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ABSTRACT Intersections are crucial and high-risk areas in urban road networks due to dense traffic and
complex scenarios. Deploying Roadside Units (RSUs) can enhance safety and efficiency by providing
real-time traffic information. However, the impact of traffic accident risks on RSU deployment is largely
ignored. This study introduces an innovative RSU deployment strategy that prioritizes the risk of traffic
accidents at intersections. The approach begins with analyzing environmental conditions, traffic patterns,
and historical accident data at target intersections to identify key risk dimensions: road, accident, and
environmental. The Analytic Hierarchy Process (AHP) and Entropy Weight Method (EWM) are used to
weigh the indicators to evaluate their importance in accident risk assessment. Then, construct an objective
function based on the accident risk value of the intersection. To overcome the redundancy problem in
risk assessment, this study proposes an improved 0-1 knapsack algorithm that considers the redundancy
of intersection accident risk to determine the optimal deployment location of RSUs. Simulations with
SUMO, TraCI, Veins, and OMNeT++ demonstrate the algorithm’s superiority over traditional methods
in all metrics. The results show that the vehicle coverage of this strategy is on average 2.63% and 2.86%
higher than that of the IIA-ORD and UDA algorithms, respectively. It also leads by about 5.04% in traffic
accident coverage and 5.72% in accident risk coverage. This intersection-focused RSU deployment method
ensures timely information dissemination after incidents, providing valuable insights and practical guidelines
for improving urban intersection safety and efficiency.

INDEX TERMS Accident risk, intelligent transportation systems, optimized deployment strategy, roadside
unit (RSU), improved 0-1 knapsack algorithm.

I. INTRODUCTION
Intersections, recognized as critical nodes within urban road
networks, are pivotal areas where vehicular flows converge.
However, due to the dense presence of vehicles, multidirec-
tional flows, and complex traffic environments, intersections
often become hotspots for traffic accidents. In recent years,
with the continuous development of vehicle-to-infrastructure
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collaboration, the deployment of Roadside Units (RSUs) [1],
[2], [3] has emerged as a key element in enhancing the
safety and efficiency of intersections. This paper aims to
investigate RSU deployment methods based on the risk of
traffic accidents at intersections, to improve the safety and
efficiency of traffic operations at these critical points.

From a safety perspective, although traffic accidents are
sporadic and random, they exhibit certain inherent patterns
over an extended period, influenced by the surrounding
built environment and traffic organization [4]. For drivers
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traversing areas with a high risk of accidents, accident
risk warnings are promptly transmitted before any incident
occurs. This ensures drivers are aware of the risks and
adhere to driving regulations in these high-incidence areas.
Additionally, accident information must be disseminated
through vehicle-to-RSU (V2R) communication to prevent
secondary accidents [5]. The diagram of V2R communication
is shown in Fig 1. From an efficiency standpoint, areas with
a high incidence of accidents signify a higher probability
of accidents occurring. The timely release of accident
information helps other drivers optimize their routes [6],
avoiding congested areas, thereby significantly enhancing
travel efficiency.

FIGURE 1. V2R communication.

In the current landscape of intelligent transportation
systems, the deployment locations and quantity of RSUs
impact the Quality of Service (QoS) of the transportation
system. This paper proposes an RSU deployment method
based on the risk of intersection accidents, integrating the
urban road network topology and intersection accident risk
coefficients. A thorough analysis of intersection accident
risks from the perspectives of road dimensions, accident
dimensions, and environmental dimensions is conducted,
proposing fifteen risk source evaluation indicators. A com-
bined Analytic Hierarchy Process (AHP) and EntropyWeight
Method (EWM) are employed to assign weights to these
evaluation indicators, calculating the risk of intersection
accidents based on actual traffic accident data. Priority is
given to deploying RSUs at intersections with higher accident
risks. To address the issue of benefit redundancy within the
overlapping coverage areas of different RSUs, an improved
0-1 knapsack algorithm is introduced. This algorithm incor-
porates a coverage benefit redundancy constraint to reduce
resource wastage within the overlapping coverage areas
of different RSUs. Experimental validation shows that the
improved 0-1 knapsack algorithm effectively addresses the
issue of RSU benefit redundancy, and the deployment method
proposed in this study demonstrates significant advantages in

vehicle coverage, traffic accident coverage, and intersection
accident risk coverage.

The organization of the paper is as follows: Section II dis-
cusses related work conducted in this field to date. Section III
introduces the intersection accident risk evaluation based on
AHP-EWM, the RSU deployment model, and the improved
0-1 knapsack algorithm considering coverage redundancy.
Section IV describes the experimental scenarios and related
parameter settings. Section V discusses the performance
evaluation of the proposed method. Finally, Section VI offers
conclusive remarks on this study and its findings.

II. LITERATURE REVIEW
A well-conceived RSU deployment strategy is crucial
not only for enhancing the performance of vehicle-to-
infrastructure systems but also for minimizing deployment
costs. Researchers have developed various RSU deployment
strategies tailored to different application scenarios in recent
years [7]. These strategies are designed to deploy RSUs
purposefully, based on the specific needs of the scenarios,
to better meet the requirements of drivers and the urban traffic
system.

The first category of RSU deployment strategies focuses on
the significance of the deployment locations. These methods
begin by identifying criteria to evaluate the importance
of potential RSU deployment sites. Subsequently, sites are
selected iteratively for RSU deployment until a specified
performance indicator meets the desired criteria. Research
by Dubey et al. [8] highlighted that deploying RSUs at
intersections, compared to other locations, could increase
their coverage area by approximately 15%. Nidhi [9] have
demonstrated the advantages of deploying RSUs in areas
with a high density of intersections through various statistical
indicators, including packet transmission rates, packet loss,
routing overhead, and end-to-end delay. Ghosh et al. [10]
addressed the challenge of prioritizing RSU deployment
through the introduction of an intersection impact analysis
system, aimed at optimizing RSU placement.

The second category emphasizes coverage rate within
the deployment area,intending to achieve efficient traffic
flow and optimal overall benefits by deploying RSUs.
Yu et al. [11] proposed a balance-focused approach, creating
an RSU deployment strategy based on traffic demand.
Their simulations showed that covering 25% of the road
network with RSUs could serve most vehicles while reduc-
ing communication delays. Zhang et al. [12] introduced a
deployment scheme based on an improved multi-objective
quantum-behaved particle swarm optimization algorithm,
targeting maximum coverage with the minimum number
of RSUs. Feng et al. [13] offered a density-based heuristic
method, assuming RSUs are deployed on static public
streetlights, minimizing costs while ensuring comprehensive
wireless coverage. Ghosh et al. [14] developed an optimal
RSU deployment algorithm within the Memetic Frame-
work, aiming to maximize vehicle coverage while mini-
mizing overlap between RSUs. Based on extensive urban
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vehicular mobility data from Beijing, Kui et al. [15] pro-
posed a uniformity-considerate RSU deployment algorithm.
Wang et al. [16] presented a centrality-based deployment
method tailored for urban and suburban road scenarios.

The third category considers the Quality of Service (QoS)
in the deployment area. Ghorai et al. [17] proposed a
constraint Delaunay-based strategy for RSU deployment,
focusing on covering convex areas with obstacles to
maximize vehicle-to-infrastructure communication proba-
bility. Ni et al. [18] designed a linear programming-based
clustering algorithm (URDA) to address effective RSU
deployment meeting anticipated data transmission delays and
task allocations. Yang et al. [19] employed a method based
on the Dijkstra algorithm, modeling the problem as a variant
of the 0-1 knapsack issue, to propose a binary differential
evolution-based RSU deployment scheme. This algorithm
was shown to achieve high road coverage and low packet loss
rates within limited delay and budget constraints.

In conclusion, while existing RSU deployment strategies
primarily aim to optimize RSU placement for enhanced
information transmission, installation, maintenance costs,
and broader service coverage, they often overlook the impacts
of traffic accidents and urban road scene factors on RSU
deployment. Studies indicate that traffic accidents directly
and significantly affect traffic flow, potentially impacting
fluidity, speed, capacity, and overall efficiency of the traffic
system. Traffic accidents can cause road blockages and
congestion [20], [21], reduce traffic capacity [22], [23],
slow down traffic flow [24], [25], and disrupt traffic due
to emergency service vehicles [26], [27]. Thus, when
developing RSU deployment strategies, it is imperative to
consider the risk of traffic accidents and their potential
aftermath comprehensively to effectively tackle and manage
issues related to intersection traffic safety and vehicular
passage.

III. METHODS
A. SELECTION OF EVALUATION INDICATORS
Based on a comprehensive review of relevant literature [28],
[29], [30] and indicators both domestically and internation-
ally, and starting from actual traffic accident data, we estab-
lish 15 evaluation indicators across road dimensions, accident
dimensions, and environmental dimensions as Table 1.
Roads play an important role in the transportation system,

and their condition has a crucial impact on traffic safety.
The state of the road affects risk factors during the entire
traffic flow process. Therefore, when evaluating road traffic
risks, potential risks caused by the roads themselves must
be considered. In terms of road dimensions, the focus is
primarily on the characteristics of the roads connected to
intersections. Roads of different grades and numbers of lanes
may have different impacts on intersection accidents. For
example, roads of higher grades and with more lanes are
usually associated with higher speeds and more complex
crossing flows, which may increase the risk of accidents.
By assessing the road dimensions, a deeper understanding of

how road structures influence the probability of intersection
accidents can be obtained.

In the accident dimension, the focus is on the specific
types of accidents that occur at intersections and their
characteristics. Analyzing indicators such as the number
of large vehicle collisions, number of fatal accidents, and
number of injury accidents can provide insight into the
frequency of different types of accidents at intersections,
helping to identify potential high-risk intersections.

In the environmental dimension, factors related to the
environmental conditions at the time of the accident are
considered. For example, ambulance accessibility, traffic
congestion index, and number of adverse weather events
during traffic accidents. These factors can affect the severity
of the accident and the effectiveness of emergency response.
By comprehensively considering environmental factors,
a more complete understanding of intersection accident risks
can be gained, offering strong support for the implementation
of corresponding traffic management and safety measures.

B. INDICATOR WEIGHTING
In the process of determining the weights of evaluation
indicators, to reflect the decision-maker’s level of interest in
different indicators and to minimize the influence of subjec-
tivity on weight determination, ensuring the authenticity and
credibility of decision outcomes, it is customary to integrate
subjective and objective weighting methods. This approach
considers both the intrinsic relationships among the data
of the indicators and incorporates the subjective experience
of experts, thereby deriving a comprehensive weight for
each indicator. By using this integrated weighting method,
the importance of each evaluation indicator can be more
comprehensively and objectively represented, providing a
more scientific and rational basis for decision-making.

In this paper, in order to more accurately evaluate the
importance of each indicator, a comprehensive weighting
method combining the AHP and the EWM was adopted
to determine the weights of the evaluation indicators. This
approach takes into account both the subjective judgments of
experts and the objectivity of the data, making the evaluation
results more comprehensive and reliable.

The AHP is a subjective method for determining weights.
This method involves establishing a hierarchical structure
model, breaking down complex decision-making issues into
the goal, criteria, and alternative layers. In the criteria
layer, factors are compared pairwise, and numerical values
are assigned based on their relative importance to form a
judgment matrix. Subsequently, the weights of the factors are
determined by calculating the eigenvectors of the judgment
matrix, followed by a consistency test to assess the matrix’s
consistency. If the consistency ratio (CR) is within an
acceptable range (typically CR < 0.1), these weights will
be used to synthesize the basis for the final decision. The
results of the AHP subjective weights are presented as shown
in Table 2. After constructing the judgment matrices for
the evaluation indicators of each dimension in Table 2,
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TABLE 1. Significant indicator.

all dimensions pass the consistency test, with the Consistency
Ratio CR < 0.1.

The EWM, as an objective weighting approach, starts
from the data perspective to avoid the influence of subjective
human factors on the weighting of indicators. To determine
the weights of the evaluation indicators using the entropy
weight method, a decision matrix is initially constructed
based on the evaluation indicators as follows:

B =


B1 B2 · · · B15

R1 3 5 · · · 0
R2 2 2 · · · 0
...

...
...

...
...

R55 2 4 · · · 0

 (1)

As indicated by Eq (1), the research divides intersections
into a total of 55 segments, encompassing 15 indicators
within the multidimensional risk source evaluation. Due to
the different dimensions of various indicators, the decision
matrix is first standardized. Subsequently, the entropy values
for each evaluation indicator are calculated. The results of
the objective weights using the EWM are presented as shown
in Table 2.

Based on the two different weighting methods described
above, after importing the selected evaluation indicators and
their corresponding data, the calculation results for both
subjective and objective weighting methods are obtained
separately. However, as both subjective and objective weight-
ing methods have certain limitations, a combined weighting
approach is used to effectively integrate the advantages of
both methods and to compensate for their respective short-
comings. The calculation formula is as follows, represented
as Eq (2).

wi = αwi,1 + (1 − α)wi,2 (2)

In Eq (2), i represents the index of the evaluation
indicator; wi,1 and wi,2 respectively represent the weight
values obtained from the AHP subjective weighting method
and the EWM objective weighting method; the value

of α ranges is [0, 1]. The value of α can be dynamically
adjusted according to the characteristics of the evaluation
object in different application scenarios. In this paper,
focusing on the evaluation of road traffic risk, α is set to 0.5.
The calculation yields the final combined weights for each
evaluation indicator as shown in Table 2.

C. DEPLOYMENT MODEL
Based on the risk of accidents at intersections in the
deployment area, this article constructs an RSU deployment
model that considers traffic safety risks, which can be
expressed as Eq (3).

F(X ) =

N∑
j=0

xj × tj (3)

xj ∈ {0, 1}, ∀i = 1, 2, . . . ,N (4)

Eq (3) represents the objective optimization function for the
optimal deployment model of RSUs considering the com-
prehensive benefit. N is the number of RSU pre-deployment
positions selected in the deployment area; xj is a binary
variable indicating whether an RSU is deployed at the current
intersection; tj represents the accident risk value of the
intersection indexed by j; the deployment scheme X serves as
the decision variable. By adjusting the deployment scheme,
the comprehensive benefit F(X ) is maximized. Eq (4) sets the
variable constraint for the deployment scheme. This variable
is a binary variable, where when xj = 1, it indicates that an
RSU is deployed at the location; when xj = 0, it indicates that
no RSU is deployed at the location.

D. SOLUTION ALGORITHM
When deploying a new RSU, it is essential to consider its
impact on the accident risk assessment at intersections for
already pre-deployed RSUs, especially when the new RSU
coverage area overlaps with that of existing RSUs. This
overlap in coverage areas means that when selecting new
RSU deployment locations, it is necessary to recalculate the
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TABLE 2. Weights of significant indicators.

benefits of other pre-deployed RSUs to take into account the
accident risk within the intersecting areas.

To precisely adjust the traffic accident risk values, it is
assumed that the accident risk is uniformly distributed within
each RSU’s coverage area. Therefore, the accident risk value
for pre-deployed RSUs can be adjusted by comparing the
ratio of the intersecting area to the total coverage area
of two RSUs. Through this method, the impact of newly
deployed RSUs on the coverage benefits of other RSUs can
be quantitatively assessed.

In the Deployment Model section, the task of positioning
RSUs within a designated deployment area is formulated as
a 0-1 knapsack problem. The model defines the number of
required RSUs, represented by the integer m, which must be
strategically placed from among N potential pre-deployment
positions. Each position is associated with a predetermined
benefit value. The primary objective is to select m positions
that collectivelymaximize the total benefit derived from these
RSUs. An advanced version of the 0-1 knapsack algorithm is
employed to solve this optimization problem, incorporating
considerations for risk coverage redundancy. This approach is
formalized in the state transition equation presented as Eq (5).

dp [i] [j] = Max (dp [i− 1] [j] , dp [i− 1] [j− 1] + vi) (5)

In Eq (5), dp [i− 1] [j] and dp [i− 1] [j− 1]+ vi represent
the two choices of selecting or not selecting the RSU, with
the optimal strategy determined by using the Max function.
When the RSU with index i is selected, the capacity of the
knapsack decreases by 1, and the total benefit of the knapsack
should be increased by the comprehensive benefit of the
selected RSU; when the RSU with index i is not selected, the
capacity of the knapsack remains unchanged, as does the total
benefit of the knapsack. Unlike the traditional 0-1 knapsack
problem, when selecting the RSU with index i, the traffic
accident risk values for other pre-deployed RSUs are updated.
The pseudocode for the improved 0-1 knapsack algorithm

Algorithm 1 Improved 0-1 Knapsack Solving Algorithm
Input: N ; m; T= {t1, t2, t3, · · · , tN }

Initialize: RSUSet=∅; State transition matrix dp;
for i = 1 to N + 1 do

for j = 1 to m+ 1 do
if j <= i then

Make di,j = Max(di−1,j, di−1,j−i + F (xi))
Update traffic accident risk values for unse-

lected RSUs
else

Make di,j = di−1,j
while m, j > 0 do

k = 0
if di,j! = di−1,j then
Put index i− 1 to join RSU set
make k = k + 1 and j = j− 1

Output: RSU set of the selected RSU when the F(X ) is
maxed.

considering risk coverage redundancy is presented as shown
in Algorithm 1.

IV. SIMULATION SCENARIO AND PARAMETER SET-UP
To evaluate the proposed methodology, the Intersection
Influence Analysis System for Optimal RSU Deployment
(IIA-ORD) [10], the Uniform-based Deployment Approach
(UDA) [15], and the Centrality-based Deployment Approach
(CDA) [16], which have been explored in previous literature,
are employed as comparative algorithms. The IIA-ORD
algorithm conceptualizes the traffic network as a con-
nected graph and employs a modified K-shell method
combined with the TOPSIS framework for its execution.
By analyzing a range of statistical measures using real-time
traffic data, it effectively identifies key intersections for
the strategic deployment of RSUs. Meanwhile, the UDA
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coverage algorithm strives for uniformity in RSU placement,
ensuring an even distribution across the deployment area
while accommodating the varying traffic volumes at different
intersections. Additionally, the CDA coverage algorithm
integrates the concept of centrality, derived from social
network analysis, into the deployment of RSUs to enhance
the network’s overall efficiency.

The OMNeT++ network simulator and SUMO traffic
simulator are selected as the simulation environment for
this study. Integration is achieved through the Veins frame-
work, and synchronization of traffic and vehicle behaviors
is facilitated by the TraCI interface. Additionally, real
map data from OpenStreetMap (OSM) for Tianjin, China,
is utilized, specifically focusing on a real road network
spanning 3km × 2.6km located between the coordinates
(117.117◦E, 39.119◦N) and (117.154◦E, 39.146◦N), as illus-
trated in Fig 1(a). The characters in the figure represent the
names of roads and regional landmarks. The SUMO road
network is created based on the road network from Fig 2(a),
as depicted in Fig 2(b). Road preprocessing is required for
the SUMO road network, where routes unsuitable for vehicle
passage are removed based on road types. Subsequently,
the corresponding traffic flows and building information are
generated using SUMO tools for utilization in OMNeT++.

FIGURE 2. The real road network and SUMO road network in the target
area. (a) Real road network. (b) SUMO road network.

The traffic accident data used in this paper is sourced
from the judicial appraisal organizations of Tianjin City,
encompassing a total of 12,726 traffic accidents from the
year 2012. All utilized traffic accident data do not involve
any personal privacy issues. To assess the performance
differences between the RSU deployment method that
takes into account the risk of accidents at intersections,
as described in this paper, and baseline algorithms, six
different network scenarios are consideredwhich are depicted
in Fig 3(a) to 3(f). The specific simulation parameters are
presented in Table 3.

V. RESULTS
A. ALGORITHM
Fig 4 illustrates the variation in traffic accident risk coverage
under a 300m RSU coverage range, comparing the traditional
0-1 knapsack algorithm with the improved 0-1 knapsack
algorithm that considers coverage redundancy. As shown,

TABLE 3. Simulation parameters used.

the traffic accident risk coverage of the improved 0-1 knap-
sack algorithm, which incorporates coverage redundancy,
surpasses that of the traditional 0-1 knapsack algorithm.
This indicates that through handling coverage redundancy,
the algorithm utilizes resources more effectively, covering a
greater number of potential risk areas.

Specifically, it can be observed that under each RSU
deployment scheme, the traffic accident risk coverage when
considering coverage redundancy consistently outperforms
scenarios where redundancy is not considered. This dif-
ference stems from the improved 0-1 knapsack algorithm
flexibility in choosing RSUs when taking into account
coverage redundancy, aiming to maximize risk coverage.
In contrast, the traditional 0-1 knapsack algorithm is more
likely constrained by resource limitations, unable to effec-
tively cover all potential risk areas. This approach to handling
coverage redundancy not only enhances the coverage rate
of traffic accident risks but also makes the deployment
strategymore reliable and robust. Therefore, the 0-1 knapsack
algorithm that considers coverage redundancy is more suited
to the prevention and management of traffic accident risks.

B. VEHICLE COVERAGE
Vehicle coverage refers to the proportion of vehicle nodes
within the RSU coverage area relative to the total number
of vehicle nodes. A higher vehicle coverage rate indicates
that more vehicle nodes can effectively communicate with the
RSUs in the experiment.

Fig 5 shows the vehicle coverage rates of three methods
by varying the number of RSUs from 10 to 35 and their
transmission ranges of 300 meters and 500 meters. The
simulation results demonstrate that as the number of RSUs
and their transmission ranges increase, the vehicle coverage
rate of the proposed method also increases.

In terms of vehicle coverage rate, within a 300m transmis-
sion range, the proposedmethod is 3.29% lower than theCDA
coverage algorithm, but it is 2.72% and 3.13% higher than the
IIA-ORD and UDA algorithms, respectively. Within a 500m
transmission range, the proposed method is 2.56% lower than
the CDA coverage algorithm, but 2.53% and 2.58% higher
than the IIA-ORD and UDA algorithms, respectively.

VOLUME 12, 2024 83335



S. Zhang et al.: Optimized Deployment Strategy for RSUs

FIGURE 3. Simulation Scenarios. (a) 10 RSUs deployment scenario. (b) 15 RSUs deployment scenario. (c) 20 RSUs deployment scenario.
(d) 25 RSUs deployment scenario. (e) 30 RSUs deployment scenario. (f) 35 RSUs deployment scenario. The red asterisk indicates the
location of RSU deployment.

FIGURE 4. Algorithm comparison.

C. TRAFFIC ACCIDENT COVERAGE
The traffic accident coverage refers to the proportion of his-
torical traffic accidents within the RSU coverage area relative
to the total number of accidents in the simulation scenario.
A higher traffic accident coverage rate indicates that within
the RSU coverage area, RSUs provide more communication
support to enhance information dissemination at accident
sites and reduce the impact of traffic accidents on traffic flow.

Fig 6 displays the traffic accident coverage rates of three
methods by varying the number of RSUs from 10 to 35 and
their transmission ranges of 300 meters and 500 meters.

In terms of traffic accident coverage, within a 300m
transmission range, the method proposed in this paper has
increased the traffic accident coverage rate by approximately
3.67%, 4.6%, and 8.2% compared to the IIA-ORD, UDA, and
CDA algorithms, respectively. Within a 500m transmission
range, the proposed method has improved the traffic accident
coverage rate by approximately 4.13%, 5.02%, and 8.69%
compared to the IIA-ORD, UDA, and CDA algorithms,
respectively.

D. ACCIDENT RISKS COVERAGE
The accident risk coverage refers to the proportion of
intersection risk values within the RSU coverage area relative
to all accident risk values within the deployment area.
A higher accident risk coverage rate aids in the timely
identification and management of traffic accidents, thereby
reducing the potential threat of accidents to traffic safety.
By providing alerts to drivers or intervention for autonomous
vehicles, the rate of traffic accidents can be effectively
reduced.

Fig 7 shows the accident risk coverage of three methods
by varying the number of RSUs from 10 to 35 and their
transmission ranges of 300 meters and 500 meters. In terms
of accident risk coverage rate, within a 300m transmission
range, the method proposed in this paper has increased the
accident risk coverage rate by approximately 1.86%, 4.45%,
and 8.04% compared to the IIA-ORD, UDA, and CDA
algorithms, respectively. Within a 500m transmission range,
the proposed method has improved the accident risk coverage
rate by approximately 2.21%, 4.76%, and 8.9% compared to
the IIA-ORD, UDA, and CDA algorithms, respectively.
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FIGURE 5. Vehicle coverage under different transmission range of RSUs. (a) Transmission range of
RSUs=300m. (b) Transmission range of RSUs=500m.

FIGURE 6. Traffic accident coverage under different transmission range of RSUs. (a) Transmission range of
RSUs=300m. (b) Transmission range of RSUs=500m.

E. DISCUSSION
The deployment method proposed in this paper underper-
forms the CDA algorithm in terms of vehicle coverage rate,
primarily because the CDA algorithm selects deployment
locations based on centrality, focusing on areas with high
vehicle density. This results in some areas having excessively
high RSU density, thus leading to a higher vehicle coverage
rate. On the other hand, the UDA algorithm employs
a uniform deployment mechanism, where the number of
deployments and the intervals between them are related.
Therefore, as the number of deployments increases, the
density of RSUs uniformly increases. This means that the
RSU deployment locations are more evenly distributed across
the deployment area, with some locations potentially situated
at remote intersections with lower traffic flow, thus limiting
vehicle node coverage. Meanwhile, the IIA-ORD algorithm

primarily deploys at intersections and does not consider
the overlap of different RSUs’ coverage areas, leading to
significant coverage redundancy.

The deployment method introduced in this article exhibits
superior performance in both traffic accident coverage and
accident risk coverage, showing significant advantages over
the IIA-ORD, UDA, and CDA algorithms. The proposed
method primarily considers traffic accident risk and incor-
porates coverage redundancy management. By taking into
account the risk level of intersections during deployment
and strategically placing RSUs, it successfully avoids the
waste of resources that might result from deploying in dense
areas.

Specifically, compared to the IIA-ORD, UDA, and CDA
algorithms, the method introduced here pays more atten-
tion to covering traffic accident risks, rather than merely
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FIGURE 7. Accident risks coverage under different transmission range of RSUs. (a) Transmission range of
RSUs=300m. (b) Transmission range of RSUs=500m.

covering areas. By incorporating coverage redundancy man-
agement, the system selects RSU deployment locations more
flexibly, especially at high-risk intersections. This approach
allows for more comprehensive and efficient coverage of
potential risk areas, enhancing the traffic accident coverage
rate.

Furthermore, by focusing on RSU deployment at intersec-
tions with higher risk levels, the problem of resource wastage
in densely deployed areas is avoided. This intelligent and
effective resource allocation ensures good vehicle coverage,
as well as improved traffic accident and accident risk
coverage, effectively reducing the risk of traffic accidents at
intersections.

VI. CONCLUSION
This study aims to enhance the safety and efficiency of traffic
operations at intersections by optimizing the deployment
of RSUs. It considers three main dimensions: road, accident,
and environment, and selects 15 evaluation indicators.
By integrating the AHP and the EWM for weight distribution,
theweights of the evaluation indicators are determined, which
are then used to calculate the risk of accidents at intersections.
Furthermore, this research applies an improved 0-1 knapsack
algorithm that considers coverage redundancy, achieving
effective RSU deployment. Finally, validated through real
traffic accident data in actual simulation scenarios, the exper-
imental results demonstrate that the improved 0-1 knapsack
algorithm, considering coverage redundancy, outperforms
the traditional 0-1 knapsack algorithm in various aspects.
The RSU deployment method based on intersection accident
risk surpasses the IIA-ORD and UDA algorithms by an
average of 2.63% and 2.86% in vehicle coverage rate,
respectively. It also outperforms the IIA-ORD, UDA, and
CDA algorithms by an average of 5.04% in traffic accident
coverage rate and by 5.72% in accident risk coverage rate.
In summary, this study provides a viable path for RSU

deployment research within intelligent transportation sys-
tems. It not only aids traffic management authorities in better
planning and deploying RSUs but also promises to make
a significant contribution to reducing traffic accident risks
and enhancing the overall efficiency of the transportation
system.
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