omits data sharing from the client’s environ-
ments to the server and therefore is a privacy-preserving
paradigm of modern times. In contrast, CL always gathers
data from clients at centralized servers first, and Al models
are then trained on the data. However, most clients are
reluctant to share their data with centralized servers to avoid
data manipulation risks. Furthermore, a server in CL works
in a black-box manner, which can put subjects’ privacy at
risk [53]. FL resolves the above-cited issues because data are
no longer forwarded to a server, and Al models can be trained
from the data of different clients.

Central server
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Data owners
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Local N \g° | Local
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. | &
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. i ) o N
Haspltalm ea\" Al Hospital FE¢m 5 Global
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(a) Service scenario of CL (b) Service scenario of FL

FIGURE 5. lllustration of service scenarios of CL and FL.

In CL, clients are selected and asked to share their data
with the server. Afterward, the Al model is trained in a
black-box manner [54], and the model or analytics results
are subsequently sent back. While CL is handy, it often
dilates privacy issues, because there is a risk that personal
information will be sold to third parties without proper
consent from data providers. Moreover, the data can be
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used for purposes other than those intended upon collection.
CL-based AI applications have demonstrated effectiveness
in solving many real-world problems and in making Al
developments more trustworthy [55]. However, the lack of
transparency in data processing, and aggregating all the data
in a central place, makes CL-based Al less adoptable in real-
world settings.

In FL, clients are selected, and a global model from the
server is shared with them. Later, each client trains a local
model using its local data and forwards the local model
to the server. The server collects all the local models and
generates a new global model that is shared with all clients.
This process keeps repeating until the desired accuracy is
achieved or the specified number of iterations is met [56].
Not acquiring data transfer to a server, and working only
with parameters (local models), made this technology famous
in both academia and industry [57]. Additionally, there has
been significant investment in this technology, and its use
in most sectors is expanding at an astonishing speed. In the
future, sophisticated developments are expected, and more
promising applications will emerge in diverse sectors [58].
FL resolves CL technical issues and is preferred in most
cases, particularly when privacy requirements are strict.
Table 4 provides a detailed comparison between CL and FL
based on 30 different parameters.

TABLE 4. Detailed comparison between CL and FL.

Parameters | CL setting | FL setting
Working nature Centralized Distributed
Data transfer Copied to server Not copied
Privacy risks Very high Relatively low
Data size Small & fixed Large & dynamic
Al model quality Low High

Clients role Data provision Local training
Communication Low Very high
overhead

Data quality High Low

Data diversity Low High

Al model Single Multiple
Convergence Faster Slower
Computing cost Low High

Data corruptions Low High
Computations Local only Local and global
Reliability of models Low High

GDPR application Required Not required
Straggler effect Does not exist Exist

Model complexity Medium Very high

Non-i.i.d. data
Client selection

Less prevalent
Less challenging

Mostly prevalent
Very challenging

Scalability Low High
Manageability cost High Low

Possible poisoning at- | Few types Many types
tacks

Results aggregation Not required Required
Resource skew Does not exist Might exist
Model type Shared Shared/personalized
Sharing Raw data Local models
Training Done together Done separately
Number of iterations One N

Client dropout None Yes

Based on the comparisons between CL and FL, we can

see that FL is better in terms of data management, privacy
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guarantees, etc. Researchers are combining FL with other
technologies such as blockchain, IoT, differential privacy,
etc., to alleviate performance concerns [39], [59], [60], [61],
[62], and efforts are underway to enhance the technical
efficacy of FL [63]. In the future, most of the deficiencies in
traditional FL can be resolved through these advancements.

D. FL APPLICATIONS IN DIVERSE FIELDS

In recent years, FL has been used in diverse fields, and
many practical applications of FL exist in each sector.
FL is highly suitable for scenarios involving sensitive data
because it can overcome privacy issues and data manipulation
risks. For example, it can be used in the medical sector
to protect sensitive data while generating models of higher
generalizability [64], [65]. Table 5 highlights applications
of FL in diverse sectors by summarizing SOTA surveys.
Referring to Table 5, it can be observed that FL has many

TABLE 5. Summary of FL applications in diverse fields.

Year | Reference | Major application area (s)

2020 | Lietal. [66] Industrial applications

2021 | Rahman et al. [67] NLP, healthcare, CV, transportation
2022 | Zheng et al. [68] Smart cities

2022 | Dhiman et al. [69] Smart healthcare

2022 | Lim et al. [70] Mobile edge networks

2022 | Maetal. [71] Software-defined networks

2022 | Khokhar et al. [72] Image processing

2022 | Lavaur et al. [73] Intrusion detection

2023 | Wang et al. [74] Mobile health

2023 | Issaetal. [75] IoT data analytics

2023 | Chenetal. [76] Metaverse

2023 | Chellapandi et al. [77] | Connected and automated vehicles
2023 | Sirohi et al. [78] Secure 6G communications
2024 | Choietal. [79] Medical applications

2024 | Liu et al. [80] Multi-party computation

2024 | Woisets et al. [81] Foundation model training

2024 | Bentaleb et al. [82] Sustainable development

2024 | Hafi et al. [83] 6G networks

2024 | Rana et al. [84] Predictive healthcare analytics
2024 | Simic et al. [85] Emotion recognition

2024 | Yang et al. [86] Diverse knowledge fusion

2024 | Tan [87] Energy services

2024 | Guan et al. [88] Medical image analysis

2024 | Hwang et al. [89] General medical and COVID-19

practical applications in diverse fields. Soon, FL. will have
applications in most fields where data are sensitive and
owners are reluctant to share them. The listing in Table 5
can pave the way to understanding the diversity of FL
applications. In some cases, FL can be used to verify
computations in cloud computing scenarios [90]. It can
also be used to securely transfer data without leaking any
private information [91]. In some cases, it enables knowledge
discovery from encrypted data and preserves the integrity of
the data, leading to higher privacy preservation for sensitive
data [92]. Additionally, FL has been used in authentication
scenarios such as biometric recognition [93]. FL has also been
used in descriptive analytics of large-scale data, which can
contribute to the development of new treatments and clinical
assessments [94]. Based on the above analysis, we can
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conclude that FL has diverse applications and is one of the
most beneficial technologies of recent times.

lll. METHODOLOGY

In this paper, we performed a comprehensive review to
identify and retrieve SOTA studies for accurate and complete
conclusions. We applied a systematic approach to retrieve
relevant studies from credible sources. We conducted this
multifaceted and comprehensive survey by following the
PRISMA method, which assists in identifying, assessing,
and synthesizing highly relevant studies about some specific
research questions/topics [95]. This survey focuses on five
main research questions as listed below.

1) What kind of paradigm shift has been brought on
by federated learning compared to the conventional
centralized learning in the Al field?

2) What is the status of current developments in solving
the various practical issues encountered by FL in real-
world settings?

3) What are the different technologies with whom FL has
been partnered, and what is the main purpose of these
ever-increasing partnerships?

4) What are the primary trade-offs in FL, and what are the
recent SOTA and effective solutions to mitigate them?

5) What are the dimensions of trustworthiness in the
context of FL, and what developments have been made
thus far to navigate its potential harms in realistic
scenarios?

In this work, we aim to provide systematic and multi-
faceted coverage of the FL and related topics that can assist
researchers and developers to clearly understand the recent
developments. To accomplish this key objective, we conduct
an in-depth analysis of relevant studies that envision the
upsides and downsides of FL and are published at credible
venues.

Paper selection criteria: To transparently report the
findings of previous studies, we select peer-reviewed journal
papers, conferences, magazines, and some highly-cited arXiv
papers. Although arXiv is not an explicit database, we chose
some papers from it based on the relevance and analyzing
the reference citations of the paper we chose in our primary
databases. While selecting the papers, we ensure that most
papers are written in English, and their full text (or metadata)
is easily accessible. Through this method, we ensure that
highly relevant, high-quality, SOTA, and recent literature is
selected for inclusion in this survey paper.

Scientific databases consulted: The studies reported in
this survey paper were obtained from different scientific
databases. The mainstream scientific databases consulted in
this survey are, IEEE Explore, Science Direct, ACM Digital
library, Springer, PubMed, Web of Science, Scopus, etc. The
main reason to consult these scientific databases was their
higher credibility in terms of academic integrity and avail-
ability of different articles related to the scope of this survey.

Query approach: We queried relevant literature for this
survey paper from Google Scholar and dedicated search
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functions available in the above-cited scientific databases.
We also applied language, years, and full-text-related fil-
ters to query relevant papers. We performed forward and
backward searches of citations of some highly cited papers
to identify the relevant literature for our work. We used
different keywords as a search item to find related studies
from databases. Our search keywords are different for each
topic. For example, the main search keywords for identifying
studies related to developments in practical issues are, ‘‘fed-
erated learning”, combined with (AND), “potential threats/
practical issues/” and (OR) “vulnerabilities”. We also used
practical issue names combined with federated learning to
search relevant studies such as ((federated learning) AND
(privacy disclosure OR poisoning attacks OR client dropout
OR client selection OR fairness OR data quality problems OR
global model issues OR ecosystem issues OR aggregation
problems) AND (privacy protection OR defense against
poisoning attacks OR client dropout prevention OR suitable
client selection OR fairness/bias mitigation OR addressing
data quality problems OR reliability enhancement of global
model OR end-to-end approach for FL ecosystem OR
secure/robust aggregation)). To find relevant literature for
partnership, we used federated learning combined with the
names of technologies with whom FL has been partnered.
Similarly, we find relevant studies for trustworthy aspects
by using the dimension’s name combined with federated
learning as the query. We also searched some papers by
combining the words survey, review, or perspective with
federated learning to cover deep knowledge about established
concepts in the field. The systematic process employed in the
selection of studies is given in Figure 6.

Relevant studies collected from popular scientific databases i.e., IEEE
Explore (n = 500), ScienceDirect (n = 120), ACM Digital Library (n =
150), Scopus (n = 90), PubMed (n = 25), Springer (n = 100), Web of
Science (n = 70), and other sources including arXiv (n = 30), with

appropriate search string related to federated learning. (n = 1285) ‘

*Duplicates studies
(n = 390)
*Published before 2020
(n = 102)

[Identification]

1 Interpretation key |
| Exclusion of studies
L—} Inclusion of studies |

Found through backward
search (n = 15)

Found through forward
search (n = 20)

[# of studies excluded after screening of the
| abstract and tile (n = 175)

Screening of abstract and title of

the studies (n =793)

Discarded after carefully checking full text (n = 133)
+ Study type was unrelated or only perspective

+ Scope was not closely related with objectives

+ Only metrics or case studies were given

« Limited evaluations and lack of details of data

+ Technical depth was limited; no ablation study

+ Experiments were not conducted on benchmark
Included during datasets

* Implications of the work not clearly highlighted

peer review

process (n = 38) - - -

Discarded with redundant scope/objectives and
l non-credible publishers (n = 55)

Included for key concepts and experimental details extraction (n = 503)

Assessment of full text/ for |
eligibility to be included (n = 618) |

Included } { Eligibility } {Screening]

FIGURE 6. Overview of the systematic process employed in the selection
of articles for multifaceted analysis on FL and its associated concepts.

Exclusion criteria: As shown in Figure 6, we system-
atically selected articles to be included in our paper and
excluded those that were either redundant or lacked detailed
methodological/experimental descriptions. In the preliminary
assessment, we excluded papers that do not closely align
with the objectives of this paper by carefully analyzing the
abstracts and titles. We also removed non-English papers
for ease of readability of included studies. In the detailed
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assessment, we excluded research papers that focus on narrow
areas like vehicular networks or discuss a few well-known FL
issues (e.g., privacy, poisoning, etc.) with slightly different
methodologies. We discarded the papers for which metadata
or full text was not available. We also excluded some papers
that only discuss FL potentials without experiments.

Years considered in research: We included most papers that
were published in the past five years (e.g., the year 2020 and
onward).

Threats to validity: Two main threats related to the validity
of our survey are, (i) search bias and (ii) quality assessment
bias, which can destroy the reliability and robustness of our
findings [96]. The former threat is related to an incomplete
search or searching only some famous sources, leading to
the exclusion of some studies that have been published
in lower-tier venues. The latter threat is related to criteria
employed in screening the studies for inclusion/exclusion,
which can be unclear, biased, etc. In the context of the survey
paper, if these threats are not addressed properly can affect
the generalizability of findings and the conclusions can be
incomplete/inaccurate. To address these threats, we included
studies from diverse scientific databases and employed
techniques like snowballing from the [96] to prevent search
bias. To resolve the second threat, we evaluated each study’s
full text and examined the methodological and experimental
contributions. We also adopted techniques from [96] to
prevent bias related to quality assessment and to exclude
low-quality or irrelevant papers. We analyzed the relevance
of each study by carefully comparing each study with the
scope/objectives of this paper. Based on the above analysis,
it is conclusive that threats to the validity are restrained, and
the findings/conclusions are complete and reliable.

IV. PARADIGM SHIFTS BROUGHT ON BY THE FL

Since the inception of FL, data governance and use have
gotten a new life, which was not possible with CL. In addi-
tion, the collaborative training process and client behavioral
analysis methods were devised and integrated with the FL
ecosystem. Conclusively, FL has brought a kind of paradigm
shift in the AI domain, and is one of the groundbreaking
inventions of Al. The paradigm shift is defined as a sudden
change in conventional approaches/methods leveraged to
accomplish certain real-world tasks. For example, Al models
have been widely used in the healthcare domain for the
past thirty years. However, to accomplish certain real-world
medical tasks at any hospital X with Al such as training
the CNN model to classify the cancerous and non-cancerous
cells always require data to be collected first from certain
subjects or relevant hospitals. Let’s say a similar task is to
be performed at N different hospitals located in different
regions of the country, it will follow the same conventional
approach (e.g., collect data and subsequently train model) that
can be time-consuming and slow. Furthermore, many subjects
or hospitals will be reluctant to share their data in central
settings, owing to privacy and security concerns. To this
end, can we come up with a brand new solution/method
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to bypass the conventional workflow by not collecting the
data from subjects/hospitals, but still training the CNN
model for better performance? If yes, then the respective
solution/method/approach will be regarded as a paradigm
shift because it completely/partially changed the way of
approaching a similar problem in a completely different way.
Moreover, if the newly devised solution/method/approach
successfully outperforms the previous solution in many ways
(specifically, privacy in our example), then it is regarded as
a paradigm shift. In the case of FL, it has brought many
unique aspects compared to CL in terms of Al model training
without acquiring data from clients, privacy protection of
training data, training Al models without moving data
from data owner environments to public domains, engaging
heterogeneous data sources (e.g., hospitals, banks, medical
institutes, etc.) in the training process, extending Al benefits
to clients/hospitals having insufficient resources to train
complex Al models, utilizing interdisciplinary approaches to
enhance the security of Al models, creating Al models which
are more generalizable and dependable, linking multiple
technologies to solve many complex real-world problems
with Al utilizing fragmented and complex datasets, to name
a just few. Considering the above-cited sudden changes that
have happened in quick succession after FL’s emergence in
the Al field, it is fair to say that FL has brought a kind
of paradigm shift. We discuss and visualize the paradigm
shifts brought by FL technology from 10 different aspects.
To the best of our knowledge, that is the first work that
comprehensively figures out paradigm shifts brought on by
FL in the computing and Al field. A concise description of
each aspect with examples is given below.

A. A SOLUTION TO THE DATA ISLAND PROBLEM

Before the emergence of FL, there was a serious lack of
privacy-by-design approaches, and the data island problem
(DIP) was very common. In the DIP, organizations (data
owners) with poor Al model performance cannot acquire data
from a neighboring organization due to privacy concerns,
as shown in Figure 7.

Low-perfarmance

Hospltal A AI Model

—)
Data A -ﬁ

X Low-performance
ospital B Al Model

Pclicies and
regulations

are in place,
and data | X ) Low-performance
cannotbe | Hospital C Al Model
exchanged. |
|

—
-ﬁ — 3
ata C =
Low-perfarmance
Hos ital N Al Model

Data N Um @

FIGURE 7. Overview of the data island problem.
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In DIP, an organization having fewer data and deficient
model performance cannot develop a generalizable Al model,
and therefore, the potential benefits from the latest Al devel-
opments cannot be fully harnessed. However, FL resolves
this issue, and data exchanges among organizations are no
longer needed, but high-quality Al models can still be trained
with diverse data. Hence, it is fair to say that FL is one
of the promising candidates that can effectively resolve the
longstanding DIP.

B. A FEASIBLE ALTERNATIVE TO CL

Before the emergence of FL, the only solution for training
powerful Al models was to first aggregate data at some
central place from relevant data owners/parties.

rt

T
ﬁ
s3]

B—
IIIIII'

Hospital

:’ cL Lo FL |
: approach : | approach i
. |
: Data : ! Models :
' (— i | |
= o |
T e LA A

| Technical problems |

c FL,l,
- Higher data transfer cost' No data transfer cost
- Agreements are needed |- No agreements needed

- Poordata governance |- Bestdata governance
- Higher cost i- Lower cost

FIGURE 8. Technical problems in CL, and FL as solutions.

The CL setting is handy because it can reduce the comput-
ing burden on data owners, but most data owners are reluctant
to transfer their data to outside environments, fearing privacy
issues and the risk of data manipulation. Besides privacy,
there are other technical problems, as depicted in Figure 8.
It is worth noting that FL also works in a centralized fashion,
but instead of the data, the models are shared with the
server. By not aggregating data on the server, FL can ensure
responsible governance of those data. Considering, these
points, it is fair to say that FL is a feasible alternative
to CL; it meets performance guarantees and attains data
mining/analysis objectives.

C. PRIVACY BY DESIGN

Although many privacy-preserving (PP) approaches exist in
the literature, FL is a promising privacy-by-design (PbD)
approach. Other approaches to protecting privacy, such
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as differential privacy (DP), anonymization, and micro-
aggregation (MA), require access to the data in data owner
environments (hospitals, banks, etc.). In contrast, access to
data in FL is not required, making it a PbD approach because
privacy is a default setting in the architecture. In some cases,
data characteristics are shared with a central server, but that
is general information that can still guarantee data privacy.
In terms of service scenarios, we compare the conventional
PP approaches and FL in Figure 9.

Receive updated
models
/parameters

Share models
Iparameters

Conventional privacy ] [

| FL approach
PP approaches - [ approaches [DP, MA]

[CD, CS, hybrid]

Secure l Logcal
data @ models

Use/governance _> l l

i Al model Model Z
! training aggregation l
Inference or .

i " wesetein, Inference or  yrveyr v,
! other analysis gk % other analysis %k —

FIGURE 9. Comparison between conventional PP approaches and FL.

In Figure 9 we can see that FL is more PP than conventional
approaches because it does not access local data held by data
owners, but still allows knowledge extraction or inference.

D. TRAINING GENERALIZABLE Al MODELS
Data constitute the cornerstone of Al development; data
quality and quantity can seriously impact AI models’
performance/generalizability. AI models/products that are
developed from too few, or bad-quality, data cannot general-
ize well from unseen data. Furthermore, AI models trained
on bad-quality data yield more misclassifications in real-
world settings, and different kinds of data drift can occur.
To overcome these issues, retraining the Al model over
regular intervals is required, which can be costly, depending
on the scenario. To this end, FL is handy and can contribute
to training Al models with higher generalizability by utilizing
data from multiple parties. Since data do not move in FL, most
parties can contribute to the training process. In contrast, the
conventional setting (before FL) requires agreement/consent,
and most parties choose to opt out of the training process
because they do not want to expose their data to the outside
world. We demonstrate a proof of concept in Figure 10 with
10 parties.

In the conventional scenario, an organization with
good-quality data might refrain from participating in the
training process, and the Al model cannot yield desirable
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FIGURE 10. Training high-quality models due to higher participation of
the diverse organization under FL scenario.

Low performance

results. If all organizations with good data decide to not take
part, the performance of AI models can easily be substandard.
In contrast, it is relatively easy to convince different parties to
take part in the training process in the FL setting; therefore,
an Al model with higher generalizability can be trained. Also,
strict laws and consent are not required in FL, and therefore,
all parties can join the training process, leading to training Al
models with greater inference accuracy. This situation was
common in the recent pandemic where data disparities were
very high across hospitals, and FL-like solutions to train Al
models were in high demand.

E. KNOWLEDGE EXTRACTION W/O DATA MOBILITY

The knowledge extraction concept is somewhat identical
in both CL and FL because both approaches extract
patterns/trends from the data with the help of AI models.
However, the key difference is that FL. does not change the
environment of the data during the knowledge extraction
process. In contrast, CL changes the data locality before
knowledge extraction. Therefore, CL needs to verify the
security of the environment before data transfer, which can be
hard in most cases. Fewer organizations will agree to donate
data to untrusted environments, and knowledge extraction
can be impacted. In contrast, FL. moves Al models to the
data, and knowledge extraction is relatively easy. Also, due to
the inclusion of many diverse parties in the training process,
knowledge extraction is more meaningful and can enhance
real-world services. Figure 11 demonstrates a real-world
scenario in which two hospitals want to extract knowledge
from their data by using the services of a third party (e.g.,
an analytics company).

Now, if the hospitals are collaborating under the conven-
tional setting, they need to transfer their data to a third party
for knowledge extraction. In contrast, if they collaborate
under FL, they do not need to transfer their data, but
knowledge can still be extracted. This scenario demonstrates
the supremacy of knowledge extraction by using FL instead
of CL. We regard this as a paradigm shift because it was
unknown before the advent of FL.
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(b) Extracted knowledge w/ FL
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FIGURE 11. Knowledge extraction from data with and without FL.
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F. TRANSFERRING ALGORITHMS

Before the advent of FL, data of diverse modalities (tables,
images, text, multimedia, etc.) were always brought close
to the Al models (SVM, RF, DT, CNN, LSTM, RNN,
etc.). However, FL reversed this, and now algorithms are
brought to the data. By doing so, data privacy is preserved,
and models of high quality can be trained on them. In the
conventional setting, it is hard to clear out all the data
from all environments after use, and therefore, bringing data
close to the algorithm can be manipulated for marketing
purposes. Additionally, data can be transferred to other
companies/organizations without the knowledge of true data
owners. The fundamental relationship between algorithms
and data is formally expressed in Eq. 1: CL brings data to
algorithms, whereas FL sends algorithms to data.

algorithms — data, FL )

Case(FL||CL) = )
data — algorithms, CL

An example of CL is moving tabular data close to an RF
classifier for classification/prediction. In contrast, FL sends
a CNN model to image data for either image segmentation
or feature extraction. We consider this change under the
umbrella of paradigm shifts brought on by FL.

G. HARNESSING THE POTENTIAL OF EDGE/FOG
COMPUTING

Cloud and fog computing technologies were mainly regarded
as centralized settings before the advent of FL. However,
limited resources at the network edge in the FL system
necessitated a need to develop new solutions by lever-
aging hardware and software resources because existing
solutions did not consider resource management for the
edge, particularly under FL [97]. These computing archi-
tectures facilitated deployment, the discovery of resources,
local model computing, load balancing, energy efficiency,
and resource migration. We consider these technologies a
paradigm shift because they cooperate with FL to resolve
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many technical problems [98]. Under these technologies,
clients with fewer computing resources can offload some of
the computations to edge/fog servers, which contributes to
faster convergence in the global model. Additionally, these
technologies are employed to enhance robustness and privacy
preservation in FL [99]. Figure 12 illustrates the use of
edge/fog computing in FL.

Cloud server
Aggregation, client
management, etc.

—> Local model update
—> Global model update

Fog servers

Optimizations,
updates, etc

Edge servers

Local training,
Offload computations

Devmes
Data collection,
data analysis, etc

Data/feature
transfer % 5& .
FIGURE 12. Use of edge/fog computing in FL.

Figure 12 shows that edge/fog computing methods
decrease communications overhead and assist clients having
the least computing power to train complex Al models [100].
In addition, these technologies can extend the application
horizon of FL to time-sensitive applications. In some cases,
these technologies help to achieve faster convergence in Al
models under FL, which helps to reduce overall costs [101].
Considering these benefits, it is fair to say that FL fully
harnesses the potential of edge/fog computing to improve
technical deficiencies.

H. EXTENSIVE DIGITAL INNOVATION VIA FUSION OF
DIVERSE TECHNOLOGIES

With the advent of FL, many technologies have been
integrated into it to accomplish objectives such as data
fusion, privacy protection, poisoned data detection, anomaly
detection, client analysis, offloading computation, gradient
protection, data quality assessment, shrinking hyper network
parameters, addressing local model discrepancies, and data
sanitization [102], [103], [104], [105], [106], [107], [108].
However, the application of FL and other technologies
to any domain (e.g., healthcare) requires modifications to
accomplish the desired goals, which we refer to as digital
innovation. Since many technologies have now been linked
with FL, more integrations are underway, therefore leading
to extensive digital innovation. In some cases, FL is linked to
established fields in order to optimize performance or address
privacy issues. An example is FL integration into the IoT.
In some cases, other technologies are linked with FL in order
to improve its critical aspects. An example is linking fog/edge
computing with FL to reduce communications overhead.
In this regard, fusing multiple technologies under the
umbrella of FL contributes to digital innovation worldwide.
In Figure 13, we present five examples that pave the way to
understanding the notion of digital innovation under FL.
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FIGURE 13. Digital innovation enhancement by fusing distinct
solutions/concepts/software with FL. KD= knowledge distillation, FedKT=
federated knowledge transfer, DP= differential privacy.

Recently, some critical components of FL have been
enriched by adopting ChatGPT [109], which indicates
ever-increasing digital innovation via the fusion of diverse
technologies. Lastly, new dimensions of FL are emerging
with each passing day, which requires new technologies,
leading to digital innovation [110], [111], [112], [113].
For example, both ChatGPT and FL are new technologies,
and exploring ways to complement each other can bring
about digital innovation (new business models, use cases,
or service delivery methods, etc.). It is worth noting that
digital innovation in the FL context can be regarded as
linking new technologies with FL or establishing cross-
disciplinary approaches. In some cases, FL can help replace
old technologies with new ones. For instance, FL and
blockchain can alleviate the need for anonymization/DP in
data-sharing scenarios [114]. With the emergence of FL,
digital innovation is increasing at a rapid pace, and FL is on its
way to becoming mainstream technology in diverse sectors.

I. UNPRECEDENTED USE OF STATISTICAL
MEASURES/FORMULAS

Although FL is one of the mainstream solutions that ensure
privacy and train Al models for higher generalizability,
the decentralized nature of FL leads to many practical
issues. For example, while sharing local updates/models
with the server, some clients may send the wrong model,
necessitating a detection mechanism at the server. To this end,
most detection methods employ statistical or mathematical
methods to filter out faulty local models [115]. Hence,
a lot of statistical measures have been integrated with FL
to either protect against diverse types of attacks or to
accomplish other performance objectives. Wang et al. [116]
employed the information entropy concept to protect FL
from the byzantine attack. Shejwalkar and Houmansadr
employed singular value decomposition to protect against
model poisoning attacks [117]. They also discussed many
statistical measures to protect against untargeted poisoning
attacks. Panda et al. [118] used sparsification techniques
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to mitigate model poisoning threats in FL. Zhang and
Hu [119] used variance reduction and the DP method to
make FL byzantine-robust. Yang et al. [120] devised a vector
norm-based approach to detecting model poisoning attacks
in FL systems. Zhu et al. [121] employed the Hessian
matrix to remove bursty adversarial patterns in both non-
ii.d. and i.i.d. data distributions. Yang et al. [122] utilized
two concepts (dimensionality reduction and heterogeneity)
against adaptive model poisoning attacks. Chang et al. [123]
adopted conditional random sampling for FL. communica-
tions efficiency and privacy preservation. Akai et al. [124]
employed the concept of Gaussian and normal distributions
in order to pinpoint and remove biased clients/nodes in an
FL system. Based on these developments it is fair to say that
FL’s increased use of statistical measures of various kinds is
unprecedented.

J. KNOWLEDGE DISCOVERY FROM SCATTERED AND
DIVERSE DATASETS

By removing the privacy barrier, FL has significantly
increased access to massive, diverse, and scattered datasets.
Therefore, the scope and scale of knowledge discovery have
significantly evolved, compared to the CL approach. In an
FL system, multiple parties can participate where each one
can have different data, and therefore, FL can make sense
of the data and enhance the knowledge discovery process.
In Figure 14, we illustrate the knowledge discovery process
endorsed by FL from scattered and diverse datasets. In this
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FIGURE 14. Knowledge discovery from scattered and diverse data.
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example, we pinpoint three cases about data scales, data
types, and the nature of the parties. However, there are many
scattered datasets in real-world cases, and the knowledge
discovery process can be significantly fastened down under
the FL setting regardless of data locality [125]. These findings
highlight the paradigm shift brought on by FL from the
knowledge discovery standpoint with diversity in the data.
Based on the above analysis, we can conclude that FL
has brought on radical paradigm shifts in the computing
discipline. It is worth noting that FL has brought paradigm
shifts to many other aspects, such as privacy-preserving
Al, client characteristics, attack development, data-intensive
computing, cost-reduction methods, energy minimization,
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and enhanced reliability in trained AI models [126].
In recent years, FL has attracted widespread attention from
researchers, and many unique advancements have been made
in all aspects.

V. FL PRACTICAL ISSUES AND SOTA DEVELOPMENTS
Though FL has revolutionized the privacy arena, there are
performance issues with the FL landscape that can limit its
potential in many ways. In this work, we pinpoint 10 practical
issues in FL systems to foster research. Figure 15 lists the
10 critical issues in the FL paradigm along with concise
details. To the best of our knowledge, none of these issues
have been jointly discussed in a single paper. The extended
knowledge/taxonomy presented in this paper can pave the
way to clearly understanding the technical deficiencies of FL,
leading to more investigations of these issues.

- Data leakage, feature disclosure, label disclosure,
Privacy - L
issues P membership disclosure, data characteristic
disclosure, data distribution disclosure, etc.
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Fai Straggler effect, free riders, client dropout, fewer
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imbalance, resources skew, data skew, etc.

Heterogeneous data, non-i.i.d. data, data with poor
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Client related
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Data poisoning attack, model poisoning attack, label
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FIGURE 15. Different kinds of practical issues with FL.

A. PRIVACY

In FL systems, data do not leave the client devices, but
private information about clients still leaks from sharing
with a server the parameters or gradients of the local
model [127], [128], [129]. Figure 16 demonstrates a sce-
nario of individual privacy leakage from sharing gradients.
An attacker can acquire local models uploaded by clients
after intercepting the communication channel. Investigating
the local model parameters shared by each client can reveal
private information if clients do not implement/design strong
privacy-preserving methods (PPMs). Thus, an attacker can
leverage sensitive information to carry out illegal acts without
the clients’ knowledge [130].
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Considering the stringent privacy-preserving requirements
in the FL framework, a more general practice is to alter or
encrypt gradient parameters before uploading them to the
server in order to protect them from attack. Adding noise
or applying encryption can prevent attackers from gathering
the data. Considering the communications overhead in FL,
encryption may not be an ideal choice. Apart from encryp-
tion, DP, anonymization, secure multi-party computation,
secret sharing, and hardware-based solutions have been
suggested to address privacy problems [131], [132], [133],
[134], [135], [136]. However, privacy-preserving FL (PPFL)
is still a hot issue, and many SOTA studies centering on PPFL
have been published.

B. FAIRNESS

FL can train AI models for higher generalizability by taking
advantage of the benefits of large-scale and diverse datasets.
However, ensuring fairness in local model updates at a central
server is challenging [137], as shown in Figure 17. In this
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FIGURE 17. lllustration of fairness issue in the FL setting.
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case, the behavior of five clients in four rounds is depicted.
In each round, certain clients do not share their local model,
and the global model can become biased if certain client
updates are reflected only at the aggregation stage. For
example, at timestamp ¢, only three clients (Cy, Ca, Cy4) share
updates with the server. At timestamp ¢t + 1, two clients
(C3, Cp) share updates. At timestamp ¢ + 2, three clients
(C3, C4, Cy)) share updates. At timestamp fy_1, no client
shares an update, but at timestamp fty, one client (Ci)
shares the update. Since clients do not participate equally in
the training process, the global model cannot be equitable,
because it might be biased towards clients making the most
contributions. This issue has recently gained the attention of
the researchers around the globe [138].

There are methods like equalized odds, group fairness, loss
history-based analysis, statistical parity differences, equal
opportunity differences, a discrimination index, and equal
client selection [139], [140], [141], [142]. Despite these
approaches, it is still challenging to ensure fairness from all
aspects (e.g., client selection, local model updates, data size,
data quantity).

C. CLIENT SELECTION

The strength of FL systems largely depends on active-
ness/reliability in the clients and on the local data held
by each client. However, it is challenging to choose an
appropriate set of clients as a part of the training process in
FL, because there is greater skewness in data, resources, and
Almodels [143], [144], [145]. Clients with good-quality data,
adequate resources, plus computational and communications
capabilities are vital to completing the training task under
a distributed setting [146]. Meanwhile, it is challenging to
identify and retain good clients throughout the FL training
process. Figure 18 demonstrates the challenges with client
selection in FL environments w.r.t. data characteristics,
computing devices, and the nature of the AI models.
From Figure 18 we can conclude that there are greater
disparities among clients in the FL system, which can lead
to performance deficiencies.

Recently, some reinforcement learning (RL) methods have
been proposed that model client selection as a Markov
decision process in order to choose the optimal set of
clients [147]. The proposed model tries to reduce training
delay and energy consumption to encourage an increase
in the number of clients that participate in training and
model updates. Some methods assist in client selection by
jointly considering the quality of both learning and the
channel [148]. In the literature, some approaches have been
proposed to select clients based on characteristics in their
data [149]. In addition, some multi-criteria client selection
methods have been proposed that consider channel gain,
data information, and computing power while selecting the
optimal number of clients [150]. Fan et al. developed the
MiniPFL framework to select highly similar clients for
clustering and aggregation [151]. The proposed approach can
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FIGURE 18. Challenges with client selection in FL environments.

achieve faster convergence and reduce the number of rounds
by up to 30%. Despite these efforts, it is still very challenging
to select suitable clients in different FL. environments.

D. DATA-RELATED ISSUES

Data are considered the cornerstone for Al development, and
they can seriously upgrade/downgrade the performance of
any Al model. In FL, data often sit in silos (i.e., with owners),
and there is no way to gauge and evaluate them. Therefore,
the performance or contribution of each client to the server
side is hard to evaluate, particularly from the perspective of
content. For example, a benign client can be regarded as a
poor performer if the accuracy is low. However, low accuracy
can be due to data-related problems (e.g., non-i.i.d. data)
[11], [152], [153], [154], [155]. Figure 19 shows common
data-related challenges in FL environments that result in
poor convergence guarantees or desirable accuracy not being
easily accomplished.

Figure 19 (a) shows label distributions that are different
across clients, which is common in practical scenarios where
either data annotation or data collection is inconsistent.
The unbalanced data problem is also common in real-life
FL applications, as shown in Figure 19 (b). In this case,
the number of data points or images is imbalanced across
participating subjects/clients. Due to the imbalanced data,
accuracy from data with an inadequate number of samples
will be low, impacting the accuracy of the global model. Due
to data imbalance, the number of iterations can be high, and
performance bottlenecks can occur.

Figure 19 (c) illustrates differing data characteristics across
clients. For example, some clients have all labeled data, and
performance is high; some clients have only unlabeled data
and accuracy might be low, but some clients have mixed
data (e.g., labeled and unlabeled). Due to the deviations
in characteristics, the FL system cannot yield consistent
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with clients and learn from them. Due to malicious
users, Tay was suddenly learning racist and offensive
language [164]. Data integrity is compromised by a
data poisoning attack, which manipulates/diverts global
model performance, as shown in Figure 20.
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FIGURE 19. Data-quality challenges in FL environments.

performance in most cases. Lastly, some clients have noisy
data, as shown in Figure 19 (d), and training may not
contribute anything to the global model’s accuracy. Apart
from these challenges, data corruption, cross-correlations,
data resolution skews, etc., seriously impact the quality of
FL models [156], [157], [158], [159]. In some cases, new
data that are more novel than the existing data are injected
into the training data, which can significantly prolong the
convergence time [160]. In the future, robust and practical
solutions to address these data-quality challenges are required
to unlock the potential of the FL technology [161], [162].
Lastly, addressing these data-related issues in both CD and
CS settings is very challenging.

E. POISONING ISSUES

Due to the distributed nature of clients and data silos in
FL, some clients behave benignly which, in effect, can be
malicious. For example, some clients can train the local
model with data that are erroneous, and the resulting local
model causes a performance drift when aggregated with other
models [163]. There are two main kinds of poisoning attacks
in FL: (1) data poisoning, and (2) model poisoning. Both are
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FIGURE 20. Overview of data poisoning attack in FL.

o Model poisoning: This relates to local models uploaded
by each client to the central server. Unlike data
poisoning, model poisoning corrupts the local models,
compromising the FL training procedure, as shown
in Figure 21. Specifically, the aim is to corrupt (or
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Correct Correct Poiscned yeeer Correct
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data data data data
@@
Client1  Client2 Attacker Client N

FIGURE 21. Overview of model poisoning attack in FL. LM= local model,
GM= global model.

defined below.

o Data poisoning: This relates to the local data held by
each client. Since FL allows clients to not share their
data, a dangerous vulnerability is introduced: How can
Al models that are trained under FL be trusted as
accurate predictors? Consider a real-world situation
with a set/subset of clients that are either malicious by
default or have been compromised. In this situation,
clients can have poisoned or mislabeled local data.
In FL, there is no central authority to validate each
client’s data, and therefore, those data can poison the
global model. For example, consider Microsoft’s Al
chatbot Tay, which was installed on the underlying
NLP model of Twitter (now called X) to interact
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significantly modify) local model updates before they
are forwarded to the central server. A variety of
methods can be used to manipulate training on the client
side (e.g., direct gradient manipulation). Unlike CL,
FL is highly susceptible to model poisoning because
the global model is shared with all clients during
training and can easily be captured/intercepted during
transmission [165]. In practice, model poisoning is much
more severe because even a single non-colluding client
can cause the global model to misclassify specific input.
In conclusion, model poisoning can severely downgrade
the reliability of the global model.

Further details about poisoning attacks are in Liu et al. [166].
Both attacks can severely degrade the FL’s reliability. The use
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of a poisoned model in some safety-critical applications can
be dangerous and/or lead to financial loss. In the literature,
many methods have been developed to undermine both
attacks in order to make FL trustworthy and robust [167],
[168], [169], [170]. Other types of attack, such as property
inference, backdoor [171], gradient inversion [172], and
targeted/untargeted attacks can also degrade the reliability
of FL systems. Hence, it is vital to develop more security
methods to thwart them and enhance public trust in this
decentralized technology.

F. GLOBAL MODEL ISSUES

Although Al models trained under FL are more generalizable
and dependable than training under CL, certain factors can
still degrade their performance in realistic scenarios. For
instance, a neural network (NN) has millions of parameters,
and training NN with FL yields many performance bottle-
necks. Training local models with highly redundant data
does not contribute additional local/global features to the
global model, leading to poor inference/generalization [173].
Furthermore, transmitting global models over a network often
incurs high computing costs. In some settings, many free
riders just acquire the trained global model but do not share
local models in return. As cited above, poisoning attacks
decrease the reliability of the global model, and convergence
cannot be accomplished in a reasonable time. Non-i.i.d. data
(e.g., skewed data points, labels, and features) can lead to
poor performance from the global model, which is also prone
to concept/data drift if information from the datasets is not
reflected in it.

Furthermore, the global model can leak information at
inference time, which can provoke privacy concerns. In some
applications, the model can reveal data properties that can
lead to data reconstruction attacks [174]. Additionally, both
poisoned data and poisoned local models can corrupt the
global model. There are very high structural differences
(computing power, data possessed, communication volume,
etc.) between clients, and therefore, directly integrating local
models is challenging, posing threats to unified global model
curation.

In the literature, many methods have been developed
to address global model issues to enhance the FL effi-
cacy [175]. Chen et al. [176] developed an in-cluster method
to enhance communications efficiency (i.e., reduce uplink
communications) to enhance the accuracy of the global model
in non-i.i.d. scenarios. Li et al. [177] developed a novel
method to address clients’ uncertainties about FL in order
to lessen any negative impact on global model performance.
Nguyen et al. [178] developed a high-compression FL. method
to reduce training overhead by reducing the amount of data
without losing guarantees on performance. Jiang et al. [179]
developed the PruneFL method to fasten down the training
process without losing guarantees of accuracy. Zhu and
Jin [180] developed a multi-objective evolutionary method
to compress network parameters and reduce network costs
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without degrading performance from the global model. Apart
from these methods, some others have been developed to
optimize the trade-off between accuracy loss and commu-
nications overhead. However, it is vital to develop more
practical methods to prevent performance bottlenecks in the
global model.

G. FL ECOSYSTEM ISSUES

The distributed nature of FL makes it vulnerable to attacks
such as sniffing, spoofing, interception, privacy leakage,
data and model theft, client dropout, and aggregation
manipulation [181], [182]. The main reason to discuss this
separately is to show how failure in one module affects the
entire FL system. For example, the effect of poisoned data
is not only related to clients but can affect the global model
and its accuracy. Similarly, a malicious local model can pose
challenges to integration and harmonization on the server
side. High client dropout can leave an FL system waiting for
updates [183], [184]. In addition, malicious action by one
entity in the FL ecosystem can affect other entities, which
can lead to deficient performance from the entire system.
Similarly, the use of some statistical measures cannot capture
all sorts of vulnerabilities, which can make the FL system
costly [185]. Furthermore, poor design can lead to higher
energy consumption and other issues [186]. Sometimes, the
aggregation server might stop responding to clients due to
physical damage or a security attack [187]. The FL ecosystem
can make biased and unfair decisions, which can lead to social
problems [188]. Lastly, anomaly/poisoning-attack detection
on the server side can waste the computing resources of
clients from longer latency and slow responses.

In the literature, many methods have been developed to
address FL ecosystem issues to enhance quality of service
(QoS). Yan et al. [189] discussed a practical method to align
local and global models to extend the application of the
FL ecosystem to heterogeneous settings. Cho et al. [190]
discussed a method to select a subset of clients that
receive incentives to prevent client dropout. The proposed
method can help achieve faster convergence by enhancing
contributions from good clients. Ma et al. [191] discussed
SOTA studies that solved low-accuracy and convergence
issues caused by non-i.i.d. data. Li et al. [192] proposed hard
feature-matching data synthesis to reduce the complexity
of FL systems while enhancing accuracy and privacy.
Yan et al. [193] proposed a method to efficiently detect a
poisoning attack and reduce server malfunctions. The authors
aimed to minimize failures, reduce redundancy, and improve
the quality of the FL ecosystem. Apart from these, other
methods have been developed to prevent failures and make
FL ecosystems resilient.

H. AGGREGATION PROTOCOL ISSUES

In FL, the aggregation algorithm/protocol plays a central
role in the training process, being responsible for merging
information from all participating clients by combining local
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models to train a global model [194]. Twelve types of
aggregation strategy are discussed in Moshawrab et al. [194].
Despite significant developments, it is still challenging to
aggregate all local model results and transform them into
one unified global model. For example, it is difficult to
decide on the time window for responses from all clients.
Similarly, it is hard to decide the optimal number of
clients to reflect sufficient results in the global model. It is
challenging to maintain a history of each client and their
corresponding local model. Assessment of the quality in
each local model, discarding malicious ones, also poses
challenges for aggregation protocols/algorithms, particularly
for non-i.i.d. data. Skewed resources can slow the aggregation
process, particularly when many clients do not have powerful
enough computing resources. Additionally, local models can
be forged in order to launch security attacks or violate privacy.
Therefore, the challenge is to ensure appropriate aggregation
in FL to curate a global model that is fair, highly accurate,
and robust.

Of late, many efforts have been devoted to resolving
aggregation-related issues in FL [195]. Guo et al. [196]
developed a method to ensure fast and secure aggregation
of local models when a substantial number of clients
drop out during training. Pillutla et al. [197] developed a
robust aggregation approach with greater robustness for FL,
particularly when local models are corrupted. So et al. [198]
developed a secure aggregation protocol for FL when a
large number of clients drop out. The authors showed the
applicability of their method to AFL settings, which is
the latest development in the field. Nguyen et al. [199]
developed a privacy-preserved aggregation protocol for both
synchronous and asynchronous FL, which can work with
any type of optimizer. Shi et al. [200] developed a generic
aggregation protocol that requires updates only from some
clients, rather than all of them, to reduce communications
overhead, only marginally losing performance. Apart from
these SOTA methods, others have been developed to correctly
aggregate local models into a global one [201]. However,
more practical methods are needed to ensure secure and
correct aggregation in different FL settings.

I. FL APPLICATION ISSUES

The naive use of FL in any area is challenging for multiple
reasons: client selection, client strength, data modality,
convergence requirements, aggregation methodology, and
communications infrastructure. For example, FL use in
anomaly detection and the medical domain is quite different
due to the nature of the data as well as the objectives
(accuracy, correctness of classification/prediction, fairness,
etc.). Furthermore, in some cases, global model requirements
vary from application to application, and it can be challenging
to accomplish all the desired goals in each application. Fur-
thermore, FL. for some sensitive applications may require a
stronger privacy mechanism, while less-sensitive applications
may need only basic security. Similarly, the decision to
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employ cloud/fog computing with FL in each application
requires in-depth analysis. Considering these issues, it is
fair to say that FL use in diverse application scenarios
is challenging. Lastly, training a robust global model is
challenging when using centralized, decentralized, or hybrid
FL architectures; different network topologies (star, ring, and
hybrid); small, big, or complex datasets; either ML or DL
models, or to meet differing application requirements (e.g.,
time-sensitive, safety-critical, elderly care, etc.) [202].

Of late, many efforts have been devoted to resolving
application-related issues in FL environments by achieving
multiple objectives simultaneously and opening the FL
source code. Yu et al. [203] developed a framework
named IronForge that can contribute to making FL secure,
open, and fair. The proposed framework can work in
open networks without requiring rigorous security con-
trols. Hasan et al. [204] extended the application of FL
to vehicular networks (6G-V2X) while ensuring crucial
objectives such as privacy protection for sensitive data and/or
models, lowering the communication costs, and shortening
the training process. Liu et al. [205] discussed ways to
reduce the cost of FL training in non-i.i.d. settings by
curating and distributing personalized models with each
client. Fu et al. [206] discussed strategies for selecting a
portion of clients to train global models by considering
the application requirements. Xu et al. [207] discussed
ways to resolve device heterogeneity in diverse applications
in the asynchronous FL setting. Zellinger et al. [208]
discussed ways to ensure the confidentiality of industrial
data, particularly with FL in manufacturing. Apart from
these SOTA methods, other methods have been developed
to address application-related problems in conventional FL
by using a personalized FL [209]. However, more practical
methods are needed to ensure consistent performance and the
governance of FL in diverse or unexplored application areas.

J. DIVERSE DATA MODALITY ISSUES

Although image data are among the most widely used
modalities in the FL environment, other data modalities
(tables, graphs, time series, audio) can be used depending
on the application scenario. However, each modality can
pose different challenges to FL settings depending on the
scenario or application requirements. For example, Al models
for images can use a CNN, whereas tabular data may
require simple regression/perceptron. Similarly, the number
of training rounds for image data can be relatively higher
than tabular data. Similarly, bandwidth and latency issues can
vary from modality to modality. Xiong et al. [287] solved
modality discrepancy in conventional FL by proposing a
unified framework. Their framework can extract handy global
features from different data modalities to collaboratively
train global models for all participating clients. Chen and
Zhang [288] proposed a framework for achieving good
performance in multi-task and multi-model FL. The proposed
framework helps address data heterogeneity, particularly
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TABLE 6. Recent SOTA developments in addressing practical issues in FL systems.

Issue # Strength Weakness Method Application area Data Ref.
Protects against IT & yields high accuracy Higher complexity & low accuracy SMC + DP General RD Truex et al. [210]
Resolves LAT with privacy protection Extensive corruption in GM BC + ZKP AD SD Lietal. [37]
Novel solution for PCAT Adds more noise; 1.1% accuracy increase ADP General RD Wang et al. [211]
Less noise in LM Higher offset in GM HDP General RD Ling et al. [212]

1 Strong privacy & verification Slow when clients leave Grad. masking IoMT RD Wang et al. [213]
Protects from inference and GLA Same noise for all clients LDP VANETSs SD Batool et al. [214]
Strong protection of local data Attacker can evade detection DP-GANs General RD Tran et al. [215]
Safeguards model parameters Latency issues and higher complexity BC+HE+IP General RD Xiong et al. [216]
Works with both non-i.i.d. and i.i.d. Same noise for all clients ANP General RD Lietal. [217]
Strong protection against GLA High storage cost and computing cost Outpost General RD Wang et al. [218]
Client privacy and FL performance enhancement ~ Slow convergance in non-i.i.d. data cases PBR & DAW Smart homes RD Lietal. [219]
Fair analysis of clients’ contributions Difficulty in dividing budgets (e.g., €) FLI-PSS General SD Yu et al. [220]
Ensures group fairness in FL Poor performance with non-i.i.d. data FairFed General SD Ezzeldin et al. [138]
Solves AFT in generic FL Poor training accuracy DMG General RD Huang et al. [221]

2 Solves AFT in HFL Limited to HFL scenario only DMG General RD Huang et al. [222]
Fairness-aware CS for FL Poor generalization of models C2-MAB General RD Huang et al. [223]
Works with unreliable clients Extensive computing operations SRA IoT RD Lietal. [224]
Fair ranking of clients based on updates Slow when contributions are the same SV General RD Fan et al. [225]
Context-aware online CS Limited to HFL scenario only CC-MAB General RD Qu et al. [226]
Contribution-based CS Prone to PA and data leaks WDPs General RD Pang et al. [227]

3 Select a good pool of clients Difficult to quantify noise CS-MAB General RD Yang et al. [228]
Reduces the difficulty in CS process Works with VFL setting only CEPD General RD Shi et al. [229]
Analyzes client profiles in CS Difficult to detect fake profiles SCS General RD Tan et al. [230]
Best CS for imperfections in data Requires heavy computation and is slow IST General RD Rai et al. [143]
Needs-based CS in each training round Hard to determine optimal number of clients Docker IoT RD Shenoy et al. [231]
Effectively groups heterogeneous clients Cannot resist backdoor and other attacks FedSeq General RD Silvi et al. [232]
Solid defense against LFA Failure to detect other practical issues LFS General RD Jiang et al. [233]
Incentivizes clients for best data Heavier noise in data from some clients GT General RD Zhang et al. [234]
Enhances ratio of correct labels Does not fix other issues (e.g., skews) QSR General RD Pejé & Biczok [235]
Curates high quality training samples High cost for large and complex data DCM General RD Li et al. [236]
Multi-level data quality analysis High cost and latency issues RS General RD Zhang et al. [237]

4 Enhances label quality Ignores other quality issues (e.g., distribution) MCE General RD Chen et al. [238]
Local data analysis for QE Works well with i.i.d. data only CEDDLA General SD Zhao et al. [239]
Evaluates data for accuracy increase Biased toward some clients CP General RD Wau et al. [240]
Efficient label-noise filtering Extensive data conversion cost k-NNG General RD Duan et al. [241]
Ensures global distribution is balanced Does not analyze label/feature noise AG General RD He et al. [242]
Filtration of corrupted local data Relies on client updates only IC + DP General RD Rokvic et al. [243]
Correctly filters malicious clients Sometime removes benign clients FF General RD Campos et al. [244]
Solid defense against PA Threshold misalignment FlexibleFL General RD Zhao et al. [245]

5 Solves multiple trade-offs Non-adaptive noise General RD Huang et al. [246]
Restricts attack impacts Low defense when clients leave TC General RD Kasyap et al. [247]
Executes stealthy attack on FL Easy detection and mitigation in some cases GAE+ SGD General RD Li et al. [248]
Solid defense for PA in F-SVMs Limited to one AI/ML model AM General RD Mouri et al. [249]
Provides better security High cost when # of clients is large BC General RD Xu et al. [250]
Protects from model poisoning attacks Cannot be used in generic cases FedKC Metaverse RD Sun et al. [251]
Reduces distribution discrepancy among clients Slow when clients are large in number FedFTG General RD Zhang et al. [252]
Filters erroneous local models in aggregation Higher cost in terms of analysis GoMORE WFL RD Yao et al. [253]
Prevents client dropout by GM appeal Higher bias from ignoring some clients MaxFL General RD Cho et al. [254]
Faster convergence of GM in i.i.d. cases Performance issues in non-i.i.d. cases FedAdp General RD Wu et al. [255]

6 Faster construction of GM via aggregation Can drop legitimate clients in some cases FedPNS General RD Wu et al. [256]
Reliability and quality enhancement of GM Fewer incentives for clients with non-i.i.d. data ~ CT General RD Lietal. [257]
GM accuracy enhancement in AFL Latency and high communications cost OIMAF General RD Lietal. [258]
Faster convergence of GM with limited budget Less robust when clients increase CMAB ACN RD ‘Wang et al. [259]
Accelerates GM convergence with high accuracy ~ Privacy issues from data sharing with server KLD General RD Li et al. [260]
Uses multiple GM rather than one Extensive computations and calculations AP General RD Bidgoly et al. [261]
Accelerates GM convergence by 40 % Difficult to detect poisoned model effect LDP General RD Weng et al. [262]
Supports diverse Al models Poor scalability when diversity increases FLSys MA RD,SD Jiang et al. [263]
Higher accuracy and stability in GM Poor performance when data are skewed ZMS+ ZGD MN RD,SD Jiang et al. [264]

7 Extends FL application to mobile devices Straggler problem, CS issues DP OB RD Long et al. [265]
Executes edge-enabled Al models Limited accuracy enhancement (e.g., 3 %) LEAF HEco RD Patel et al. [266]
Faster convergence of GM in HFL Aggregation is hard when models are diverse RF-HFL DEco RD Zhang et al. [267]
Reduced communication rounds in AFL Works well with i.i.d. data only TWA + SDL SLD RD Yaqoob et al. [268]
Effective segmentation and classification of MI Difficult to chose optimal CT in some cases TWA SCP RD Ain et al. [269]
Faster aggregation in just 2 rounds Poisoned local model can enter FL system SAFELearn General RD Ferei et al. [270]
Aggregates obscure model updates Privacy leakage through model updates LE General RD Zheng et al. [271]

8 Prevents data re-construction attacks Convergence will be slow when clients dropout ~ EPPDA General RD Song et al. [272]
Protocol for both cross-device and cross-silo FL Data diversity issues are not resolved DL General RD Tang et al. [273]
Safeguards against backdoor attacks Might filter benign clients with non-i.i.d. data Cr 14.0 RD Gao et al. [274]
Enhances robustness of aggregation process No defense against poisoned clients RM General RD Nabavi et al. [275]
FL use in operational environments Vulnerable to poisoning attacks PoC IRT SD Kourtellis et al. [276]
FL for resource-constrained devices Susceptible to backdoor attacks TEEs General RD Mo et al. [277]

9 Privacy preservation with less computation Minimal accuracy enhancement GE AVs RD Parekh et al. [278]
Privacy protection of clients” data High computing costs when clients are large cc General SD Mo et al. [278]
Reduction in FL training time No protection for privacy and GLA ATZ General SD Mesaoud et al. [280]
Training with multi-modality data Unsuitable for time-sensitive applications CFL COVID-19 RD,SD Qayyum et al. [39]
IR for various vision-related tasks Works well with only image datasets aimNet VLG RD Liu et al. [281]
Training with multi-institutional data Limited application in non-i.i.d. settings FedAvg Medical RD Sheller et al. [282]
Robust multi-site fMRI analysis Less generalization to other types of data DAM Medical RD Lietal. [283]

10 Learning with multi-sensor data Higher signal/data alignment cost WT EI RD Saeed et al. [284]
Trains Al models with unlabeled data Poor scalability and high overheads BANet Medical RD Lei et al. [285]
Privacy protection from GAN attacks Limited to image classification tasks PP-FDL F-loT RD Abdel et al. [286]

when clients have heterogeneous configurations of sensors,
and their data encompass diverse combinations of modalities.
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Kang et al. [289] devised a framework to address different
data quality issues (specifically, it aligns samples) in
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diverse data modalities to ensure consistent learning in FL.
Yan et al. [290] discussed using a CycleGAN architecture
to address disparity among clients (the cross-client variation
problem) in terms of the number of images. Xiao et al. [291]
discussed an FL method to synthesize diverse features from
the same data modality to recognize the activities of users.
Zhang et al. [292] proposed a generic framework for diverse
medical images. Their proposed framework is CNN-agnostic,
achieving an accuracy of 96.2%. Despite these developments,
it is still challenging to fuse diverse data modalities and
extract the enclosed knowledge under FL.

K. DEVELOPMENTS IN ADDRESSING PRACTICAL ISSUES:
A SOTA ANALYSIS

In this section, we discuss recent developments addressing
practical issues in FL by analyzing SOTA literature. It is
worth noting that there are lots of disparities in the above-
cited solutions. For instance, many studies have addressed
privacy issues but relatively few discuss FL applicability to
diverse data modalities. Similarly, a lot of studies proposed
poisoning attack mitigation but fewer studies were on
data quality enhancement, particularly in cross-silo FL.
Similarly, fairness issues have had relatively less attention
from researchers compared to privacy and poisoning attacks.
Table 6 presents SOTA papers published to resolve FL
practical issues. In Table 6, we sequentially present recent
developments in addressing each issue. In Table 6, Segment
1 presents developments in privacy issues, and Segment
6 presents developments for global models. We compared
SOTA papers based on five criteria: strengths, weaknesses,
method used, application area, and datasets (real dataset
(RD) or synthetic dataset (SD)) used in the evaluation. The
analysis in Table 6 paves the way to understanding recent
developments in the 10 FL issues identified. To the best
of our knowledge, this is the first paper that systematically
summarizes recent developments in major issues of FL based
on SOTA studies. The abbreviations used in Table 6 are listed
in Table 2.

VI. PARTNERSHIP OF FL WITH TWO OR MORE
TECHNOLOGIES

As discussed earlier, FL alone fails to meet its intended
objectives/goals in many aspects, and therefore, FL has
partnered with other technologies to address deficiencies. For
example, privacy leakage through gradient sharing was a hot
issue that was resolved by combining FL with DP [293].
Similarly, to resolve poisoning issues and detection of lazy
clients, FL was integrated with blockchain [294], in some
cases to ensure verifiability and auditability of clients’ data
or results [295], [296]. In recent years, FL partnerships
with current technologies have been steadily increasing.
Jietal. [297] discussed the coupling of FL with many learning
algorithms (e.g., meta-learning, transfer learning, adversarial
learning, knowledge distillation, etc.) to resolve two crucial
challenges: statistical heterogeneity and robust learning. The
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authors coined the term, Federated X Learning, in which
FL is customized to fit different learning algorithms. In our
previous work, we discussed the partnership of FL with
just one technology [298]. In this work, we extend that to
two or more technologies. The integration of two or more
technologies with FL helps to enhance the robustness of FL
from many perspectives. Table 7 discusses partnerships of
FL with two or more technologies along with the purpose of
partnerships by highlighting SOTA studies. The abbreviations

used in Table 7 are given in Table 2.

TABLE 7. FL partnerships with other technologies (2+).

Ref. Partnership with Purpose of partnership

[299] BC,DP Privacy-preserved data sharing
[300] BC, masking Security and verifiablity

[301] BC, NN (diverse) Client selection

[302] BC, Enc Security enhancement

[303] DRL, MDP Trust enhancement

[304] DP, HE, BC Data protection at y | time

[305] Crypto, BC Privacy preservation

[306] UKG, FSL, loMT Elderly healthcare

[307] EC,CC Reduction in delay time

[308] SMC, BC Privacy and trust enhancement

[30] Normalization, BC COVID-19 detection

[309]  Anon., Facor. Statistical heterogeneity solution
[310] EC,DP Big data analysis with privacy
[311] PR, Encryption, BC Patient monitoring

[32] DP, SMC Al for financial applications

[312] NMEF, ALS Customized data privacy

[313] Enc., SS Detection of FDI attacks

[314] SCS, GT Model training in P2P networks
[315] PCS, DDPG Higher accuracy & fast convergence
[316] GC, KD Reduction in communications cost
[317] FE, SMC Improve computational efficiency
[318] GI, DP Protection of RI for the client
[319] KA, Enc. Privacy protection of data

[320] LS2DNN, PBKA Intrusion detection

[321] LDP, HE Enhance efficiency and accuracy
[322] FE, Anon. Optimize PUT in FL systems

[323] DP, KA Accuracy enhancement from FL
[324] DT, RF Accuracy increase (i.i.d. & non-

iid.)

[325] DP,GT Graphic element detection

[326] DP, HE Security and robustness in FL
[327] SMC, SS Protection against collusion attacks
[328] STE, KLD, SMC Making FL low-cost

[329] FS,DP LM’s utility enhancement

[330] BC, FHE, DP Performance enhancement

[331] DP,QC Fast computation with privacy
[332] SS,LMU Protection against quantum attacks
[333] Gen AL, SDM Content generation

[334] NAS, PET Privacy enhancement by 81.5%
[335] SL, AloT Robustness and scalability enhance-

ment without compromising privacy

[336] BC, HE, Reputation Privacy and security enhancement

Table 7 shows that many technologies have partnerships
with FL to either improve deficiencies or extend FL use
into unexplored areas. For example, DP was combined
with FL to improve privacy while BC was linked to
enable patient monitoring in cloud environments. In most
cases, an FL partnership enhanced a technical efficacy or
optimized certain performance indicators. It is worth noting
that FL has been adopted in diverse sectors to accomplish
multiple objectives (e.g., privacy-preserved data analytics,
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data sharing with privacy guarantees, privacy-preserved
model sharing) [337]. Table 7 contributes to understanding
the latest developments in FL in conjunction with other
technologies. To the best of our knowledge, this has not
been discussed in the literature, particularly FL and ChatGPT.
This extended knowledge can help to clearly understand
partnerships between FL and other technologies. The five
key roles of this section are: (i) figure out the name of
the latest technologies with whom FL has been integrated,
(ii) explore the various purposes of FL integration with other
emerging technologies, (iii) comprehensive list of SOTA
papers which has proposed ways to successfully integrate
FL with other technologies, (iv) offers a valuable resource
for researchers/practitioners who aim to work on one or
more of these FL integrations, and (v) depicting latest trends
in augmenting the viability and practicality of FL through
integration with latest/emerging technologies.

VII. TRADE-OFFS IN FL, CORRESPONDING SOLUTIONS
Though FL is one of the latest technologies to train
high-quality AI models for many real-world applications,
it is confronted by many trade-offs that require robust
resolution. For example, to mitigate the poisoned data
effect, one needs to explore client data that might violate
data privacy, leading to a privacy-versus-poisoning trade-
off. Clients that have non-i.i.d. data might degrade accuracy
in the global model, which as a result may require more
iterations until convergence, leading to an accuracy-versus-
convergence trade-off. Early convergence in the global model
might drop certain legitimate client updates, which leads to
a fairness-versus-convergence trade-off. There is a trade-off
between fairness and accuracy when clients have disparities
in terms of data and computing resources. There is a trade-off
between energy use and accuracy, particularly in the CS
setting of FL. Similarly, there is a trade-off between client
selection and convergence because the number of clients
affects convergence time. It is worth noting that trade-offs can
involve two or more performance metrics/objectives [338],
and some solutions have been proposed recently to mitigate
them.

The five key roles of this section are (i) insight into
different types of trade-offs that exist in the FL landscape,
(ii) explore the common and uncommon trade-offs in FL
landscape, (iii) comprehensive list of SOTA research papers
which has devised practical ways to successfully resolve
trade-offs of two or more types in FL, (iv) provide a valuable
resource for researchers/practitioners who aim to optimize
trade-offs of different types in FL, and (v) showcasing one
important research topic to further enhance the robustness of
FL by optimizing existing trade-offs or resolving yet unex-
plored trade-offs. The effective solution of different types
of trade-offs is vital to deploy FL in resource-constrained
environments as well as to enhance the credibility of this
distributed technology. Table 8 discusses different SOTA
studies that resolved different types of trade-offs in an FL
ecosystem.
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TABLE 8. SOTA solutions for optimizing trade-offs in FL.

Ref. Trade-off(s) resolved

[339]  Privacy, accuracy, and model fairness

[340]  Accuracy and test loss

[341] Fairness and accuracy

[342]  Privacy and fairness

[137]  Fairness and global model performance
[343]  Local and global fairness

[344]  Accuracy and training time

[345]  Accuracy and communication cost

[346]  Privacy, utility, and fairness

[347]  Utility and fairness

[348]  Privacy protection and test accuracy

[349]  Fairness, integrity, and privacy

[350] Communication efficiency, robustness, and fairness
[351]  Robustness and privacy

[352]  Privacy and latency

[353]  Utility and privacy

[354]  Model fairness and user privacy

[355] Communications cost and training loss
[356]  Privacy and utility

[357]  Privacy and accuracy

[358]  Fairness and heterogeneity

[359] Fairness and drifts

[360]  Computing time and prediction accuracy
[361]  Accuracy, worst node performance, and communications cost
[362]  Privacy and explainability

[363]  Privacy and efficiency

[364]  Accuracy and communication cost

[365] Communications overhead and training time
[366]  Privacy, accuracy, and communication efficiency
[367]  Privacy and model poisoning

[368]  Privacy, accuracy, and energy use

[369]  Privacy, accuracy, and communications cost
[370]  Accurate learning and energy

[371]  Computing speed and accuracy

[372]  User/client dropout and efficiency

[373]  Accuracy, robustness, and flexibility

[374]  Privacy, accuracy, and adversarial attacks
[375] Energy consumption and convergence

In Table 8, we can see that many studies have resolved
two, three, or four different trade-offs in the FL ecosystem.
In the literature, the privacy and accuracy/utility trade-offs
have been widely investigated from diverse perspectives.
However, the energy and privacy trade-off is relatively less
investigated than others. It is worth noting that some studies
in the literature have significantly improved one metric while
keeping the other metric the same as in previous studies [376],
[377]. Some studies have extended the application of FL to a
completely new domain with results similar to previous work.
The extended knowledge presented in Table 8 can pave the
way to understanding the different kinds of trade-offs in the
FL landscape and the corresponding SOTA solutions from a
broader perspective.

VIil. RECENT DEVELOPMENTS TO MAKE FL
TRUSTWORTHY

Over the past couple of years, Al experts have recognized
that most Al systems lack trustworthiness. They are prone to
adversarial attacks, and are biased toward certain demograph-
ics; they risk the privacy of users, lack robustness against
poisoned data/model attacks, lack explanations concerning
decisions/predictions made, and they work in a black-box
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manner [378]. The use of Al without paying ample attention
to trustworthiness is risky and can lead to various types of
social problems and invisible harm [379], [380]. Considering
the need for trustworthy Al systems, various suggestions
have been made in diverse sectors to add trustworthiness.
For example, El-Sappagh et al. [381] discussed SOTA papers
concerning trustworthy Al in Alzheimer’s disease scenarios.
The authors stressed the need to make Al results more
explainable/understandable, enhancing the trust in diverse
entities in medicine (e.g., patients, regulators, and medical
professionals). Qi et al. [382] devised a method to enhance
the robustness of Al systems in intent detection. Mylrea and
Robinson [383] discussed key pillars of trustworthiness in Al
systems and devised a framework to measure trust in them.
Badawy [384] discussed a data-driven framework to quantify
risk from Al systems and the interplay among Al, digitiza-
tion, and various environmental factors. Bonifazi et al. [385]
proposed a framework to make ML classifiers explainable by
employing network theory concepts. The proposed concepts
can be useful in explaining the behavior of ML classifiers
and the decisions made by them, which is a vital step
toward making classifiers trustworthy. Lalor et al. [386]
proposed a framework for quantifying fairness in Al models
by using multiple protected attributes and the associated
harm. The proposed framework is a pivotal step to making
Al systems more reliable and trustworthy, and it can be
used in many scenarios such as user modeling, information
retrieval, and digital platforms to reduce bias in Al pipelines.
A generic analysis of six dimensions for trustworthy Al and
the associated developments is discussed by Liu et al. [387].

Considering these developments in general Al, FL is no
exception, and many such developments have been made to
make FL trustworthy and explainable. Sdnchez et al. [388]
discussed salient pillars, metrics, and notions to compute
trustworthiness in FL. The authors suggested there are six
pillars (robustness, privacy, explainability, fairness, account-
ability, and federation) to quantify trust in FL. They are
akin to the generic concept of trustworthy AI depicted
in Figure 22, which shows six key dimensions/pillars of
trustworthy AI/FL.

Tariq et al. [389] comprehensively discussed the recent
literature, metrics, notions, and criteria of trustworthy FL.
The authors stressed the need to pinpoint trustworthi-
ness metrics and pillars specific to FL, and to develop
corresponding solutions. However, their survey was limited to
three dimensions/pillars: security and privacy, interpretabil-
ity, and fairness. Zhang et al. [390] presented a survey
on the trustworthy aspects of FL by focusing on privacy,
security, and robustness. Psaltis et al. [391] discussed ways
to enhance trustworthiness in FL by adopting appropriate
privacy-preserving mechanisms and aggregation algorithms.
In the recent literature, some studies have focused on develop-
ing a framework to assess trustworthiness or to improve two
or more dimensions of trustworthy FL. Rehman et al. [392]
developed a blockchain-based framework to accomplish
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FIGURE 22. Six dimensions of trustworthy Al/FL.

trustworthy and fair FL learning in IIoT. Lo et al. [393]
developed a BC-based architecture to make FL systems more
accountable and fair while sustaining higher generalizability
and accuracy. Wang et al. [394] proposed a scheme for
decentralized FL that enhances both trustworthiness and
privacy. Han et al. [395] discussed a GAN-based method to
enhance performance consistency and algorithmic fairness in
FL. Rjoub et al. [396] devised the DDQN-Trust solution to
enhance the trustworthiness of FL in IoT. Yuan et al. [397]
proposed a scheme to enhance FL trustworthiness in terms of
accuracy and privacy while resisting a variety of adversarial
attacks. Table 9 presents a summary of SOTA studies that
have explored ways to make FL trustworthy. In Table 9,
we analyze previous studies in terms of the number of
dimensions concerning trustworthiness and the names of
those dimensions.

TABLE 9. Analysis of SOTA studies related to trustworthy FL.

Ref. # of dimen. Name of dimensions

[398] 2 Privacy, safety

[399] 3 Accuracy, efficiency, scalability

[400] 2 Effectiveness, efficiency

[401] 2 Fairness, privacy

[402] 3 Robustness, fairness, privacy

[403] 2 Privacy, robustness

[404] 2 Privacy, robustness

[405] 3 Non-discrimination, privacy, safety
[406] 3 Accountability, robustness, privacy
[407] 2 Explainability, robustness

[408] 4 Well-being, privacy, robustness, explainability
[409] 3 Well-being, privacy, robustness

[410] 2 Privacy, robustness

[411] 2 Privacy, robustness

[412] 3 Fairness, privacy, robustness

[413] 3 Auditability, explainability, robustness
[414] 3 Robustness, governance, privacy
[415] 3 Accuracy, privacy, efficiency

From Table 9 we can see that most studies explored
ways to make FL trustworthy by exploring two dimensions
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only. To this end, more effort is needed to enhance the
explainability of FL systems, leading to trustworthiness
enhancements in FL systems. It is worth noting that
most studies that discussed trustworthy aspects of FL
from a broader perspective are theoretical, and therefore,
implementation workflows/designs are imperative in order
to make FL more trustworthy for real-world applications.
Also, most studies mainly addressed one or two dimensions
concerning trustworthiness [416], [417], [418], [419]. Some
hardware-based solutions to accomplish trustworthiness in
distributed Al systems like FL were discussed in a survey
by Agca et al. [420]. Since this is a niche area that lacks
solid approaches, it therefore offers a lot of room for further
research/developments in future endeavors.

The six key roles of this section are (i) highlight
the need for trustworthy FL, (ii) demonstrate the six
noteworthy dimensions of trustworthy FL, (iii) summarize
SOTA research papers that have devised practical ways
to make FL trustworthy, (iv) delving into the number
as well as the name of dimensions tackled in SOTA
research papers focusing on FL, (v) provide a valuable
resource for researchers/practitioners who aim to work
on trustworthy aspects of FL, and (vi) showcasing one
important research topic/area that requires urgent attention of
researchers/practitioners to lower harms of rapidly evolving
technical landscape of AI. The analysis presented in this
section contributes to understanding the existing works on
trustworthy FL and navigating the potential harms of FL
by designing next-generation FL systems that obey all six
dimensions of trustworthiness.

IX. LESSONS LEARNED AND WAYS FORWARD

In this section, we highlight the important lessons learned
throughout this survey and the ways forward. Specifically,
we discuss past works, current issues and associated devel-
opments, and future prospects concerning FL.

A. PAST WORKS

Nowadays, large-scale data are generated in each industry,
which can feed into Al models to get actionable insights.
However, sensitive information in the data can hinder
data sharing and subsequent knowledge discovery. The
development of FL has relaxed this problem; data mobility
is no longer needed. Though FL has resolved privacy, it is
confronted with many other technical and social issues. For
example, achieving convergence in FL in a reasonable time is
challenging, particularly when data are non-i.i.d.. Similarly,
the inclusion of a few highly responsive clients in global
model aggregation can lead to biased global models. Sharing
gradients can expose characteristics of the data, leading to
privacy disclosure of various kinds. Last but not least, the
characteristics of the data owned by each client can impact
global model construction and convergence. In the literature,
a lot of empirical and theoretical studies focusing on the
upsides and downsides of FL have been published. The past
research has mainly focused on advocating the bright sides
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of FL in terms of solving one of the crucial problems (e.g.,
privacy preservation). However, most of the past works have
focused on implementing FL on different publicly available
datasets, demonstrating FL. potential in diverse tasks. In a
short period, FL applications have expanded from simpler
tasks such as image classification to more complex tasks
(e.g., medical image analysis). As a result, many survey and
research papers have been published on FL topics.

In the beginning, it was believed that FL. had resolved
one of the crucial problems of data privacy by not moving
private data to central settings. However, after some time,
researchers identified a variety of practical issues that privacy
can still be leaked from FL even though the design is
very secure, prompting the need to resolve this issue at a
reasonable cost. Later, many different practical issues with
entities (e.g., client and server) of the FL were observed,
and FL became one of the most extensive research topics.
The weakness of FL opened different research tracks: privacy
breaching, privacy protection, poisoning attack detection,
poisoning attack defenses, optimal client selection, client
dropout prevention, incentivizing clients, securing client
parameters, robust aggregation, and filtering wrong local
models, to name just a few. Most of the past works addressed
the above-cited research topics. It is worth noting that
most past works implemented the FL. on a few public
datasets without rigorous evaluation due to the absence of
a benchmark (or baseline scores) and real-world datasets.
The implementation of FL on a few well-known datasets
(e.g., MNIST, FashinMNIST, CIFAR 10, CIFAR100, etc.) and
limited evaluations hindered the wide-scale adoption of FL
in different domains. It is worth noting that most of the
past works assumed a reasonable # of clients of a similar
nature and employed simple averaging algorithms that were
not closely aligned to the real-world environments/settings.
Lastly, most of the past works addressed only a limited aspect
of FL, mainly privacy protection or privacy leakage. Lastly,
some conventional defense methods such as DP, encryption,
SMC, etc. were also integrated with FL to secure it from
malicious adversaries. The main focus of most works was
on privacy protection, convergence in a short time, and
other optimization in FL ecosystems. The past works are
discussed in the introduction, fundamentals, paradigm shift,
and practical issues sections of this survey.

B. CURRENT ISSUES

Over the past few years, various new research avenues
emerged under the umbrella of FL. The new research
avenues are (1) introduction of two new FL types (e.g.,
vertical FL, hybrid FL) and settings (e.g., asynchronous
FL), (2) data and model poisoning attacks in different
settings of FL, (3) introduction of other security attacks (e.g.,
backdoor, spoofing, etc.) on FL systems, (4) changes in FL.
design from cross-device to cross silos, (5) new aggregation
mechanisms for global model curation, and (6) working
with multi-modality and non-i.i.d. data. Considering these
avenues, the nature of FL research shifted to the next level,
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meaning the methods/mechanisms proposed for fundamental
FL (or i.i.d. data) were extended to these new avenues,
bringing much-needed enhancements to the FL systems.
Most of the current works focus on these avenues as opposed
to the previous work which mainly focused on privacy
protection or FL application in narrow domains. In recent
years, the FL topic has gained a compelling interest from both
academia and industry.

Recently, FL systems have been implemented not only
in public datasets but also in private/customized datasets.
However, we believe that most of the research topics that
have been already studied for one type of FL have been
investigated again for another type of FL. For example,
past works have mainly focused on statistical heterogeneity
in HFL, but recent works are extending the previous
approaches to VFL and hybrid FL. The current issues in
FL are mainly: poisoning attacks detection and mitigation,
communication and computation overhead reduction, trade-
off optimization, integrating FL with other technologies,
robustness enhancement, data offloading, quantization of Al
model, securing entire FL pipeline, reducing model size,
bias reduction, preventing inference time vulnerabilities, etc.
Since 2024 most researchers are mainly focusing on vertical
FL [421], [422], verifiability in FL [296], [423], [424], [425],
[426], edge-assisted FL [427], protecting data integrity [428],
non-i.i.d. data handling [429], [430], transitioning from one
server to two/more [431], drift handling [432], aggregation
related optimization [433], [434], security enhancement
with optimized solutions [435], [436], [437], poisoning
attack prevention [438], [439], client participation enhance-
ment [440], incentive mechanisms [441], game theory based
optimizations/solutions [442], [443], copyright protection
of final model [444], computation offloading [445], [446],
[447], and optimizations in the related topics such as
privacy preservation [448], [449], [450]. Some researchers
are addressing the issues related to the trustworthiness and
reliability aspects of FL. The current issues are mainly dis-
cussed in the trade-off optimization, partnership, trustworthy
aspects, and practical issues section of this survey paper.
However, there is still room for improvement to address these
current issues at a reasonable cost.

C. FUTURE PROSPECTS
In this subsection, we pinpoint 10 hot topics for future
research on FL systems. Some of the mentioned topics have
been investigated in the literature, but we believe there is still
room for improvement to optimize them or extend them to
different settings of FL. In Figure 23, we pinpoint 10 topics
for future research and development to enhance technical
efficacy in FL systems. Below we concisely present the
details of each topic.
1) Partnership with latest technologies: FL has been
integrated with many other technologies, such as DP,
BC, SMC, the IoT, and cloud/edge/fog computing,
to either extend applications or improve technical
strengths. However, it has been minimally linked with
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FIGURE 23. Overview of hot topics for future research on FL.

emerging technologies like quantum computing [451],
ChatGPT [452], subspace clustering, and 5G/6G tech-
nologies [453]. It is worth exploring FL partnerships
with these emerging technologies to extend FL service
scenarios and service delivery mechanisms.

2) Trade-off optimization: In FL systems, a variety of
trade-offs need to be optimized, depending upon the
scenario. For instance, an AI model with higher gen-
eralizability is usually required in high-stakes medical
applications, but a poorly designed defense mechanism
that keeps filtering out clients that have non-i.i.d.
data can lead to a biased model. Using a biased
model can provoke patient safety concerns in medical
environments [454]. Thus, optimization of diverse
trade-offs without compromising other performance
indicators is a promising area for research. Some types
of trade-offs, such as energy vs. privacy, energy vs.
communication, and convergence vs. poisoning, have
been relatively less explored. Therefore, exploring such
trade-offs in diverse FL systems is a worthy research
direction.

3) Methods for diverse structures: As stated earlier, there
are diverse structures/types of FL, and the method
proposed for one cannot be directly applied to another.
For example, the aggregation mechanism proposed for
SFL cannot be directly applied to AFL because of the
difference in the arrival order of client updates [455].
Hence, it is worth studying developments in SFL,
making them generic for diverse types of FL. Similarly,
attacks and corresponding defense methods vary from
type to type, and therefore, developing generic as well
as FL-specific methods is a vibrant area of research.

4) Data/model governance: In FL, all clients jointly train
an Al model, and therefore, there are issues related
to ownership of the final model [456]. In some cases,
data can be limited, and curating more data incurs
additional costs for some clients [457]. However, there
are few methods to pay dividends to clients whose
contributions to the global model are comparatively
high. Also, there is a mismatch between computing
resources at each client, making it hard to properly
govern Al systems. In some cases, the server shares
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data or data properties with clients to ensure consistent
training. However, protecting the integrity of those
data or the global models is hard to guarantee.
It is worth exploring methods/frameworks to ensure
data/model governance in FL systems. There are some
initiatives, like GPAL' but more technical/regulatory
solutions are needed to properly govern FL in diverse
domains/sectors.

Data-related problems:Data are an indispensable com-
ponent for Al development, and quality is imperative
to building reliable Al systems under both CL and
FL settings. In the literature, plenty of methods have
been proposed to enable AI model training under
FL by using both ii.d. and non-i.i.d. data [458].
However, statistical changes in non-i.i.d. data make
achieving convergence in a reasonable time challeng-
ing. Furthermore, in cross-silo FL, data are massive,
unstructured, and noisy, requiring robust techniques
for quality enhancement. To this end, exploring the
recently developed data-centric Al [459] concept is
a promising area of research. In addition, exploring
and resolving data skew and heterogeneity issues in
different types of FL is an attractive area for research.
Lastly, detecting poisoned data upon sharing updates is
a complex problem, and multidisciplinary approaches
are required to detect/remove poisoned data to make FLL
reliable.

Social issues: As discussed earlier, in FL ecosys-
tems, there are higher heterogeneities in clients
from the perspectives of local data size, local data
quality, computing resources, network infrastructure,
and bandwidth requirements, to name just a few.
These huge differences/disparities among clients make
an FL system unfair to certain clients, leading to
discrimination and bias in the global model. The use
of such a model in realistic scenarios can haunt the
pursuit of diversity, inclusion, and equity. In some
cases, algorithmic disparity can also affect the learned
model [460]. In some cases, a global model trained
with imbalanced/noisy data cannot make fair predic-
tions/classifications, leading to social issues of various
kinds [461]. Lastly, FL systems can make wrong
predictions about certain underrepresented groups or
special groups when inadequate data are used in
training the federated model, which can lead to
discrimination. In this regard, a lot of effort is required
to overcome the social implications of Al, including
FL [462]. In the future, more socially aware FL
frameworks are needed to overcome the societal perils
of FL for diverse societies/populations.

Optimization: FL systems have been optimized from
the perspectives of communication rounds, global
and local models, bandwidth allocations, trade-off
solutions, model design, network topologies, update

1 https://gpai.ai/
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sharing and receiving, and convergence time [463],
[464]. However, with the rapid proliferation and
emergence of new concepts in FL, it is challenging
to accomplish optimal performance in all cases.
Therefore, there is room for optimization when it
comes to diverse data modalities as well as application
scenarios. In some cases, the FL system needs to
meet diverse performance objectives, and optimization
is a non-trivial task [465]. It is worth noting that
different settings for FL have different optimization
requirements, which require hybrid approaches. For
instance, in a cross-device setting, the challenge is to
correctly reflect in the global model the updates of a
million devices [466]. In contrast, the cross-silo setting
needs to utilize the mammoth amounts of data held
by each site. Hence, both settings require different
optimization methods and models [467]. Similarly,
optimization objectives for non-i.i.d. and i.i.d. settings
are quite different. In some cases, a certain optimization
is required based on the application scenario, which
complicates the process [468]. Lastly, FL is a versatile
system, meaning it has many components (data, model,
clients, aggregation, anomaly detection, the global
model, local models, rounds of communication, data
size, etc.), and there is room for improvement in
each aspect [469], [470], [471], [472]. In this regard,
developing optimized solutions to enhance robustness
and performance in FL by optimizing conventional
procedures/pipelines is an attractive area of research.
Trust enhancement/estimation: Trust has different
shades in an FL system, and quantification/ enhance-
ment is challenging, particularly in personalized and
non-i.i.d. settings. In addition, the distributed nature
of FL makes it vulnerable to nefarious actors, so trust
in the AI model trained under FL can be low if
detection methods are not robust [473]. Although some
methods have been proposed to enhance trust in FL,
they require data sharing, which may violate the privacy
of clients’ data [474]. Some reinforcement methods
have been suggested to augment trust in FL, but
hefty computations in client evaluations can prolong
convergence. In addition, trust quantification requires
multiple criteria to be considered in the calculations,
which may increase the computing complexity in trust
estimation [475]. In some cases, FL has partnered with
BC to establish trust [476], but this synergy is costly
given the fact that BC requires a lot of memory and
computations. Lastly, trust enhancement requires more
data and deep training of Al models, which can increase
the overall cost of building AI models under FL. All
these technical issues require robust solutions in the
future Al-driven era.

9) Attacks and defenses: Since its inception, malicious

actors have attacked FL systems, ranging from data
reconstruction to backdoor attacks. The distributed
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nature of the technology and weaker control over
clients make it prone to attack. Thus far, many have
been executed, even in the presence of defenses.
Yang et al. [367] launched a model poisoning attack
even though the FL system was protected by a DP
mechanism. Plenty of backdoor attacks with a bound-
ary trigger set have been designed to navigate the true
behaviors of a global model under FL [429]. A plethora
of privacy attacks exist, such as property inference,
label disclosure, sample disclosure, class disclosure,
etc. Model poisoning and data poisoning degrade
the reliability of FL in many real-world cases [477].
In some, parameter sharing with the server can expose
private information in the data, leading to privacy
attacks [478]. Although a lot of defense mechanisms
(e.g., DP, SMC, secret sharing, anonymization, and
micro-aggregation) have been developed for each
attack [428], [479], [480], [481], [482], [483], [484],
there is still a lot of room for research. Furthermore,
some attacks have been recently developed which are
specific to the FL type. Lou et al. [485] devised
a feature inference attack tailoring to VFL, which
undermines the credibility of VFL in protecting the
prediction outputs from leakage. In the current era,
most of the traditional mechanisms cannot withstand
emerging threats, and this area is getting the attention
of researchers around the globe [486]. To this end, it is
worth designing new attacks on FL and finding the
corresponding defenses to increase the reliability of FL
systems in realistic scenarios.

10) Dynamic/adaptive FL architectures: Most of the
existing FL architectures (FLAs) are static, which
means they cannot adapt to changing conditions (e.g.,
data increase or decrease, client strength increases or
decreases, more or fewer malicious clients). However,
in this rapidly evolving landscape of data avenues
and commodities, most of the data are non-i.i.d.,
which requires dynamic FLAs that can tackle changing
characteristics in real time. Some developments make
FL more adaptive/dynamic [487], [488], but more
approaches are needed to tackle different kinds of
practical issues. Adaptive FLAs can be more resilient
to attack, can dynamically adjust the participation of
clients, and can make FL systems more autonomous,
privacy-preserving, and self-optimizing so they are
capable of dealing with subtle differences, particularly
when the data are non-i.i.d. To this end, exploring
practical approaches such as knowledge distillation,
RL, and meta-learning are vibrant areas of research.

Apart from the promising directions cited above, exploring
robust statistical/formal measures that can assist in distin-
guishing benign and malicious clients is an active area
of research. Additionally, designing unified frameworks to
make FL trustworthy and resilient to attack requires the
attention of researchers and developers. Devising methods to
verify the activities of both server and client is a promising

VOLUME 12, 2024

area of research [489], [490]. Additionally, due to the diverse
goals (i.e., utility, privacy, efficiency, fairness, and system
security) and interdisciplinary nature of FL, the evaluation
of FL algorithms is very hard [491]. To this end, robust
and reliable evaluation frameworks/metrics are required to
gauge the efficacy of FL in diverse domains. Recently, the
fusion of quantum FL (QFL) with IoT has opened a new
research track with simultaneous optimization of privacy
enhancement and computational improvements [492]. Hence,
investigating the potential of QFL with other technologies
is a vibrant area of research. Finally, developing low-cost,
end-to-end solutions that can secure the entire FL system
without degrading performance can contribute to unlocking
the hidden potential of this emerging technology.

X. CONCLUSION AND FUTURE WORK

This paper presented a multifaceted analysis of federated
learning (FL), including the fundamentals, paradigm shifts,
practical issues, and corresponding developments. It explores
the integration of FL with two or more technologies, the
various kinds of trade-offs in FL and the corresponding SOTA
studies, as well as research on the trustworthiness aspects
of FL, and promising directions for future research. In the
fundamentals section, we provide the workflow of FL, major
FL categorization from four different perspectives (data,
resources, response, topology), comprehensive comparisons
between CL and FL, and FL applications in diverse fields.
In the paradigm shift section, we define paradigm shift and
discuss ten different aspects to support our assertion that FL
has indeed brought a kind of paradigm shift in the Al field.
In the practical issues section, we highlight ten issues that are
currently hindering the viability/applicability of FL in differ-
ent scenarios and introduce each issue with relevant examples
and supportive studies. In this section, we summarize and
tabulate the SOTA literature which has been proposed to
resolve each issue. In the partnership section, we discuss
the integration of FL with two or more other emerging
technologies that have been recently made to accomplish two
objectives: (i) to extend the horizons of FL applications, and
(i1) to overcome technical deficiencies in FL. Furthermore,
we identify and discuss relevant SOTA studies that have been
published centering on FL integration along with the purpose
of each integration. In the trade-off section, we pinpoint
various kinds of trade-offs that exist in FL systems, and
we highlight developments that have been made to resolve
them. In the trustworthy section, we depict the dimensions
of trustworthy AI/FL and highlight the developments that
have been made thus far in each dimension. Specifically,
we provide the number of dimensions along with their
names which have been covered in recent SOTA papers.
In the lessons learned and ways forward section, we discuss
the transition of research in FL topics by summarizing
past works, current issues, and prospects. Furthermore,
we provide ten different avenues for future research, which
can be handy for earlier researchers to work on. Through this
work, we provide a holistic overview of recent developments
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in FL along with supportive studies and examples, which
can pave the way to clearly understanding the FL topic from

basic

to advanced levels. To the best of our knowledge,

this is the first work that depicts the paradigm shifts and
provides a broader coverage of the practical issues, trade-
offs, partnerships of FL with other technologies, trustworthy
aspects, and other related developments by summarizing
SOTA literature. Our work is a timely contribution intended to
demonstrate the developments in the most widely researched
topics of FL, and it can provide a solid foundation for future
studies. In future work, we intend to discuss the promises
of quantum computing in the FL landscape from a broader
perspective in order to highlight recent developments in that
context.
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